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Cottbus-Senftenberg, Cottbus, Germany, 2Young Investigator Group – Intuitive XR, Brandenburg
University of Technology Cottbus-Senftenberg, Cottbus, Germany

The emerging integration of Brain-Computer Interfaces (BCIs) in human-robot
collaboration holds promise for dynamic adaptive interaction. The use of
electroencephalogram (EEG)-measured error-related potentials (ErrPs) for
online error detection in assistive devices o�ers a practical method for improving
the reliability of such devices. However, continuous online error detection
faces challenges such as developing e�cient and lightweight classification
techniques for quick predictions, reducing false alarms from artifacts, and
dealing with the non-stationarity of EEG signals. Further research is essential
to address the complexities of continuous classification in online sessions.
With this study, we demonstrated a comprehensive approach for continuous
online EEG-based machine error detection, which emerged as the winner
of a competition at the 32nd International Joint Conference on Artificial
Intelligence. The competition consisted of two stages: an o	ine stage for
model development using pre-recorded, labeled EEG data, and an online stage
3 months after the o	ine stage, where these models were tested live on
continuously streamed EEG data to detect errors in orthosis movements in
real time. Our approach incorporates two temporal-derivative features with an
e�ect size-based feature selection technique for model training, together with a
lightweight noise filteringmethod for online sessions without recalibration of the
model. The model trained in the o	ine stage not only resulted in a high average
cross-validation accuracy of 89.9% across all participants, but also demonstrated
remarkable performance during the online session 3 months after the initial
data collection without further calibration, maintaining a low overall false alarm
rate of 1.7% and swift response capabilities. Our research makes two significant
contributions to the field. Firstly, it demonstrates the feasibility of integrating
two temporal derivative features with an e�ect size-based feature selection
strategy, particularly in online EEG-based BCIs. Secondly, our work introduces
an innovative approach designed for continuous online error prediction, which
includes a straightforward noise rejection technique to reduce false alarms. This
study serves as a feasibility investigation into a methodology for seamless error
detection that promises to transform practical applications in the domain of
neuroadaptive technology and human-robot interaction.

KEYWORDS

Brain Computer Interface, human-robot interaction, error detection, signal processing,
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1 Introduction

In recent years, the field of human-robot collaboration has

brought in the necessity for assistive robots to harmoniously

integrate into human environments, a goal achievable through

human-intention estimation based on sensor data (Dani et al.,

2020). A frontier that is emerging as particularly promising is

the incorporation of Brain Computer Interfaces (BCI), which

can provide feedback on the user state to adapt interactions

dynamically. In doing so, they pave the way for a more synergistic

and intuitive human-robot collaboration, e.g., by enhancing the

functionalities of exoskeletons and orthoses (Kirchner and Bütefür,

2022). Among the notable applications in this domain, the use

of error-related potentials (ErrPs) as implicit feedback has been

successfully validated in real robot scenarios (Kim et al., 2017).

By continuously extracting information from spontaneous brain

activity and using it as implicit feedback to assist ongoing tasks,

this passive BCI approach can facilitatemore user-centered human-

machine interactions (Zander and Kothe, 2011).

A series of studies have focused on the continuous online

detection of ErrPs through various approaches. Spüler and

Niethammer (2015) illustrated that ErrPs can be measured and

further classified in a continuous manner during a cursor control

task. Omedes et al. (2014) introduced a method that continuously

detected error potentials during device operation. Kim et al.

(2023) demonstrated that asynchronous detection of ErrP over

several seconds is possible in human-robot interactions, despite the

challenge of high false alarms in longer task durations. Lopes-Dias

et al. (2021) validated the feasibility of detecting ErrPs in an online

experiment without offline calibration. It’s important to note that

each of these studies used their unique criteria and different datasets

for evaluating online performances, thereby rendering a direct

comparison of their classification results unfeasible. However, a

common thread in their endeavors was the pursuit of a delicate

equilibrium between false alarms and misses, highlighting the

complexity of continuous classifications in online sessions (Liu

et al., 2018).

Nowadays, various modern classification algorithms have been

developed in Electroencephalography (EEG)-based BCIs, along

with novel feature types to represent EEG signals in a compact way

(Lotte et al., 2018), such as connectivity features (Wei et al., 2007),

complexity measures (Brodu et al., 2012), and tensors (Congedo

et al., 2017). Some studies have shown that the combination of

different feature types generally contributes to higher classification

accuracies than using a single feature type (Dornhege et al., 2004;

Brodu et al., 2012; Roy et al., 2016). Therefore, more feasible feature

types should be explored for EEG-based BCIs, particularly those

with low computational demands suitable for online applications.

Moreover, since some features extracted from EEG signals may

be redundant, it is crucial to explore associated feature selection

techniques that can reduce dimensionality and thus produce faster

online predictions, as well as simplify the observation of which

features are actually related to the targeted mental states (Lotte

et al., 2018).

Previously, Andreou and Poli (2016) explored the potential of

using first-order temporal derivatives of EEG signals as inputs to

BCIs, an approach rarely used in the field. Their research using

a P300-based mouse BCI setup showed that the use of these

features improved classification accuracy, both in combination

with EEG amplitudes and even more so when used independently.

More research is needed in this feature type. Furthermore, to

our knowledge, few studies have investigated second-order time-

derivative features, which we hypothesize could be effective in

capturing subtle fluctuations or trends that might not be visible

through the first-order derivatives. There is a lack of feasibility

studies exploring the individual and combined use of these two

time-derivative features, particularly in the comprehensive capture

of the complex patterns present in EEG data.

