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1 Introduction

One of the key challenges in the design of immersive virtual reality (VR) is to create

an experience that mimics the natural, real world as closely as possible. The overarching

goal is that users “treat what they perceive as real” and consequently feel present in the

virtual world (Slater, 2009). To feel present in an environment, users need to establish a

dynamic and precise interaction with their surroundings. This allows users to infer the

causal structures in the (virtual) world they find themselves in and develop strategies to

deal with uncertainties (Knill and Pouget, 2004).

Here, we present a data set that indexes interaction realism in VR. By violating users’

predictions about the VR’s interaction behavior in an “oddball-like” manner (Sutton et al.,

1965), labels with high temporal resolution were obtained (that describe the interaction);

see our previous publications (Gehrke et al., 2019, 2022).

1.1 Background and related work

Today, the brain is frequently conceived of as creating amodel of its environment in the

constant game of predicting the causes of its available sensory data (Rao and Ballard, 1999;

Friston, 2010; Clark, 2013). In this predictive coding conception, probabilistic analyzes

of previous experiences drive inferences about which actions and perceptual events are

causally related. This is inherently tied to the body’s capacity to act on the environment,

rendering the action–perception cycle of cognition into an embodied process (Friston,

2012). When all movement-related sensory data (i.e., sensorimotor data) are consistent

with the predicted outcome of an action, the action is regarded as successful. However,

when a discrepancy between the predicted and the actual sensorimotor data are detected,

a prediction error occurs, and attention will be directed to correct for the discrepancy in

real time (Savoie et al., 2018). In their work, Savoie et al. (2018) manipulated the control-

to-display ratio in a quarter of the trials. In the manipulated trials, a dot moved at 45◦

offset compared to the real hand motion during a reach to a target. The authors found

electroencephalographic data (EEG) data to reflect this prediction error in sensorimotor

mapping.

Therefore, the fast and accurate detection of such discrepancies is crucial for

performing precise interactions in the real as well as in virtual worlds.

The underlying mechanisms and neural foundations of predictive coding have

been extensively studied; see, for example, Holroyd and Coles (2002), Bendixen et al.

(2012), and Clark (2013). The frontal mismatch negativity paradigm (MMN, a type

of event-related potential, also known as ERP) has often been employed to probe the
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predictive brain hypothesis, Stefanics et al. (2014) for a review.

Lieder et al. (2013) have shown that the best-fitting explanation

of MMN activity is the computation of a Bayes-optimal generative

model, that is, prediction errors.

However, these research findings originate from stationary EEG

protocols that require the user to passively observe presented

stimuli, neglecting the embodied cognitive aspects of goal-

directed behavior. As a consequence, the cortical activity patterns

underlying predictive embodied processes during goal-directed

movement are not fully established. How these electrocortical

features reflect a perceived loss in physical immersion when

interacting with virtual- and augmented reality (VR/AR) is yet to

be understood.

1.2 A data set capturing visuo-haptic
predictions in VR

The presented mobile brain/body imaging data include brain

recordings via EEG and behavioral indexes, as well as motion

capture during an interactive VR experience (Makeig et al., 2009;

Gramann et al., 2014; Jungnickel et al., 2019). Based on the idea

that the brain has evolved to optimize motor behavior by detecting

sensory mismatches, we have previously leveraged these data to

use the frontal “prediction error” negativity (PEN) as a feature for

detection of system errors in haptic VR (Gehrke et al., 2019, 2022).

The data set is available in the Brain Imaging Data System

(BIDS) format (Pernet et al., 2019; Jeung et al., 2023). In an

oddball-style paradigm, haptic realism was altered, resulting in

a 2 (mismatch) × 3 (level of haptic immersion) design. This

allows for both, the analyzes of each main effect as well as their

interaction. In the experiment, interaction realismwasmanipulated

by adding temporally unexpected visual and haptic feedback. To

this end, visuo-haptic glitches were introduced during a reaching

task, similar to unexpected tones in classical auditory oddball

paradigms (Sutton et al., 1965). Haptic realism was altered by

adding haptic channels per condition in the experimental block

design. Two haptic conditions were presented following a baseline,

non-haptic, condition. Touching a surface was rendered through

a vibration motor under the fingertip in one condition, and in

another condition, this was further combined with rendering

object rigidity (force feedback) through the use of electrical muscle

stimulation (EMS).

