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Introduction: Enhancing medical robot training traditionally relies on explicit
feedback from physicians to identify optimal and suboptimal robotic actions
during surgery. Passive brain-computer interfaces (BCIs) o�er an emerging
alternative by enabling implicit brain-based performance evaluations. However,
e�ectively decoding these evaluations of robot performance requires a
comprehensive understanding of the spatiotemporal brain dynamics identifying
optimal and suboptimal robot actions within realistic settings.

Methods: We conducted an electroencephalographic study with 16 participants
who mentally assessed the quality of robotic actions while observing simulated
robot-assisted laparoscopic surgery scenarios designed to approximate
real-world conditions. We aimed to identify key spatiotemporal dynamics
using the surface Laplacian technique and two complementary data-driven
methods: a mass-univariate permutation-based clustering and multivariate
pattern analysis (MVPA)-based temporal decoding. A second goal was to identify
the optimal time interval of evoked brain signatures for single-trial classification.

Results: Our analyses revealed three distinct spatiotemporal brain dynamics
di�erentiating the quality assessment of optimal vs. suboptimal robotic
actions during video-based laparoscopic training observations. Specifically, an
enhanced left fronto-temporal current source, consistent with P300, LPP, and
P600 components, indicated heightened attentional allocation and sustained
evaluation processes during suboptimal robot actions. Additionally, amplified
current sinks in right frontal and mid-occipito-parietal regions suggested
prediction-based processing and conflict detection, consistent with the oERN
and interaction-based ERN/N400. Both mass-univariate clustering and MVPA
provided convergent evidence supporting these neural distinctions.

Discussion: The identified neural signatures propose that suboptimal robotic
actions elicit enhanced, sustained brain dynamics linked to continuous attention
allocation, action monitoring, conflict detection, and ongoing evaluative
processing. The findings highlight the importance of prioritizing late evaluative
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brain signatures in BCIs to classify robotic actions reliably. These insights
have significant implications for advancing machine-learning-based
training paradigms.
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1 Introduction

Current research is advancing the development and

optimization of robotic systems capable of autonomously

performing specialized tasks and providing adaptive assistance to

support surgeons during various stages of procedures (Moustris

et al., 2011; Richter et al., 2019; Thananjeyan et al., 2017). These

tasks include camera guidance (Pandya et al., 2014), tissue

clamping (Nguyen et al., 2019), tissue manipulation (Scheikl et al.,

2024), and surgical knot tying (Osa et al., 2014; Van Den Berg et al.,

2010).

Machine learning, particularly reinforcement learning, is

well-suited for training robots efficiently, allowing them to

learn tasks autonomously (Iturrate et al., 2010; Vukelić et al.,

2023). A key challenge, however, lies in providing effective

feedback to the reinforcement learning agent. The agent requires

frequent and continuous evaluation of its actions via a reward

function to distinguish between successful and unsuccessful

outcomes. Reinforcement learning is typically trained in simulated

environments using this reward function before being adapted to

real-world settings for fine-tuning or deployment. The design of

the reward function and the real-world fine-tuning both rely on the

expertise of physicians. However, obtaining explicit feedback in the

form of labels for robot actions from physicians is challenging, as it

further burdens their already demanding workload.

Passive brain-computer interfaces (BCIs) offer a promising

approach by enabling direct, implicit and continuous feedback

loops in human-robot interactions (e.g., Aricò et al., 2018; Protzak

et al., 2013), thereby alleviating the burden on physicians (Zander

et al., 2017). Brain signals elicited during the observation and

mental assessment of robot actions can serve as an evaluation

function for reinforcement learning models (Kim et al., 2017;

Vukelić et al., 2023).

Previous studies on performance monitoring tasks, including

those in BCI applications (Chavarriaga et al., 2010; Iturrate et al.,

2015; Ehrlich and Cheng, 2019; Ferrez and Millán, 2005; Ferrez

and Millán, 2008; Kreilinger et al., 2012; Spüler and Niethammer,

2015), have shown that observing errors is associated with

pronounced event-related potential (ERP) deflections, particularly

in the following components (see Somon et al., 2017 for review):

Across various tasks, an observation-based error-related negativity

(oERN; Somon et al., 2017) has been consistently identified,

resembling the ERN observed in self-generated errors (Gehring

et al., 1993; also referred to as error negativity (Ne) in early studies;

Falkenstein et al., 1991). However, the oERN peaks slightly later,

between 250 and 270 ms, in frontocentral regions and is enhanced

in response to erroneous actions (Chavarriaga et al., 2010; Ferrez

and Millán, 2005; Ferrez and Millán, 2008; Somon et al., 2017;

Pavone et al., 2016).

The oERN is sometimes followed by a frontocentral positivity

known as error positivity (oPe), which responds to errors

depending on contextual factors such as task engagement and

error relevance. This component tends to be absent when another

observed agent produces the error without relational impact or

direct consequence for the observer (Chavarriaga et al., 2010; van

Schie et al., 2004; Koban et al., 2010; Padrao et al., 2016). The oPe

peaks between 350 and 450 ms and is thought to reflect conscious

recognition and high-level evaluation of errors (Ferrez and Millán,

2005; Ferrez and Millán, 2008; Somon et al., 2017; Pavone et al.,

2016).