Additionally, in real-world scenarios of continuous online

EEG-based detection of machine errors, ongoing EEG signals

are continuously acquired, processed, and then classified with a

pre-trained model as quickly and accurately as possible. Beyond

an effective pattern recognition approach, two major challenges

should be considered. One is to address the non-stationarity in EEG

signals, which refers to changes over time and can have a major

impact on BCI classification with prolonged use (Krumpe et al.,

2017). Shenoy et al. (2006) quantified this change and showed that

motor imagery signals used for control can change substantially

from offline calibration sessions to online control sessions, and

also within a single session. Christensen et al. (2012) applied

three popular pattern classification techniques to EEG data from

participants executing a complex multi-task over a span of 5 days in

a month, observing a significant decrease in classification accuracy

across different days. Although adaptive strategies (Shenoy et al.,

2006) and a few calibration-free online classification architectures

(Grizou et al., 2014; Wimpff et al., 2023) have been proposed for

offline to online session transfer, it is crucial to investigate more

pattern recognition approaches in a calibration-free manner over

longer periods, such as days or weeks. The second challenge is the

presence of artifacts in EEG signals during the continuous online

classification. Effective artifact removal techniques are crucial to

study brain dynamics in a natural everyday environment or during

high-intensity motor activities (Gorjan et al., 2022). In the field

of Mobile Brain/Body Imaging (Makeig et al., 2009; Gramann

et al., 2011; Jungnickel et al., 2019), offline artifact correction

methods such as the use of Independent Component Analysis

(ICA) have been consistently found to be the most effective

tools. But while ICA can be used in mobile settings and can

be effective also with lower-density electrode layouts (Klug and

Gramann, 2021), it is not directly online-capable. Although online-

capable artifact rejection algorithms such as Artifact Subspace

Reconstruction (Kothe and Jung, 2015), Online Recursive ICA

(Hsu et al., 2014), and Recursive Sparse Bayesian Learning (Ojeda

et al., 2018, 2019) have shown potential in specific experimental

setups, their performance in continuous online classification—

where fast computation is essential—has not been thoroughly

investigated. Therefore, there is a clear need for further research

into lightweight noise filtering techniques specifically designed for

continuous online classification scenarios.

In this study, we present a comprehensive approach for

continuous online EEG-based machine error detection that

incorporates two temporal-derivative features with an effect size-

based feature selection technique for model training, together with

a lightweight noise filtering method for non-calibration online
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sessions on the same test participant. This approach emerged as

the overall winner in the competition of “Intrinsic Error Evaluation

during Human-Robot Interaction” (IntEr-HRI Competition), a

challenge of the 32nd International Joint Conference on Artificial

Intelligence (IJCAI 2023). The contribution of our research is 2-

fold: first, it validates the feasibility of using two temporal derivative

features combined with an associated feature selection approach;

second, it presents a framework that seamlessly transitions from

offline training on single-trial data to the continuous online

classification session 3 months after the initial data collection

without further calibration on the same test participant. In

particular, in order to reduce false alarms in the process of

continuous error prediction, a straightforward yet effective noise

rejection technique is proposed.

The following sections are organized as follows: Section 2

provides an overview of the competition, in particular the specific

tasks of the challenge, which are further subdivided into the

offline and online stages, each with its own problem statement

and evaluation metrics. We then present our approach used during

the competition and the extended analysis after the competition.

In Section 3, we present our findings, again divided into the

offline stage, the online stage and the extended analysis. Section 4

analyzes the classification results and provides a discussion on the

feasibility of using two temporal derivative features combined with

an effect size-based feature selection approach in online EEG-based

classification, as well as offline to online session transfer. Finally, the

limitations of the study are acknowledged and directions for future

research are suggested.

2 Competition and methods

2.1 Competition management

The competition was organized as the challenge of the 32nd

International Joint Conference on Artificial Intelligence1 (IJCAI

2023), held in Macau, S.A.R., from August 19–25, 2023. Hosted

by the Robotics Innovation Center of the German Research Center

for Artificial Intelligence (DFKI) and Universität Duisburg-Essen

(UDE), this competition sought to foster innovations in signal

processing and machine learning for human-robot interaction,

focusing on the continuous detection of erroneous machine

behaviors through detailed analysis of human EEG.

The competition was divided into two primary stages: the

offline and online stages. Initially, in the offline stage, participating

teams utilized a publicly available dataset2 recorded from April

24 to 27, 2023, consisting of EEG and Electromyogram (EMG)

data from eight individuals assisted in right arm movements by

an active orthosis (Kueper et al., 2024). While EMG data was

also recorded, this competition only focused on EEG data. Here,

teams were tasked with developing machine learning models to

identify induced errors using the available labeled EEG samples.

The subsequent online stage, held on August 9, 2023, called for

the application of these pre-trained models to identify error onsets

in real-time, using continuously streamed and unlabeled EEG data

1 https://ijcai-23.dfki-bremen.de/competitions/inter-hri/

2 https://zenodo.org/records/8345429

during a live session. This approach tested the pre-trained models’

efficacy in detecting errors in the orthosis-directed movements as

a direct application of the approach developed in the preceding

offline stage.

2.2 Experimental design

2.2.1 Participants
Eight healthy right-handed volunteers (four males, four

females; mean age of 21.8 years) participated in the study. Prior

to the experiment, they visited the lab for a brief introduction

and preliminary tests including orthosis fitting and EEG cap

sizing based on head circumference. Participants, informed of

their rights including voluntary withdrawal, gave their written

informed consent. The experiment averaged 4.9 h (SD = 0.6 h),

with participants compensated at a rate of 10e per hour.