After experiencing each haptic modality, participants rated

their subjective level of presence on the Igroup Presence

Questionnaire (IPQ; Schubert, 2003). This questionnaire is a scale

for measuring the subjective sense of presence experienced in VR.

2 Multimodal prediction error data set

2.1 Participants

The experiment was approved by the local ethics committee of

the Department of Psychology and Ergonomics at the TU Berlin

(Ethics approval: GR1020180603). In total, 20 participants (12

female, mean age = 26.7 years, SD = 3.6 years) were recruited

through an online tool provided by the Department of Psychology

and Ergonomics of the Berlin Institute of Technology and local

listings. In line with the ethics approval, only right-handed people

between the ages of 18 and 65 were recruited.

All participants had normal or corrected-to-normal vision and

had not experienced VR with either vibrotactile feedback at the

fingertip or any form of force feedback, including EMS. Participants

were informed about the nature of the experiment, recording and

anonymization procedures. Each subject signed a consent form.

Participants were compensated 10 euros or 1 study participation

hour (course credit) per hour.

Before further analysis, data from the first subject were removed

due to data recording errors.

2.2 Apparatus

A virtual environment was designed in Unity3D (Unity

Software Inc., San Francisco, CA, USA) and presented through

the HTC Vive Pro (High Tech Computer Co., Taoyuan, Taiwan)

featuring a 1, 440 × 1, 600 per-eye resolution and a 98◦ horizontal

field of view (for technical details, see: https://vr-compare.com/

headset/htcvivepro). An HTC VIVE tracker (High Tech Computer

Co., Taoyuan, Taiwan) was used to capture the position of the

hand (for technical details, see: https://vr-compare.com/accessory/

htcvivetracker3.0).

One vibrotactile actuator (Model 308–100 from Precision

Microdrives, London, UK) worn on the fingertip was used to

generate (vibro)tactile feedback, with 0.8 g at 200 Hz. This motor

measures 8 mm in diameter, making it ideal for the fingertip.

The vibration feedback was driven at 70 mA by a 2N7000 Metal

Oxide Semiconductor Field-Effect Transistors (MOSFET), which

was connected to an Arduino output pin at 3 V. To generate

force feedback, we actuated the index finger via EMS, which was

delivered via two electrodes attached to the participants’ extensor

digitorum muscle. We used a medically compliant EMS device

(Rehastim, Hasomed, Germany), which provides a maximum

of 100 mA and is controllable via USB. The EMS was pre-

calibrated per participant to ensure pain-free stimulation and

robust actuation.

EEG data were recorded from 64 actively amplified

electrodes using BrainAmp DC amplifiers from BrainProducts

(BrainProducts GmbH, Gilching, Germany). Electrodes were

placed according to the 10–20 system (Homan, 1988). Custom

EEG cap spacers1 were used to ensure a good fit and less

discomfort due to the VR–EEG combination. After fitting the cap,

all electrodes were filled with conductive gel to ensure proper

conductivity. Electrode impedance was brought below 5K Ohm

when possible. See Figure 1A for the full experimental setup.

2.3 Experimental design

The data were collected during a repeated reach-to-tap task

in a 2 × 3 study design with the within-subject factors feedback

congruity and modality.