Many of the studies on error monitoring in observed agents

and systems (Ferrez and Millán, 2005; Chavarriaga et al., 2010;

Padrao et al., 2016; Pavone et al., 2016) have identified a further

negative ERP deflection, likely linked to prediction violations

and unexpected events. This monitoring-related ERP termed

the interaction ERN by Ferrez and Millán (2005), peaks at

frontocentral sites between 400 and 550 ms and is proposed to be

related to the N400. Initially linked to semantic inconsistencies,

the N400 typically peaks around 450 ms post-stimulus at

centroparietal sites (Kutas and Hillyard, 1980). However, it has

also been observed in non-semantic contexts, such as unexpected

outcomes in movement sequences, with a more frontocentral and

temporoparietal distribution (Balconi and Vitaloni, 2014).

Building on this foundation, promising results have emerged

in training non-medical robots using these error-related ERPs

(Iturrate et al., 2010, 2015; Kim et al., 2017, 2020; Luo et al.,

2018; Penaloza et al., 2015; Salazar-Gomez et al., 2017; Vukelić

et al., 2023). Despite these advances, the application of BCI-based

training for medical robots in realistic scenarios remains scarce.

This study investigated evoked spatiotemporal dynamics

associated with evaluating optimal and suboptimal robot

actions during a robot-assisted laparoscopic simulation

using electroencephalography (EEG). Our objectives were

twofold: (a) to determine whether the spatiotemporal

dynamics evoked by observing optimal and suboptimal

robotic actions in near-naturalistic laparoscopic robot

training videos resemble commonly reported error-related

potentials, using two complementary analytical approaches;

and (b) to identify the optimal time interval of these evoked

brain signatures for single-trial classification, with potential

application for feedback loops in BCI-driven reinforcement

learning systems.
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2 Materials and methods

2.1 Participants

Sixteen volunteers (Mage = 24.88 years, SD = 4.88, range:

19–38 years, 14 females, two males) with no prior experience in

surgical procedures participated in the study. Eligibility criteria

included age between 18 and 40 years, right-handedness, absence of

diagnosed neurological, physiological, or psychological disorders,

no regular use of centrally acting substances, and no head

implants or history of brain surgeries. Participants provided written

informed consent before participation and received monetary

compensation. The study complied with the Declaration of

Helsinki and was approved by the University of Tübingen Ethics

Committee (ID: 827/2020BO1).

2.2 Procedure

At the beginning of the experiment, EEG signals were

recorded during a 2-min resting period while participants

focused on a fixation cross with their eyes open. Participants

subsequently undertook an evaluation task, requiring them to

observe laparoscopic video sequences and mentally assess the

quality of the robotic action depicted in each sequence.

The video sequences illustrated simulated tissue-cutting

procedures performed by a robotic arm using a rod instead of

a scalpel. These procedures were conducted on a phantom torso

model with replicated organs, offering realistic representations

of robotic actions in laparoscopic surgery. Light-emitting diodes

(LEDs) were used to mark the target organ and tissue for the

surgical cut. The target organs included the right kidney, stomach

and spleen, each equipped with a single LED point sensor, and

the left kidney, which was fitted with a line sensor consisting of a

row of seven LEDs (Figures 1A–D). The optimal action required

the robot to press the rod with sufficient pressure onto the target

organ for the point sensor and to move the rod along the organ’s

surface for the line sensor. If the robot applied adequate pressure

to the marked tissue, the LEDs turned off (Figure 1A). Conversely,

if the tissue was missed or the pressure was insufficient, the LEDs

remained fully or partially lit. Detailed information about the

stimulus material and an illustrative overview video are provided

in the Supplementary material. The stimulus database is accessible

upon request through the OSF repository at https://osf.io/6ndsv/.

Participants rated each robotic action as good or bad, giving

verbal responses during the practice phase to confirm task

comprehension, and conducting mental evaluations during the

actual experiment. High classification accuracy of robot action

assessments was confirmed in a preliminary behavioral study (N =

9; see Supplementary material for details).

Following a brief practice session consisting of 15 video

sequences to familiarize them with the task and video material

at the beginning of the experiment, participants were presented

with 1,000 video sequences across 10 blocks. Each block included

an overview video, a countdown, and randomized combination

of 65 sequences showing optimal robotic actions and 35 showing

suboptimal actions (100 sequences per block; Figures 1, 2). A 1-min

break followed each block. The overview video at the beginning

of each block depicted a sequence of optimal and suboptimal

robotic actions from two viewpoints (zoomed-out in the top left

corner of the screen and zoomed-in in the bottom right corner

of the screen), providing context for the medical scenario and

upcoming 100 zoomed-in video sequences. Each zoomed-in video

sequence contained a single robotic action. It lasted 1.5 s and was

followed by a jittered interstimulus interval ranging from 0.75 to 1

s, during which a fixation cross appeared at the center of the screen

(Figure 2).