2.2.2 Experimental setup and procedure
As detailed in Section 2.1, the experimental session and data

recording were conducted by the competition organizers (Kueper

et al., 2024). Participants were equipped with a 64-channel EEG

system and an eight-channel EMG system. They were also fitted

with an active orthosis on their right arm, as shown in Figure 1A,

and held an air-filled ball in their left hand. The functioning of the

orthosis was initiated by the participants applying a force exceeding

a specified start threshold in the intended movement direction.

The core task for the participants was to identify errors

introduced in the functioning of the orthosis during a series

of movement trials comprising both flexion and extension

movements. An error referred to a temporary directional change

in the orthosis’ movement for a short duration (250ms). During

the trial, if the orthosis was amid executing a flexion movement,

the introduction of an error would momentarily shift its action

to perform an extension, before reverting to continue the flexion

trajectory; conversely, it would temporarily switch to a flexion

if it was initially undertaking an extension. The first run of the

experiment, intended to establish a baseline, involved 30 error-

free movement trials. Following this, the participants underwent

a training session to familiarize themselves with the sensation

of the errors and the corresponding response—squeezing the

ball in their left hand. In subsequent experimental runs, six

errors were randomly introduced in a series of 30 movement

trials. The experiment involved 10 such runs with randomized

error sequences, and the participants were asked to maintain

specific postures and gaze directions to minimize data artifacts.

Accordingly, the experimental design anticipated a cumulative

total of 480 responses to error events, the product of six

error events per dataset, 10 datasets, and eight participants. An

overview of the procedure is visualized in Figure 1B. After the

experiment, competition organizers assessed the response time

(RT) by analyzing the duration from the occurrence of the error

event to the participants’ response. The median RT was calculated

for each individual over 10 datasets. Subsequently, the mean (µ)

and standard deviation (σ) of these median RTs were calculated
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FIGURE 1

Experimental setup and procedure. (A) Participant prepared with EEG and EMG electrodes wearing orthosis on their right arm (B) Visualization of the
di�erent steps in the experimental procedure. Reprinted from Kueper et al. (2024).

across all participants, resulting in a value of 0.75 ± 0.11 (µ ±

σ) seconds.

2.2.3 Data acquisition
The data acquisition process encompassed the recording of

EEG data and the recording of EMG data. The EEG data was

acquired using the 64-channel LiveAmp system coupled with an

ActiCap slim electrode system functioning with an extended 10–

20 layout, both provided by Brain Products GmbH. The reference

electrode was positioned at FCz and the ground at AFz. To ensure

the high quality of the EEG data, the impedance of all 64 electrodes

was kept below a threshold of 5 k�, a criterion upheld through

checks conducted before and after each experimental run. The EEG

data was sampled at a frequency of 500Hz using Brain Products

GmbH’s Recorder software (version 1.25.0001), which employed

hardware filters to restrict the data bandwidth to a passband range

of 0.0–131.0 Hz.

While EMG recording was part of the data acquisition process,

the focus of this competition and the subsequent analysis was the

EEG data. Therefore, details pertaining to EMG recording will not

be covered in this paper. For an in-depth exploration of EMG

recording and its synchronization with EEG data, see Kueper et al.

(2024).

The acquired EEG data is structured according to the

BrainVision Core Data Format 1.0. This format involves three key

files: a binary data file (.eeg), a header file (.vhdr), and a marker

file (.vmrk). The marker files (.vmrk), stored in each participant’s

EEG data folder, document all significant events occurring during

each set. Specific markers denote the commencement of flexion and

extension movements, represented by S64 and S32, respectively.

Error-free trials are indicated by S48 markers, positioned around

the calculated mean error site, representing the average angle at

the onset of error stimuli during the flexion or extension trials that

incorporate errors. The S96 event marker is triggered as soon as

an error is introduced during the trial. Moreover, the act of the

participant squeezing the ball initiates the recording of the S80

event in the marker file.

In the online stage, the experimental procedure mirrored the

process utilized in the offline stage, but with the critical addition

of real-time data streaming. To this end, the setup involved a

secure connection to a private network via a VPN tunnel facilitated

through the Wireguard VPN Tunnel tool. Additionally, the Lab

Streaming Layer (LSL) was employed to manage a 65-channel data

stream, which included 64 EEG data channels and a specific marker

channel, to secure synchronous data transmission. Participating

teams were expected to report detected errors swiftly through

IP requests. This coordinated approach safeguarded the data and

assured uninterrupted real-time data streaming.

2.3 Challenge tasks

2.3.1 O	ine stage
2.3.1.1 Problem statement

In the initial phase of the offline stage, teams were given

pre-recorded single-trial EEG datasets segmented into labeled

training data derived from eight participants, each offering eight
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distinct labeled training sets. Additionally, two unlabeled sets were

provided for preliminary model evaluations. Teams were tasked

to train machine learning models capable of detecting the onset

of the deliberately introduced errors within the data. Validating

the model’s performance required a 10-fold cross-validation to

be executed individually on each participant’s training dataset.

Subsequently, the teams would test the trained model using the two

unlabeled test datasets as a preparation for the real-time scenarios

in the upcoming online stage where event markers would be absent.