1 https://grabcad.com/library/adapter-for-vr-eeg-setups-1

Frontiers inNeuroergonomics 02 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1411305
https://vr-compare.com/headset/htcvivepro
https://vr-compare.com/headset/htcvivepro
https://vr-compare.com/accessory/htcvivetracker3.0
https://vr-compare.com/accessory/htcvivetracker3.0
https://grabcad.com/library/adapter-for-vr-eeg-setups-1
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Gehrke et al. 10.3389/fnrgo.2024.1411305

FIGURE 1

(A) Experimental setup showing a participant wearing a 64-channel electroencephalography (EEG) cap and a virtual reality (VR) headset. The

participant’s right arm is equipped with electrical muscle stimulation (EMS) electrodes and a vibration motor under the index finger. (B) Task

sequence: The participant starts in a resting position and initiates the task at their own pace. After a random interval of 12 s, a cube appears in one of

three positions (Left, Middle, Right). The participant reaches for the cube, with the selection being either congruent or incongruent. The task ends

when the cube is touched, followed by a return to the resting position. (C) Di�erent feedback modalities used in the study: Visual feedback only,

combined Vibration and Visual feedback, and EMS combined with Vibration and Visual feedback.

2.3.1 Task
Participants performed the task sitting in front of a table,

virtually as well as physically. The interaction flow, depicted in

Figure 1B, was as follows: participants moved their hands from the

resting position to the ready position to indicate they were ready to

start the next trial. Participants waited for a new target (a cube) to

appear in one of three possible positions (center, left, and right), all

located at the same distance from the ready position button on the

table. The time for a new target spawning was randomized between

1 and 2 s. A black cross on the top of the cube indicated the location

participants were instructed to tap. Then, participants completed

the task by tapping the target with their index finger. Tapping

success was indicated through three different sensory modalities

(see Figure 1C):

2.3.1.1 Visual-only feedback (visual)

Touching the virtual cube led to a change in its color fromwhite

to red. No haptic feedback was given.

2.3.1.2 Tactile feedback (vibro)

In addition to visual feedback, touching of the virtual cube was

additionally confirmed by a 100 ms vibrotactile stimulus.

2.3.1.3 Force feedback (EMS)

In addition to visual and tactile feedback, participants received

100 ms of EMS via two electrodes at the extensor digitorummuscle.

After a target was tapped, participants moved back to the

resting position. Here, they could rest before starting the next

trial. To maximize EEG data quality, participants were instructed

to remain in a calm upright seated position while carrying out

the reaching movement. Furthermore, they were instructed to be

precise and keep a good pace. However, no feedback was given on

the accuracy and speed of their task completion.

2.3.2 Feedback congruity/visuo-haptic
mismatches

The key experimental manipulation in these data is the

introduction of prediction errors occurring at different levels of

immersion rendered through the haptic modalities. Therefore, to

allow assessment of the effects of flawed sensory feedback, the

feedback congruity was manipulated in a subset of the trials; see

Figure 1B.

2.3.2.1 Match trials (C), 75% of the trials

Feedback stimuli were presented upon tapping the object

exactly when participants expected them to occur based on the

available visual information (finger touching the target in the

virtual environment).

2.3.2.2 Mismatch trials (M), 25% of the trials

Feedback stimuli were triggered prematurely. Specifically, we

introduced a temporal delta between the expected time of feedback,

based on proprioceptive and visual information (finger touching

the target in the virtual environment), and the actual time of

feedback. This delta was realized by changing the cue triggering the

hit sphere (sphere collider) around the virtual cube. While using a

collision detection volume of the exact size of the cube in the match

trials, we enlarged the radius of a cue-triggering sphere by 350% in

the mismatch trials. This decision was based on the study design by

Singh et al. (2018), in which they showed that VR users can detect a

visual mismatch at∼200% of visual offset from the target. Based on

pilot tests, we decided to extend the offset to 350% to increase the

salience of the mismatch. One alternative solution to this, would

be to alter the control-to-display ratio (Terfurth et al., 2024). This

allows for a more precise timing of the violation with respect to the

ballistic and corrective phases of the motion.
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2.3.3 Procedure
The experiment consisted of five phases that started with (1)

a setup phase, (2) a calibration phase, and (3) a short training

phase. For training purposes, we asked participants to wear the

VR headset for a maximum of 24 practice trials. Overall, the EEG

fitting, calibration, and practice trials took ∼30 min (with two

experimenters). In step (4), the task itself, the procedure varied

between participants.