2.3 Data acquisition and preprocessing

EEG potentials were recorded according to the international

10–20 system with 64 electrodes and at a sampling rate of 1,000 Hz

(actiCAP and BrainAmp, BrainProducts GmbH, Germany). The

locations of the electrodes were Fp1, Fp2, Fz, AF3, AF4, AF7, AF8,

F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, FC4, FC5, FC6, FT7,

FT8, FT9, FT10, Cz, C1, C2, C3, C4, C5, C6, T7, T8, CPz, CP1,

CP2, CP3, CP4, CP5, CP6, TP7, TP8, TP9, TP10, Pz, P1, P2, P3,

P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz, O1, O2, and

Iz. The ground electrode was positioned on FPz and the reference

electrode on FCz. Impedance of electrodes was kept below 25 k� at

the beginning of the experiment.

All analyses were performed in Python and MNE Python

(Gramfort et al., 2014). The EEG signals were de-trended and

bandpass filtered using a fourth-order infinite impulse response

(IIR) Butterworth filter with cut-off frequencies of 0.2 and 10

Hz (see also Iturrate et al., 2010, 2015; Kim et al., 2017, 2020;

Vukelić et al., 2023). The signals were then segmented into 2.2-

second epochs, each beginning 200 ms before the onset of each

zoomed-in video sequence. Epoched data was subsequently down-

sampled to 250 Hz. To remove cardiac, muscle, and ocular artifacts,

epochs were cleaned using an independent component analysis

(ICA; Chaumon et al., 2015; Hipp and Siegel, 2013; Lee et al., 1999)

within an automated pipeline called FASTER (Nolan et al., 2010) as

implemented in mne-python version 1.6.1 (Gramfort et al., 2014).

To generate an electro-oculography (EOG) surrogate for the ICA,

a virtual EOG channel was constructed using the frontal Fp1 and

Fp2 electrode signals. After cleaning the signals, the epochs were

baseline corrected by subtracting the mean amplitude of the time

interval before the video onset (200 ms) and bad channels were

interpolated per epoch using a spline interpolation (Gramfort et al.,

2014; Nolan et al., 2010). Finally, the reference-free current source

density (CSD) transformation was applied to the data to enhance

spatial resolution by minimizing volume conduction effects and

estimating local electrical activity (current sources and sinks) at the

scalp surface (Perrin et al., 1989; Kayser and Tenke, 2015).

CSD is a mathematical transformation of EEG signals that

estimates local current sources and sinks across the cortical surface

at the sensor level. By computing the second spatial derivative of

the electric potential field, it determines the spatial distribution and

direction of current flow. Notably, the number of output channels

matches the input channels, as the transformation is applied

directly to the data from each electrode without changing the

input dimensionality. CSD distinguishes between current sources

(positive polarity) and sinks (negative polarity). In a CSD map,

a source indicates outward current flow from a cortical region,
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FIGURE 1

Excerpt from zoomed-in video sequences and laboratory setup. (A) Video sequence of the right kidney with a point sensor. The LED light turned o�
during the video, indicating the robot’s action was successful. (B) Video sequence of the stomach with a point sensor. The sensor was not touched
during the video, and the robot’s action failed. (C) Video sequence of the spleen with a point sensor. The sensor was touched during the video, but
the pressure was insu�cient, resulting in a failed action. (D) Video sequence of the left kidney with a line sensor. The line sensor was not touched
during the video, leading to a failed action. (E) Laboratory setup with a participant seated in front of the monitor and eye-tracking system, wearing a
64-channel EEG.

FIGURE 2

Overview of an experimental block in the robot action evaluation task. The overview phase at the beginning of each block includes two camera
views. The following countdown is displayed in German (English: “It’s about to start 3 - 2 - 1"). ITI, interstimulus interval.

reflecting reduced excitatory postsynaptic potentials (EPSPs). In

contrast, a sink represents inward current flow linked to increased

EPSPs (Perrin et al., 1989; Kayser and Tenke, 2015). This approach

offers a more localized and directly interpretable representation of

neural activity than standard reference-dependent EEG potentials

(Perrin et al., 1989; Kayser and Tenke, 2015).

For subsequent analyses, the number of epochs was equalized

across conditions by minimizing timing discrepancies across trial

lists, ensuring an identical epoch count per condition.

2.4 Mass-univariate permutation-based
clustering

To examine differences in brain signatures evoked by

the robot actions, we used mass-univariate permutation-based

spatiotemporal clustering (Maris and Oostenveld, 2007) with a

paired t-test. The clustering was performed on contrast data,

calculated by subject-wise subtracting suboptimal from optimal

evoked responses.

Compared to traditional univariate approaches, such as

performing an ANOVA or t-test on the mean or peak amplitude

within a predefined time interval, mass-univariate statistics allow

statistical testing at every location and time point (e.g., Maris and

Oostenveld, 2007; Pernet et al., 2015; Groppe et al., 2011).