2.3.1.2 Evaluation metrics

The evaluation metrics for the offline stage focused exclusively

on the testing phase, wherein teams were required to simulate an

online prediction using the two unlabeled sets. Participating teams

were required to submit exactly six sample indices of predicted

error onsets per set, which were then converted to respective time

points in milliseconds. These time points were then compared

against the ground truth reference to calculate the temporal

deviation in milliseconds, following a defined limit set within

a 1,000-millisecond window after the true stimulus onsets. Any

detection occurring outside the 1,000 milliseconds span was not

acknowledged as a true positive. Such occurrences were recorded as

1,000 milliseconds deviations, contributing to the team’s aggregate

score. This score, a summation of temporal deviations accumulated

across all sets and participants, yielded a grand total which was used

to identify the winner in this stage.

2.3.2 Online stage
2.3.2.1 Problem statement

In the online stage of the competition, selected teams from

the offline stage used their models remotely in real time using

continuously streamed unlabelled EEG data from one participant

who was also part of the offline stage. The same experimental setup

as in the offline stage was used. However, the protocol involved

two differences: (1) In each set, there were five errors introduced

among 30 trials, as opposed to the six errors out of 30 in the

offline stage. (2) Two different scenarios were used, each consisting

of two sets, resulting in a total of four sets for the online stage.

In the first scenario, error detection prompted a direct physical

response, which involved pressing an air-filled ball, equivalent to

the scenarios of the offline stage. Conversely, the second scenario

required awareness of the errors without a physical response being

necessitated. The results of the online prediction in both scenarios

were evaluated to determine the final winner of the competition.

2.3.2.2 Evaluation metrics

There were two different metrics that were used to determine

the final performance score (FPS) for each team: Balanced Accuracy

(BA) and consolidated time score (tscore), which was derived from

two additional quantities—the difference between the predicted

error time and the ground truth (terr), and the computation time

(tcomp). The final performance score was calculated as a weighted

average of the BA and tscore, with a 70% weightage given to the BA.

In the online stage, the team with the highest FPS was determined

as the winner. The detailed calculation rules for these metrics are

provided below.

The BA was derived from the four terms of confusion matrix:

True Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN). The BA was formulated as the mean of the

True Positive Rate (TPR, also known as sensitivity) and the True

Negative Rate (TNR, also known as specificity), calculated as:

BA=

nTP
nTP+ nFN

+
nTN

nTN+ nFP

2

Note that the calculation of BA took place within the specified

boundaries of individual movement trials, excluding predictions

beyond these intervals. Furthermore, in the trials where an error

was introduced, the defined limit set within a 1,000-millisecond

window after the true error onset was used to evaluate TP and FN.

Conversely, any temporal frame situated outside of this specified

window within the same trial was used to evaluate TN and FP.

This essentially indicates that a trial containing an error that

was correctly identified within the specified 1,000-millisecond

window, and carried no other predictions outside this window,

was recognized both as a TP and a TN. To clarify, this evaluation

approach, distinguishing TP and TN within the same trial, was

specific to this competition and differed from standard binary

classifications. Developed by the competition committee for one-

class classification (“error” vs. “the rest”), this approach adopted

more stringent criteria to ensure that the system can accurately

detect errors within a specified timeframe while minimizing false

alarms outside this period. Additionally, if more than one error was

predicted in rapid succession, the one closest after the true error

was selected by the committee.

The tscore was calculated based on terr and tcomp. The terr
represented the deviation in milliseconds between the predicted

and actual error onset times, consistent with the metric used in the

offline stage. Thus, terr was in the range of 0–1,000ms, as higher

values would count as misses. On the other hand, tcomp indicated

the duration required for the classifier model to identify an error

once the sample was acquired, underlining the importance of low

error detection time. Predictions exceeding a 3,000-millisecond

threshold wouldn’t qualify as a TP. The initial step in deriving the

tscore involved determining individual time scores (ti) for each TP

through logistic regression using tcomp as an input, where f (0) =

terr and f (3,000) = 1,000. This was followed by aggregating and

normalizing these scores to obtain the tscore, as detailed in the

subsequent formula:

tscore = 1−

∑nTP
i=1 ti

nTP · 1000

This means that a tscore of 1 indicates a scenario where the

predicted and actual error onset times are identical, coupled with

no computational delay. Conversely, a tscore of 0 indicates a

situation where, for each predicted error, either the computation

time reaches 3,000ms or the discrepancy between the predicted

and actual error onset times reaches 1,000ms. Scores in between

0 and 1 have no clear interpretation, but higher scores indicate a

quicker detection.
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2.4 Hardware and software specifications

In both the offline classification and online prediction stages,

the software components were executed on a system equipped with

the following hardware specifications: an AMD Ryzen 5 3600X 6-

Core Processor operating at a clock frequency of 3.80 GHz, 16 GB

of RAM. In the offline stage, MATLAB R2021a and the EEGLAB

2022.1 toolbox were used for classifier training, online prediction

simulation, in-depth exploration of EEG data, and figure creation

(Delorme et al., 2011). Before the online stage, the same classifier

was trained using Python 3.8.8, employing a method consistent

with the one implemented in MATLAB, with a slight variation

in filter selection. The following modules were used to streamline

the training process: Scikit-learn (v1.3.0), MNE-Python (v1.4.2) for

EEG data reading and preprocessing, imbalanced-learn (v0.11.0),

whichmanaged imbalanced datasets adeptly, andNumPy (v1.24.4).

In the online stage, the Signal processing module (v1.10.1) was

applied for data filtering. The PyLSL module (v1.16.2) enabled the

use of Lab Streaming Layer (LSL), which was the data streaming

protocol used in the challenge and is generally widely used in

electrophysiological and specifically BCI research (Wang et al.,

2023).