Per participant, 300 trials were recorded for the Visual and

Vibro feedback condition. For the EMS condition, 100 trials were

recorded, as this condition was exploratory, and we did not want

to put too much strain on participants with a feedback channel that

not many people are familiar with.

The order of the Visual and Vibro conditions was

counterbalanced across participants, with the EMS condition

always being the last block. EMS trials were only collected for

11 participants. The EMS condition was added as an exploratory

part of the study, and 11 participants were deemed enough for

exploratory analyzes. The EMS condition was always presented

as the last block in order to prevent overshadowing of the strong

stimuli of the EMS simulations on the other conditions. Because of

this positioning, no impact on the visual and visuo-tactile contrast

was implied. The general blocked design of the interface conditions

was chosen to emphasize the influence of the additional haptic

channels while attenuating higher order interactions, such as a

prediction error about the upcoming interface condition.

At the end of each condition, we presented four questions

from the standard igroup presence questionnaire (IPQ) (Schubert,

2003), in particular: The general presence item (G1), The second

item of the realness subscale (REAL2), the fourth item of the

spatial presence subscale, and the first item of the involvement

subscale (INV1). The questionnaire was implemented into the

virtual environment.

2.4 Data records

EEG, motion capture, and an experiment marker stream

were recorded and synchronized using “load_xdf” from

labstreaminglayer (https://github.com/sccn/labstreaminglayer).

The XDF files were then converted to BIDS format (Gorgolewski

et al., 2016; Pernet et al., 2019; Jeung et al., 2023) and the data

are available online (https://openneuro.org/datasets/ds003846/

versions/2.0.2). Motion data of a head and hand rigid body

conform to the BIDS-Motion specification (Jeung et al., 2023) as

of March 26, 2024. EEG data were recorded with a sampling rate

of 500 Hz and FCz as the reference electrode. Hand and head

movements were sampled at 90 Hz when coming out of the HTC

VIVE processing cascade.

A full repository including links to the data, experimental VR

protocol (Unity), and publication resources can be found at: https://

osf.io/x7hnm/.

3 Validation

We provide the code to fully reproduce our results (https://

github.com/lukasgehrke/2021-Scientific-Data-Prediction-Error),

starting with the conversion of the raw .xdf files to the BIDS format.

To ensure the quality of the data set, event-related potential (ERP)

and event-related spectral perturbation (ERSP) are reported here

at moments of prediction violation.

3.1 Signal processing

Our pipeline uses parts of the BeMoBIL pipeline, which wraps

and extends EEGLAB toolboxes (Delorme and Makeig, 2004; Klug

et al., 2022). Statistical tests were then computed using MNE–

Python (Gramfort et al., 2013).

3.1.1 EEG
After removing non-experiment segments at the beginning and

end of the recording, EEG data were resampled to 250Hz. Next, bad

channels were detected using the “FindNoisyChannel” function,

which selects bad channels by amplitude, the signal-to-noise

ratio, and correlation with other channels (Bigdely-Shamlo et al.,

2015). Rejected channels were then interpolated while ignoring the

electrooculogram (EOG) channel and finally re-referenced to the

average of all channels, including the original reference channel

FCz. After applying a high-pass filter at 1.5 Hz, time-domain

cleaning and outlier removal were performed using adaptive

mixture of independent component analyzers (AMICA) auto

rejection (Palmer et al., 2011). Eye artifacts were removed using

the ICLabel toolbox applied to the results from an AMICA (Pion-

Tonachini et al., 2019). For this, the popularity classifier was used,

meaning that all components having the highest probability for the

eye class were projected out of the sensor data.

3.1.2 Motion
Motion capture data were filtered with a 6 Hz low-pass filter

and resampled to match the EEG sample rate. The first and second

derivative were taken and subsequently filtered using an 18 Hz

low-pass filter.