This approach is particularly advantageous when addressing

variability in ERP latencies arising from experimental parameters,

such as complex stimulus material (e.g., in the case of the

P300; Bentin et al., 1999). However, the multiple comparisons

problem-occurring when testing across many locations and time

points-must be accounted for. Mass-univariate permutation-based

spatiotemporal clustering addresses this issue by identifying

clusters of contiguous samples (i.e., time points and sensors) that

exhibit similar effects, thereby reducing the number of comparisons

to the cluster level (Maris and Oostenveld, 2007). Neighboring

effects (test statistics of time points and sensors) that exceed a

predefined univariate cluster-forming threshold (here α < 0.05)

are grouped into clusters. Statistical values (e.g., t- or F-values)

within these clusters are aggregated, for instance by summing them,

into cluster-mass scores (Maris and Oostenveld, 2007). Statistical

significance is then determined by comparing the observed

cluster-mass scores to a reference null distribution, generated via

random resampling of condition labels (e.g., using Monte Carlo

permutations or bootstrapping). A p-value is calculated for each

cluster as the proportion of permutations in which the cluster-level

statistic from the null distribution equals or exceeds the observed
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cluster-mass score obtained from the original dataset. To control

the overall Type I error rate (false positives) across all clusters, only

clusters with a p-value below a predefined group-level threshold

(here α < 0.05) are considered statistically significant.

2.5 Temporal decoding with a linear
machine learning model

Temporal decoding with subject-wise multivariate pattern

analysis (MVPA) provides an alternative to mass-univariate

analyses, offering enhanced sensitivity and statistical power

(Holdgraf et al., 2017; Kriegeskorte and Douglas, 2019).

MVPA leverages the multidimensional characteristics of

neurophysiological data from each subject, thereby accounting

for anatomical and functional inter-individual neural variability

(Marsicano et al., 2024).

Figure 3 illustrates the input data structure and pipeline steps

applied in temporal decoding. For the machine-learning (ML)

based analyses, epoched data were downsampled to 100 Hz to

reduce computational costs. Linear discriminant analysis (LDA),

using a least-squares solution and automatic shrinkage via the

Ledoit-Wolf lemma (as implemented in scikit-learn version 1.4.1),

was applied as a sliding supervised ML algorithm (i.e., the Base

Estimator) on a time-point-by-time-point basis (implemented in

mne-python version 1.6.1; Gramfort et al., 2014). The data of each

participant (shape: n epochs, n channels, n timepoints; Figure 3)

was split into training and testing sets using a repeated stratified

five-fold cross-validation with 20 iterations, resulting in 100 folds

per time point. In total, 220 (timepoints) × 100 (cross-validation

folds)× 16 (participants) models were trained and fitted in the time

decoding. The Area Under the Receiver Operating Characteristic

Curve (ROC-AUC, henceforth referred to as AUC) was used as

performance metric. Classification performance was statistically

evaluated by bootstrapping the AUC scores across participants

and folds in a Monte Carlo simulation (MCS; 5,000 iterations),

yielding the bootstrapped mean and its 95% confidence interval

(CI; Cumming, 2014). Time intervals were considered significant if

the lower CI boundary of the average LDA performance exceeded

the upper CI boundary of an average dummy performance (i.e., an

empirical baseline estimated by chance-level stratified classification

in scikit-learn version 1.4.1).

After fitting the linear models, model decoding weights

were transformed into activation patterns representing their

contribution to classification through inverse computations

(Haufe et al., 2014). These activation patterns were averaged

across participants and visualized using topographic maps. A

spatiotemporal mask was applied to identify statistically significant

activation patterns using univariate bootstrapped means and

CIs (MCS with 5,000 iterations). Only patterns at electrode

positions where the CI for the average evoked response contrast

(suboptimal–optimal robot actions) excluded zero were considered

significant and visualized. Positive values in the activation patterns

indicate that the region contributes to the classification of evaluated

suboptimal robot actions, whereas negative values indicate a

contribution to the classification of evaluated optimal robot

actions. Pattern values closer to zero indicate lower confidence

in their contribution. To assess the relationship between evoked

response amplitudes and significant patterns, the time course

of contributing regions was visualized, along with bootstrapped

means and CIs for each condition at the time point of maximal

classification performance.

2.6 Single-trial decoding

In the final analysis, we decoded the observer’s evaluation

of robot actions from brain signatures on a trial-by-trial basis

using three distinct time intervals for feature extraction identified

through MVPA time decoding (see Figure 3 for an illustrative

overview). These intervals were defined as (1) 0–750 ms, (2)

750–1,350 ms, and (3) 1,350–2,000 ms after video onset. As in

the time decoding, data were downsampled to 100 Hz to reduce

computational costs.

An LDA classifier with automatically extracted features based

on Riemannian geometry has been proven effective for state

decoding in passive BCIs (Lotte et al., 2018; Vukelić et al., 2023)

and was, thus, applied to each time interval in a within-subject

single-trial decoding (implemented in pyRiemann; version 0.5).