2.5 Methods

2.5.1 O	ine stage
As outlined in Section 2.3.1.1, this stage was structured into

two primary phases: classifier training using labeled data, and the

simulation of online predictions on unlabeled data to test the

trained classifier.

2.5.1.1. Classifier training

In the initial step of the classifier training phase, the EEG

data was preprocessed by re-referencing to an average reference

and applying a zero-phase, non-causal Hamming windowed-

sinc FIR highpass [0.1Hz passband edge, 0.1Hz transition

bandwidth, 0.05Hz cutoff frequency (−6 db)] and lowpass filter

[15Hz passband edge, 3.75Hz transition bandwidth, 16.875Hz

cutoff frequency (−6 db)] in succession, using the EEGLAB

pop_eegfiltnew function. Subsequently, the data was segmented

into epochs of interest, spanning from 100ms before to 1,000ms

after the stimulus onset. For error-free trials, the stimulus onset

was determined based on a calculated mean of the error onsets

from the error trials. Each epoch was baseline-corrected to the time

span from 100ms pre-stimulus to the stimulus onset. For feature

extraction, the focus was on the specific temporal range from 0 to

800ms after the stimulus onset, as it was considered to capture the

essential aspects of the neural responses to the stimuli. The resultant

data were structured into matrices; the error epochs were organized

into a [64, 400, 48] matrix representing the number of channels,

the number of time points within each epoch, and the total count

of error epochs respectively, derived from eight training sets per

participant, each containing six error epochs. Similarly, the error-

free epochs were framed within a [64, 400, 192] matrix, drawn from

eight sets each including 24 epochs.

According to the previous ERP analysis on one subject (Kueper

et al., 2024), the averaging of epochs during error events revealed

an ERP component peaking ∼400ms after the error. Building

on this, the focus was directed toward the significant ERP

component to efficiently extract temporal-spatial features from

error epochs. Each epoch was partitioned into non-overlapping

80ms windows and the mean value for each of these windows

were calculated for all channels. This procedure generated the

first type of features, termed “temporal average”. Furthermore, to

enable a more comprehensive capture of the EEG signal’s temporal

characteristics, two special types of time-derivative features were

introduced, termed “temporal difference” and “temporal dynamics”

(see Figure 2). The temporal difference, representing the first

derivative, was calculated for each window by subtracting the

mean of the second preceding window (80 ms/one window gap

between the two windows), enabling the detection of variations in

EEG activity between non-adjacent time windows. This calculation

effectively reveals the directional changes in the signal’s amplitude

and captures the transition between the valley and peak in the

Pe component of the expected ERP. Temporal dynamics, on the

other hand, entails calculating the second-order derivatives to

reflect the rate of change in EEG activity between windows. To

extract this feature, the first step was to derive temporal differences

between directly adjacent original windows, unlike the process used

to extract temporal differences above. Then, for each resulting

temporal difference value, the third preceding temporal difference

value was subtracted (160 ms/two windows gap between the two

difference values) to obtain the temporal dynamics. This process

was designed to map subtle fluctuations or trends that might not

be visible through simply looking at the first-order derivatives. The

dimensions of the extracted temporal-spatial feature matrices—

representing channels and temporal features—are as follows: [64,

10] for temporal average, [64, 8] for temporal difference, and [64,

6] for temporal dynamics. All hyperparameters used in the feature

extraction process, such as window length and step size, were

determined based on the ERP analysis (Kueper et al., 2024), as well

as on the cross-validation results of this competition. In particular

the rise time and fall time of the ERP component were taken

into account to determine the window size and step sizes for the

differences and dynamics. While adopting smaller window lengths

or step sizes might facilitate finer feature extraction, producing a

rich set of features for selection, it may suffer the risk of overfitting.

Therefore, it’s important to consider the balance between parameter

complexity and the model’s ability to generalize to unfamiliar data

when applying this methodology to other applications.

To gauge the discriminatory potential of each temporal-spatial

feature, we calculated Cohen’s d effect size, which offers a measure

of the standardized difference between two groups. It is defined by

the formula (Cohen, 2013):

Cohen′s d =
Group A Mean− Group B Mean

Pooled Standard Deviation

According to Cohen (2013), Cohen’s d effect size has thresholds of

large (d = 0.8), medium (d = 0.5), and small (d = 0.2). For each

temporal-spatial feature extracted across the three different feature

types, the absolute value of Cohen’s d was calculated to quantify the

effect size between event types (error/error-free). Features with a

high Cohen’s d value were recognized as having high discriminatory

potential. Averaged Cohen’s d topographies across all participants,

based on 48 error and 192 non-error epochs per participant, were

Frontiers inNeuroergonomics 06 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1346791
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Pan et al. 10.3389/fnrgo.2024.1346791

FIGURE 2

Derivation process of temporal derivative features. Top: the derivation of temporal di�erence (Di�) features, capturing variations over 160ms
intervals. Bottom: the derivation of temporal dynamics (Dyn) features, capturing variations over 400ms intervals. Subtractive operations are indicated
by lines. The temporal di�erence values in the bottom plot di�er from those in the top plot and are only used to calculate the temporal dynamics
values. Bold fonts indicate features that were used for classification.

visualized to highlight the effect sizes across all feature types and

their role in distinguishing between event types (see Figure 4).