3.2 Detecting the time of movement onset
and peak velocity

We obtained the time of movement onset and subsequent

peak velocity by applying a velocity-based algorithm on the hand-

motion time series. The algorithm used a simple two-step threshold

approach to obtain a robust movement onset of the outward

reaching motion. First, a robust onset was defined by the time point

where the velocity first exceeded 50% of the maximum velocity

between the trial start event and the successful object tap event.

Next, a precise motion onset was defined by the first time point

where the signal preceding the robust onset fell below 10% of the

robust threshold value.

Subsequently, the peak velocity of the outward motion was

determined by peak extraction using the MATLAB function

“findpeaks” in the time window between the motion onset and the

object tap event; see Knill and Pouget (2004).
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FIGURE 2

(A) Event-related hand velocity (ERV) and (B) event-related potentials (ERP) at electrode FCz for the 2 (mismatch condition) × 3 (haptic modality)

design. ERV is plotted from –500 to 500 ms around the peak velocity. ERP is plotted from –100 to 600 ms around the tap event. Gray (haptic

modality) and black (mismatch condition) blocks at the bottom mark e�ects. ems, electrical muscle stimulation.

FIGURE 3

Event-related spectral perturbations at electrode FCz (A). Changes from a –300 to –100 ms pre-stimulus baseline are marked by a black contour. (B)

t-statistic of the mismatch condition contrast, with e�ects marked by a black contour.

3.3 Event-related brain activity and hand
movement characteristics

Event-related time courses from both, band-pass filtered (0.1–

15 Hz) electrode FCz (ERP), as well as the hand velocity (ERV)

were extracted. ERPs were obtained from –100 to 600 ms around

the “tap” event. ERVs were obtained from –500 to 500 ms around

the maximum velocity peak; see Knill and Pouget (2004).

3.3.1 Event-related spectral perturbations
Event-related spectral perturbations (ERSP) were obtained by

extracting epochs from the trial onset, that is, spawn of the sphere,

to the object tap. A pre-stimulus interval was included for later

baseline correction. A spectrogram of all single trials was computed

using the EEGLAB’s “newtimef” function (3–100 Hz in logarithmic

scale, using a wavelet transformationwith three cycles for the lowest

frequency and a linear increase with frequency of 0.5 cycles). The

resulting spectograms were linearly time-warped to the movement

onset and time of peak velocity.

3.4 Statistics

ERPs were baseline-corrected by subtracting the average

amplitude of the last 100 ms preceding the trial start. To ascertain

effects of both ERP and ERV, the linear mixed-effects model

“sample condition + modality + 1|participantID” was fit at each

time point. Effects were assessed using likelihood ratio tests for the

main effects with Benjamini–Hochberg p-value correction for false

discovery rate (Benjamini and Hochberg, 1995).

For ERSP, a spatiotemporal cluster test was conducted in

comparison to power values in a –300 to –100 ms pretrial baseline

window. The test was conducted for both contrasts: one test against

a pre-stimulus baseline and one between conditions.

3.5 Results

We observed similar motion profiles across the three different

haptic modalities. The oddball-like mismatch manipulation did not

change how participants moved. This can be seen in Figure 2A,

which shows the hand velocity time-locked to the velocity peak of

the motion.

Visuo-haptic mismatches impacted event-related processing as

picked up by the EEG. As reported in our previous studies, we

observed that mismatch stimuli impacted the ERP, for example, at

electrode FCz 170 ms post-stimulus, χ2
(1) = 25.7, p < 0.0001; see

Figure 2B. Furthermore, the level of haptic immersion impacted

the ERP, for example, electrode at 170ms post-stimulus (χ2
(1) =

16.7, p = 0.0002).

For simplicity, only the test against baseline and the main

effect of the mismatch condition is plotted for electrode FCz
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in Figures 3A, B, respectively. At FCz, ERSPs appear in high

frequencies early on during the movement, with a positive change

compared to baseline. Furthermore, a negative change compared

to baseline power appears in the alpha and beta frequency

ranges during the movement, with a peak following maximum

velocity; see Figure 3A. Mismatch stimuli affected the spectral

power at FCz in lower frequency bands around the tap event; see

Figure 3B.
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