The Riemannian-based method operates directly on the epoched

EEG time series (data shape: n epochs, n channels, n timepoints;

Figure 3), obviating the need for manual feature extraction. It

converts the EEG time series into symmetric positive definite (SPD)

covariance matrices and applies Riemannian geometry to analyse

these matrices (Congedo et al., 2017; Appriou et al., 2020; Vukelić

et al., 2023). In the Riemannian manifold, covariance matrices

were spatially filtered with the xDAWN algorithm (Rivet et al.,

2009) before being projected into tangent space for transformation

into Euclidean vectors (Barachant et al., 2011). This tangent space

projection preserves the manifold structure while enabling effective

classification (Appriou et al., 2020).

Classification was performed using an LDA classifier (with

default settings as implemented in scikit-learn version 1.4.1).

Performance was quantified using a repeated stratified k-fold cross-

validation (five splits, 20 iterations) with AUC as metric. As

with temporal decoding, a dummy classifier estimated chance-

level performance. Non-parametric bootstrapping of classification

scores across folds and subjects yielded the average performance

and corresponding CI for each classifier, enabling statistical

evaluation (Cumming, 2014).

3 Results

3.1 Mass-univariate permutation-based
clustering

The non-parametric permutation-based clustering identified

significant spatiotemporal differences in evoked responses when

observing suboptimal compared to optimal robot actions across

five clusters.

The first two clusters emerged ∼440 ms after video onset,

revealing lateralised frontal responses. Observing suboptimal robot

actions resulted in a reduced left-hemispheric frontal current

sink (Figure 4A; 13 electrodes; p < 0.001) and an enhanced
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FIGURE 3

Overview of the preprocessing steps, data structure and machine learning pipeline for the (left column) temporal decoding and (right column)

single-trial decoding. N, sample size; LDA, linear discriminant analysis; Iter, iterations.

right-hemispheric frontal current sink (Figure 4B; six electrodes;

p < 0.001). In electrodes overlying right-hemispheric frontal

regions, observing optimal robot actions was even associated

with current sources (i.e., a positive deflection) from around

500 ms until the analysis window’s end (Figure 4B). The third

cluster, including 25 electrodes over occipital, parietal, and left

temporal regions, emerged at 448 ms. It differentiated robot

actions by showing a reduced current source peak around 550 ms,

followed by an increased current sink from 800 to 1,760 ms for

suboptimal compared to optimal actions (Figure 4C; p < 0.001).

The fourth cluster, with five electrodes over right parieto-temporal

regions, appeared at 460 ms, showing increased current sources

for suboptimal actions (Figure 4D; p < 0.017). Finally, the fifth

cluster over fronto-central regions, emerging after 576 ms, showed

a decreased current sink for suboptimal actions (Figure 4E; eight

electrodes; p < 0.013). All clusters persisted almost until the end of

the 2-s analysis interval (1,760–1,996 ms).

3.2 Temporal decoding with a linear
machine learning model

Temporal decoding using MVPA and LDA successfully

distinguished the brain signatures evoked by observing optimal vs.

suboptimal robot actions.

The empirical chance level of the dummy classifier was

estimated at an AUC score of 48.4 95% CI [48.06, 48.79].

In later intervals, beginning 750 ms post-stimulus onset and

continuing until the end of the 2-s analysis period, classification

performance consistently exceeded a 60% AUC score. The

classification performance varied over the analysis interval, with a

standard deviation of 4.13 (4.11, 4.13). The highest classification

performance was observed after 1,658 ms with an AUC score of

63.99 95% CI [62.56, 65.38], representing a difference of 15.21

(95%CI [13.78, 16.6]) to the upper CI boundary of themean chance

performance (see Figure 5A).

At the peak decoding time, significant activation patterns

highlighted three regions of interest that differentiated between

optimal and suboptimal robot actions. These regions included

electrodes over the right frontal, left fronto-temporal, and mid-

parietal areas, corresponding to three clusters identified in the

mass-univariate permutation-based analysis.

Figure 5B shows the relationship between classification-

contributing regions and the brain signatures evoked in these

regions by the conditions. The pattern that classified suboptimal

robot actions comprised electrodes positioned over a left fronto-

temporal region (F7 and FT9) and revealed a current source for

suboptimal actions, while optimal robot actions elicited a current

sink. Two other regions contributed to classifying optimal robot

actions: Current sinks in a right frontal electrode (Fp2) and

electrodes overlying the mid-parietal region (P1, Pz, P2) were

reduced for evaluating optimal compared to suboptimal actions.

3.3 Single-trial decoding

In the single-trial decoding of robot performance evaluations,

the Riemannian LDA combined with xDawn spatial filtering

yielded classification results above chance level for all selected
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FIGURE 4

Spatio-temporal clusters (A–E) with topographical maps of averaged t-values, along with evoked responses for each condition and their contrast.
Significant electrode positions for each cluster are indicated by filled white circles. Grand averages (n = 16) of the evoked responses during
observation of optimal (green) and suboptimal (red) robot actions are shown over time, including their contrasts (suboptimal–optimal; brown dashed
line). The time ranges of significant clusters are highlighted in orange.