As shown in Figure 3, the feature selection began with the

identification of the top 100 features characterized by the highest

absolute Cohen’s d values for each kind of temporal feature

individually. Subsequently, the 100 chosen values were aggregated

separately for each feature type to obtain a summative value. The

ratios of these accumulated values across the three feature types

were calculated to represent their respective overall discriminatory

abilities, a measure later referred to as allocation evidence in

further processes. Thereafter, the channels that appeared in the

top 100 features of all three feature types were identified as

common channels. Only the features associated with these common

channels were considered to assemble the final feature matrix,

based on the idea that a valid ERP component identified in a

single channel would consistently manifest high Cohen’s d values

across all three feature types. The feature selection process was

finalized by choosing a total of 150 temporal-spatial features

for further classification. They were distributed across the three

feature types in only the pre-selected channels, based on the

previously calculated allocation ratio, aiming to pinpoint the most

discriminative temporal-spatial features for the upcoming phases.

To address the class imbalance issue, the Synthetic Minority

Over-sampling Technique (SMOTE) was applied to enhance the

representation of the minority class (error) by generating synthetic

samples through interpolation with neighboring instances, thereby

equalizing the number of samples in both classes within the

feature matrix (Chawla et al., 2002). The resulting balanced feature

set contained 384 epochs (192 error and 192 non-error epochs),

each characterized by a 150-element feature vector. This dataset

served as the input for training the Support Vector Machine

(SVM) classifier (Cortes and Vapnik, 1995). The SVM model was

configured with a linear kernel and a regularization parameter

set to 1.0. To validate the model’s performance, a 10-fold cross-

validation was carried out individually for each participant. As the

proposed feature selection method used the labels of the train sets,

the train and test sets were split before the feature selection process

to avoid overfitting. Each cross-validation iteration contained 24

epochs in the test set and 216 epochs in the train set per participant;

after SMOTE interpolation, each balanced train set contained

346 epochs.

2.5.1.2 Online simulation

During the online prediction simulation phase, a buffer-like

moving window was used to simulate real-time data acquisition.

Spanning 900ms, this window covered the same time range

used during the offline training phase for feature extraction

(including 100ms baseline range). With a step size of 20ms, the

Frontiers inNeuroergonomics 07 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1346791
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Pan et al. 10.3389/fnrgo.2024.1346791

FIGURE 3

Feature selection process flow. Cohen’s d was computed for each feature and then used to select common channels as spatial filters and for the final
selection of 150 features used in the model.

FIGURE 4

Feature e�ect size topographies. Averaged Cohen’s d topographies for the di�erent features in the o	ine training (N = 8 participants, with 48 errors
and 192 non-error epochs per participant). Higher absolute values indicate a higher discriminability between the two classes (error/no error), with
positive values corresponding to a positive deflection in the ERP amplitude. See Section 4.1 for details.

window continuously “fetched” EEG data, ensuring a seamless and

overlapping coverage of the incoming EEG data. The preprocessing

approach and feature set chosen for classification in this phase

were consistent with those applied in the offline training phase.

Additionally, we implemented a lightweight noise-filtering method

to evaluate the noise level in each window, termed the “Max-Min

Amplitude Noise Filtering (MANF) Technique”. Using the error

epochs in the training sets, a threshold was calculated by examining

max-min amplitude differences. To this end, first, the max-min

amplitude difference within each error epoch was calculated for

each channel. Then, the mean of the top 10% max-min amplitude

differences (six channels/values, consistently across all participants)

was computed for each error epoch, and last, the mean of those

means across all error epochs, plus one standard deviation, was

set as the final noise threshold. Epochs that contained mean max-

min amplitude differences in their top 10% channels above this
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threshold were deemed “noisy” and excluded from subsequent

online simulation error prediction.

Finally, the trained SVM classifier continuously provided

prediction scores for each data window, which represented the

distance of individual samples to the decision hyperplane, thus

indicating the confidence of it being classified as the error sample.

According to the guidelines outlined in Section 2.3.1.2 for the

offline stage, only 6 indices representing the predicted error onsets

for each testing set needed to be submitted. The prediction scores

were ranked, with the top 6 identified as the predicted errors. Based

on the experiment rules set by Kueper et al. (2024), errors were

introduced starting from the third trial and once an error appeared

in a trial, it wouldn’t reoccur in the subsequent two trials. This

was used by choosing only those indices outside the estimated

7,000ms range that covered two trials after an error was found.

Prediction simulation was generated only within the estimated

range from the third to the final trial. Additionally, to leave amargin

and prevent predictions from occurring before the true onset of

errors, the reported predictions were set to be 100ms later than the

initial predictions.

2.5.2 Online stage
Before the online stage, the classifier was trained on the offline

stage data again in Python 3.8.8, using all 10 available data sets

and employing the same method as implemented inMATLAB. The

trained model was then saved for use in the online stage. During

the online stage of the competition, we participated remotely

from Berlin, Germany, while EEG data for one participant was

recorded and streamed via LSL from Bremen, Germany. Data was

fetched every 40ms using a 900ms ring buffer. The data processing

mirrored that of the training phase, and the SVM model and

temporal-spatial feature selection were pre-loaded for the specified

participant. The only change in signal processing compared to the

offline stage was the use of a single 4th order Butterworth band-pass

filter with cutoff values of 0.1 and 15Hz (−3 db) for the band-pass

filtering using the scipy.signal.butter function. A predetermined

prediction threshold of 1.5 was used to identify errors, chosen for

its conservative nature to minimize false alarms at the expense

of increased misses. Upon detecting an error, its timestamp was

promptly transmitted to the host via IP requests, along with the

local LSL timestamp for calculating the computation duration.

2.5.3 Extended analysis and evaluation of the
methodology
2.5.3.1 Comparative analysis and feature

impact evaluation

To assess the effectiveness of the proposed time-derivative

features and the associated feature selection technique, a

comparative analysis of the offline training accuracy when using

different feature types was performed using a reference method.