FIGURE 5

Classification performance in the MVPA temporal decoding with LDA. (A) Average LDA temporal classification performance, including the
corresponding CI band across folds and subjects, is presented relative to the estimated chance level (upper CI boundary of the average dummy
classifier performance). Below, the average activation patterns derived from model weight coe�cients are depicted. Patterns were spatio-temporally
masked using bootstrapped CIs and averaged over time intervals of 200 ms starting 200 ms before to 2,000 ms after the onset of the video. The star
icon indicates the peak (max at 1,658 ms) of above-chance level classification performance. (B) Activation pattern of the time point of peak decoding
performance, along with the evoked responses per condition in the regions of meaningful contribution at the maximum decoding time point and as
time series along the analysis interval (dashed gray line: contrast suboptimal–optimal). Positive pattern values are associated with classifying
observed optimal robot actions, while negative values in activation patterns are associated with observed suboptimal robot actions.
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FIGURE 6

Riemannian LDA single-trial decoding performance by time interval. Bar plots display the average AUC classification scores of the Riemannian LDA
relative to the upper CI boundary of the estimated chance level (dummy performance: train AUC = 48.02, 95% CI [47.99, 51.06]; test AUC = 51.04,
95% CI [51.02, 51.06]). The mean AUC score (M) and its 95% CI ([]), estimated via bootstrapping and represented by error bars, are displayed above
each bar (for training and test datasets across time intervals). Individual subject decoding performances are depicted as scattered dots. Time intervals
of the decoding were (1) 0 to 700 ms, (2) 700 to 1,350 ms, and (3) 1,350 to 2,000 ms after video onset.

time intervals (dummy performance: train AUC = 48.21, 95%

CI [48.15, 48.28]; test AUC = 51.37, 95% CI [51.36, 51.38]).

The highest classification performance was observed using the

latest interval including evoked responses from 1,350 to 2,000

ms after video onset, with a test AUC of 67.19 (95% CI [66.85,

67.53]). This interval also included the time point of peak decoding

performance in the MVPA-based temporal decoding. In contrast,

earlier intervals cropped before 750 ms post-stimulus showed a

significant decrease in performance, with test AUCs of 59.98 (95%

CI [59.77, 60.20]) for an interval from 0 to 700 ms and 58.37 (95%

CI [58.11, 58.62]) for an interval from 700 to 1,350 ms (Figure 6).

4 Discussion

Our study identified distinct spatiotemporal brain dynamics

that reliably differentiate the mental performance evaluation of

optimal and suboptimal robotic actions observed in video excerpts

of laparoscopic training procedures.

We assessed the robustness of neural signatures by employing

surface Laplacian transformations to enhance the spatial

resolution of evoked responses (see Somon et al., 2019) and

two complementary data-driven methods - a mass-univariate

permutation-based clustering and multivariate pattern analysis

(MVPA) temporal decoding. The identified discriminative

spatiotemporal brain signatures suggest that differentiation

between optimal and suboptimal actions does not occur during

early perceptual stages but rather at later evaluative stages

(Somon et al., 2017; Ferrez and Millán, 2005; Chavarriaga et al.,

2010; Oliveira et al., 2007). This finding was observed despite

a perceptual component introduced by LED feedback in the

evaluation task.

In addition to analyzing stimulus-locked evoked responses,

we examined single-trial decoding performance of robot action

evaluations across different time intervals of averaged evoked brain

responses. The Riemannian LDA with xDawn filtering reliably

classified observers’ electrophysiological responses to optimal

and suboptimal robot actions on a trial-by-trial level. Temporal

dynamics of classification performance revealed that late intervals

(from 1,350 to 2,000 ms post-stimulus) significantly outperformed

earlier intervals aligning with findings from MVPA temporal

decoding. This indicates that the most informative brain patterns

are linked to attentional and evaluative processes related to

prediction violations and unexpected events (Somon et al., 2017;

Chavarriaga et al., 2010; Ferrez and Millán, 2005; Oliveira et al.,

2007).

4.1 Convergent findings for evoked
responses di�erentiating robot
performance

Our clustering analyses revealed five spatiotemporal brain

signatures associated with robot performance evaluation, of which

three were replicated in the temporal decoding. The other two

clusters including electrodes localized over right mid-fronto-

central and temporal areas were exclusively identified in the

mass-univariate analysis. Thus, they exhibited limited reliability

as distinctive patterns for evaluating robot performance in near-

naturalistic scenarios. Therefore, the next section focuses on the

remaining three signatures located over the left fronto-temporal,

right frontal, and mid-occipito-parietal regions.

4.1.1 Left fronto-temporal spatiotemporal
signature

Evoked responses in electrodes overlying left fronto-temporal

regions differentiated the evaluation of optimal and suboptimal

robot performance in both the clustering (Figure 4A) and

temporal decoding (Figure 5B, upper row). This brain dynamic

is characterized by differences in current direction-switching

around 420 ms post-stimulus onset between suboptimal and
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optimal robot actions. Observing suboptimal performance evoked

a persistent current source (see Figure 5B, upper row), while

optimal performance elicited a sustained current sink during late

time intervals (see Figures 4A, 5B, upper row).

The late shift to a current source during suboptimal actions

may indicate the allocation of additional cognitive resources

for conflict processing and deviation detection (Botvinick et al.,

2001; Ullsperger et al., 2014; Bartholow et al., 2005; Pailing and

Segalowitz, 2004). Although typical oERN or oPE responses were

not observed in this study, the sustained fronto-temporal responses

align with components such as the P300, late positive potential

(LPP) and P600 (Somon et al., 2017; Sassenhagen et al., 2014;

Oliveira et al., 2007). The P300 and LPP are positive deflections that

typically emerge around 300 ms after significant and emotionally

salient stimuli, respectively, at centroparietal electrode sites (Polich,

2007; see Hajcak and Foti, 2020 for review). The P300 appears as

a broad peak, while the LPP can be sustained for up to 1,000 ms

or more. Their amplitudes increase in response to motivationally

significant but also deviant and uncertain stimuli (Scheffers and

Coles, 2000; Sutton et al., 1965), indicating sustained attentional

allocation toward these stimuli (Ridderinkhof et al., 2009; Hajcak

and Foti, 2020; Falkenstein et al., 2000). The P600, initially linked

to processing linguistic anomalies (Sassenhagen et al., 2014), has

also been observed during error processing in choice-reaction time

tasks with enhanced amplitudes following errors Falkenstein et al.

(1991).

In summary, the sustained current source observed during

suboptimal robot actions likely reflects increased cognitive and

attentional engagement in a persistent evaluative stance. This state

likely facilitates conflict detection by assessing action accuracy and

adequacy, monitors deviations, and supports cognitive flexibility.

4.1.2 Right frontal and mid-occipito-parietal
spatiotemporal signatures

In addition to the left fronto-temporal signature, we observed

two spatiotemporal signatures characterized by enhanced current

sinks for evaluated suboptimal robot performance in both, the

cluster analysis (Figures 4B, C) and temporal decoding activation

patterns (Figure 5B, middle and lower row).

After ∼300 ms, a right frontal current sink emerged, peaking

between 400 and 600 ms, with a delayed but pronounced deflection

in response to suboptimal actions (Figures 4B, 5B, middle).

Another spatiotemporal brain signature, indicative of suboptimal

actions and located over mid-occipito-parietal areas, appeared

between 350 and ∼500 ms (Figures 4C, 5B, lower row). This

mid-occipito-parietal signature is characterized by a current sink

deflection in response to both optimal and suboptimal robot

actions, followed by a short time interval of current source with

a peak at 550 ms. Afterwards, another directional switch from

source to sink is observed, occurring around 600 ms second in the

decoding and 700 ms in the clustering analysis. In both analyses,

this sustained current sink in late time intervals after stimulus onset

was more pronounced when observing suboptimal compared to

optimal robot performance.

These time windows and sustained current sinks for suboptimal

robot actions likely reflect a combination of a delayed oERN and

an interaction ERN/N400 (Chavarriaga et al., 2010; Ferrez and

Millán, 2005; Ferrez and Millán, 2008; Somon et al., 2017). The

delay in evoked response intervals is potentially attributable to

the erroneous robot action occurring shortly after the video onset.

Notably, the N400 has previously been observed in non-linguistic

contexts over parietal areas in response to unexpected motor

sequences (Balconi and Vitaloni, 2014). Both ERP components

are amplified when observing erroneous, suboptimal actions. In

their sustained form, they may reflect ongoing quality evaluation,

signaling deviations from predicted trajectories and expected

movements, thereby indicating suboptimal performance.

To summarize, through temporal decoding and clustering

analyses, we identified three consistent spatiotemporal signatures

that distinguish the evaluation of optimal and suboptimal robot

performance. A left fronto-temporal signature, characterized by

an enhanced current source resembling ERP components such

as the P300, LPP, and P600, suggests increased attentional

allocation and sustained evaluation of suboptimal robot actions.

Furthermore, right frontal and mid-occipito-parietal signatures

displayed amplified current sinks in response to suboptimal actions,

suggesting prediction-based processing of deviations and errors,

consistent with the oERN and interaction-based ERN/N400.

4.2 E�ects of task load and video stimulus
material

The identified discriminative evoked signatures reflect a

sustained, step-by-step evaluation of robot actions from continuous

video excerpts. They persisted even after deviations from expected

(optimal) performance were detected. Consequently, optimal robot

actions were characterized by the absence of deviations throughout

the entire video. In our specific task, participants were required

to monitor and mentally assess multiple aspects of the action,

including the position, length, and pressure of the intended cut.

Thus, even if the robot correctly reached the target position,

participants needed to verify that all criteria were met. Accordingly,

it is noteworthy that the continuous video stimulus, coupled

with the ongoing monitoring and evaluation of robot actions in

an applied scenario, likely imposed a substantial perceptual and

cognitive load on participants.