This method involved the same pre-processing and epoching of

the EEG data as the proposed approach. However, it used only

traditional average features extracted using 50ms non-overlapping

moving windows (as used e.g., in Protzak et al., 2013, and Zander

et al., 2016) within the (0–800) ms post-stimulus period across all

64 channels, yielding 1,024 features per epoch for classification. In

line with our approach, an SVMwas then trained using the SMOTE

technique for class balancing and a 10-fold cross-validation was

performed for each participant, providing a performance baseline

for comparative analysis. In addition, we investigated the impact of

window size on classification performance by examining the BA of

both the proposed and reference methods under window lengths

of 50 and 80 ms.

To investigate the impact of each feature type on classification

accuracy, classifier performance evaluations were performed under

five different conditions: using only temporal average, temporal

difference, temporal dynamics, a combination of temporal

average and temporal difference, and a combination of temporal

average, temporal difference, and temporal dynamics. The feature

derivation process followed the methodology outlined in Section

2.5.1.1, resulting in 640 temporal average features, 512 temporal

difference features, and 384 temporal dynamics features. Feature

selection was guided by Cohen’s d values, although the selection

process for the five conditions slightly differed from that shown

in Figure 3. For each feature type, features were ranked based on

their absolute Cohen’s d values, and the top-ranked features were

selected for input to the classifier. For combined feature types,

the Cohen’s d values were ranked collectively and the top-ranked

features among them were selected. Finally, we computed the

BA achieved with different numbers of selected features for each

condition 20 times to obtain an average accuracy.

2.5.3.2 Evaluation of the MANF technique

During the online simulation phase and the actual online

stage, the MANF technique was used to identify noisy epochs.

To assess the effectiveness of the MANF technique, the online

simulation evaluation was repeated (see Section 2.5.1.2), but this

time without the use of the MANF technique. We then compared

the results from both conditions using the same evaluation metrics

(see Section 2.3.1.2).

3 Results

3.1 O	ine stage

3.1.1 Classifier training
The averaged Cohen’s d topographies across all participants are

visualized (see Figure 4). Higher absolute values indicate greater

discriminability between error and non-error event types, with

positive values corresponding to a positive deflection in the ERP

amplitude. The classifier’s performance in the offline stage was

evaluated in a 10-fold cross-validation. The average TPR, TNR,

and BA are displayed (see Table 1). The average BA across all

participants is 89.9%, significantly above the chance level of 50%

accuracy (significance with α= 0.001 would have been reachedwith

73.68% correct classification, see Mueller-Putz et al., 2008).

3.1.2 Online simulation
The final results of the online simulation, evaluated using the

total set score and the number of TPs as described in Section 2.3.1.2,

are presented in Table 2. This approach resulted in a total of 58 TPs

out of a possible 96, translating to a 60.4% hit rate. The average

temporal difference, calculated only from the correctly identified
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TABLE 1 O	ine training accuracies.

Participant TPR (Mean
± SD)

TNR (Mean
± SD)

BA (Mean ±

SD)

AA56D 0.7150± 0.2334 0.9379± 0.0404 0.8264± 0.1173

AC17D 0.8950± 0.1117 0.9737± 0.0277 0.9343± 0.0486

AJ05D 0.8750± 0.1439 0.9529± 0.0298 0.9139± 0.0831

AQ59D 0.9350± 0.1055 0.9789± 0.0368 0.9570± 0.0642

AW59D 0.8800± 0.1687 0.9847± 0.0341 0.9324± 0.0799

AY63D 0.7000± 0.2415 0.9474± 0.0555 0.8237± 0.1115

BS34D 0.8600± 0.2378 0.9950± 0.0158 0.9275± 0.1261

BY74D 0.7900± 0.2234 0.9634± 0.0498 0.8767± 0.1111

Average 0.8313 ± 0.0865 0.9667 ± 0.0197 0.8990 ± 0.0510

Cross-Validation classification accuracies in the offline training (N = 8 participants, with

24 epochs in the test set and 346 epochs in the train set after SMOTE interpolation per

participant in each cross-validation iteration). TPR, true positive rate; TNR, true negative

rate; BA, balanced accuracy; SD, standard deviation.

TPs, reached 104.0ms, aligned with the 100ms margin established

to prevent predictions from occurring before the true onset of

errors. Figure 5 illustrates the relationship between the EEG data

used for prediction and the corresponding prediction scores.

Specifically, it shows the ERPs at the Cz, CPz, and Pz electrode

sites following error onset, together with the prediction scores

derived from this data. Additionally, we display the grand average

topographies following error onsets across eight participants in

Figure 6.

3.2 Online stage

During the online stage, two scenarios were involved: one

where participants were required to respond directly upon sensing

an error, and another where no response was required, a condition

not present during the classifier training phase. The results, assessed

based on the evaluation metrics detailed in Section 2.3.2.2, are

presented in Table 3. Table 3 shows that in both scenarios, a

relatively high BA is observed, with 68.3 and 88.3% in the scenario

with direct response, and 70 and 90% in the scenario without direct

response. Notably, the TNR is substantially higher than the TPR.

However, there is a notable decrease in the performance of the

pre-trained classifier used for online classification compared to the

offline training phase, where it achieved a TPR of 93.5%, a TNR of

97.9%, and a BA of 95.7%. Additionally, the performance exhibits

variation across the session. Furthermore, the obtained tscore values

are above 0.77 in all sets, indicating a swift error prediction, as the

tscore value ranges between 0 and 1.