This task-induced load may have reduced differences in the

amplitude of evoked responses between observed suboptimal and

optimal actions (Somon et al., 2017, 2019; see Endrass et al., 2012a,b

for load effects during self-monitoring). It could explain the lack of

modulated amplitudes in early components during the observation

of suboptimal actions. In addition, although the task instructions

aimed to emphasize the importance of errors and the potentially

serious consequences of mistakes in laparoscopic surgery, the

absence of a modulated Pe component in response to suboptimal

robot actions may be due to the low (self-related) relevance of

negative outcomes for participants in a passive observation role

(Chavarriaga et al., 2010; Somon et al., 2017).

To conclude, given that task-induced cognitive load on

the observer may be inherently present and unavoidable in

real-world applications, further investigation is warranted to ensure

ecologically valid and robust correlates of performance assessment.
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4.3 Limitations and future directions

The study offers valuable insights into the neural mechanisms

underlying robot performance evaluation and error monitoring in

a near-naturalistic laparoscopic surgical training context. However,

several limitations must be considered.

To aid non-medical participants in judging whether the robot’s

actions were optimal or suboptimal - particularly for subtle criteria

such as applied pressure - LEDs were placed along the tissue to be

cut. While this LED feedback during suboptimal actions (i.e., LEDs

remained lit) vs. optimal actions (LEDs turned off) was essential

for participants’ understanding and engagement, it may have

influenced evoked responses, introducing a perceptual component

to the task and complicating comparisons with previous studies.

Future research on passive BCIs for robotic training should

explore alternative guidance methods and additional information

sources, such as haptic feedback representing applied pressure,

to reduce reliance on perceptual feedback and better isolate

evaluative processes.

Our findings revealed a lateralised error-related brain signature,

marked by enhanced left fronto-temporal current sources and right

frontal current sinks. This lateralisation has not been previously

reported and may represent a novel correlate of performance

assessment during robot action monitoring in applied scenarios.

Given the rather small sample size in this study, further research

should confirm the robustness and replicability of the identified

spatiotemporal brain signatures linked to robot action evaluation

in realistic scenarios.

Moreover, includingmedical students or even physicians would

enable an assessment of the impact of expert knowledge. Future

research should also explore the potential effects of participant

fatigue or fluctuating task engagement throughout prolonged video

sequences, as this may introduce variability in evoked responses.

Addressing these factors could further clarify the robustness of our

identified brain signatures.

Precise onset detection of suboptimal actions is challenging

in near-naturalistic experiments and is often shaped by subjective

observer criteria. Therefore, eye-related measures, such as fixations

(Simola et al., 2015; Ladouce et al., 2022) or blinks (Alyan et al.,

2023), may provide an ecologically valid approach to further

investigate attentional shifts toward significant deviations and the

associated evaluative processing.

Combining deviation onset detection through eye-based

approaches with findings from temporal and single-trial decoding

establishes a foundation for developing passive BCIs to reliably

label robot actions for reinforcement-learning-based training

paradigms. In our study, the most informative signals were

extracted from late evoked responses linked to attentional or

evaluative processes. Consequently, BCI algorithms should focus

on these late evaluative intervals (beyond 1,000 ms after eye-based

deviation detection) to enhance decoding accuracy. However, it

is important to note that while late evoked responses are suitable

for training robots, the delay of a few hundred milliseconds

following error detection may restrict their effectiveness for real-

time interventions. Such real-time interventions could provide a

safeguard in robot-assisted surgeries. To overcome this limitation,

future studies could investigate a multisensory decoding approach

that integrates electrophysiological, peripheral-physiological, and

eye-based data, combined with a conservative stop criterion (high

sensitivity/true positive rate), to develop a system capable of

intervening and eliminating suboptimal robotic actions in real-life

surgical scenarios.

The next steps toward BCI-assisted robot training in real-

world settings include replicating these findings in (a) dual-task

paradigms that simulate collaborative scenarios with individual and

shared tasks, and (b) using mobile, dry EEG systems suited for

unobtrusive, everyday measurements (e.g., Vukelić et al., 2023).

5 Conclusion

Our study reveals three robust spatiotemporal brain signatures

that distinguish between evaluated optimal and suboptimal robotic

actions during laparoscopic training. The findings emphasize the

critical role of late-stage evaluative brain processes in detecting

deviations in robotic performance. Specifically, the left fronto-

temporal signature, associated with ERP components such as the

P300, LPP, and P600, indicates sustained attentional and evaluative

engagement in response to suboptimal actions. Additionally,

amplified current sinks in right frontal and mid-occipito-parietal

regions, consistent with error-related responses like the oERN

and ERN/N400, suggest prediction-based processing of errors

and deviations.

By delineating distinct electrophysiological patterns, our results

deepen the understanding of the neural mechanisms underpinning

mental assessments of robotic performance in near-naturalistic

scenarios. These insights hold promise for advancing passive BCIs

capable of facilitating real-time, automated evaluations in robotic

training and collaborative surgical contexts. The research highlights

the role of late-stage electrophysiological responses, linked to

attentional and evaluative processes, in detecting significant

deviations from optimal robotic actions. Integrating these findings

into reinforcement-learning-based training frameworks could

reduce reliance on explicit feedback from human instructors,

enabling more efficient and intuitive human-centered robotic

training systems.
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