3.3 Extended analysis and evaluation of
methodology

3.3.1 Comparative analysis and feature impact
evaluation

As described in Section 2.5.3.1, we used a reference feature

extraction method and trained the SVM in the same way as the

TABLE 2 Results of online simulation.

Participant Set Total set
score (in ms)

No. of TPs

AA56D Set 5 2,660 4

Set 6 2,570 4

AC17D Set 5 2,248 4

Set 6 2,438 4

AJ05D Set 5 3,230 3

Set 6 3,216 3

AQ59D Set 6 1,426 5

Set 7 2,380 4

AW59D Set 5 1,572 5

Set 6 1,610 5

AY63D Set 5 2,448 4

Set 6 2,392 4

BS34D Set 5 4,210 2

Set 6 5,018 1

BY74D Set 5 3,368 3

Set 6 3,244 3

Sum 44,030 58

Total Set Score refers to the cumulative temporal deviations across all 6 errors within the

current set. Misses were counted with a deviation of 1,000ms. True Positives (TPs) are defined

as detections occurring within a 1,000ms span following the error onset, with the maximum

number of TPs per set being 6 (see Section 2.3.1.2 for further details).

competition setup, and then evaluated it through 10-fold cross-

validation for comparative analysis. The reference method using

1,024 average features achieved an average BA of 91.3± 4.5% (mean

± SD) across all participants, with an average TPR of 84.9 ± 7.8%

(mean ± SD) and an average TNR of 97.7 ± 1.4% (mean ± SD).

In contrast, our proposed method using 150 combined temporal

features achieved an average BA of 89.9 ± 5.1% (mean ± SD), an

average TPR of 83.1 ± 8.7% (mean ± SD) and an average TNR of

96.7 ± 2.0% (mean ± SD), which did not exceed the metrics of

the reference method (see Table 1). Notably, Figure 7 shows that

extending the window length to 80ms in the reference method,

thus reducing the number of features to 640, did not improve its

performance, achieving an average BA of 90.4± 4.9% (mean± SD)

across all participants. However, when applying 80ms windows in

our proposedmethod, we consistently observed an approximate 2%

increase in BA compared to the 50ms window. It is worth noting

that with 350 selected features and 80ms windows, the proposed

method matched the BA of the reference method that used 50ms

windows and all 1,024 features.

In addition, Figure 8 illustrates the impact of each feature

type on the classification accuracy with different numbers of

selected features. Temporal difference features showed comparable

classification performance, although not better than temporal

average features. The combined use of temporal average features

and temporal difference features slightly improved the BA

compared to the reference method, but only when the number

of features used was between 200 and 350. The use of temporal
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FIGURE 5

Online simulation ERPs and prediction scores. ERPs and prediction scores after error onsets in the online simulation analysis (N = 8 participants, two
datasets with each N_error = 6 per participant). The figure presents the grand mean with red line, individual means with gray lines and the standard
error of the individual means as shaded areas in each subplot. The thicker gray line highlighted within these represents the participant of the online
prediction stage. (Top-left) ERPs at Cz. (Top-right) ERPs at CPz. (Bottom-left) ERPs at Pz. (Bottom-right) the prediction scores of the SVM classifier.
The decision threshold for online error prediction is indicated by the dashed line. The yellow box highlights the window used for classification,
aligned with the yellow line in the bottom-right plot, showing the peak prediction score for the data window (0–800) ms post-error, in
correspondence with the window it was trained on.

FIGURE 6

Grand averaged online simulation ErrP topographies. Grand averaged ErrP topographies in the online simulation of eight participants with 2*6 errors
each (N = 96).
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TABLE 3 Results of the online stage.

Scenario Set TPs FNs TPR FPs TNs TNR BA tscore FPS

Direct response Set 1 2 3 0.4 1 29 0.967 0.683 0.905 0.7496

Set 2 4 1 0.8 1 29 0.967 0.883 0.8218 0.8646

No response Set 1 2 3 0.4 0 30 1.0 0.7 0.845 0.7435

Set 2 4 1 0.8 0 30 1.0 0.9 0.777 0.8631

TPs, true positives; FNs, false negatives; TPR, true positives rate; FPs, false positives; TNs, true negatives; TNR, true negatives rate; BA, balanced accuracy; tscore = consolidated time score

according to Section 2.3.2.2; FPS, final performance score according to Section 2.3.2.2.

FIGURE 7

Window length analysis. The figure compares the classification accuracies of the proposed and reference methods for window lengths of 50 and
80ms. The x-axis, logarithmized for clarity, represents the number of features selected in the proposed method. For context, the reference method
uses 1,024 temporal average features when using 50ms windows and 640 features when using 80ms windows.

dynamics features alone resulted in a BA ∼4% lower than the

use of temporal average or temporal difference features alone, and

the integration of temporal dynamics features with the other two

feature types actually decreased the BA. Notably, the optimal BA

for any combination of feature types was not achieved by using

all features, but rather with a selection of ∼200–300 features, as

determined by ranked Cohen’s d values.

3.3.2 Evaluation of the MANF technique
The results of the comparative analysis between the condition

using the MANF technique and the condition without the MANF

technique are shown in Table 4. The cumulative total set score

serves as a comprehensive metric to evaluate the performance in

error detection and FA rejection, allowing a qualitative comparison

between the two conditions. In general, a higher cumulative total

set score indicates fewer correct detections and more FAs. The

MANF technique produced a lower cumulative total set score,

which translated into a higher number of TPs with 58 out of a

possible 96, giving a hit rate of 60.4% compared to the condition

without the MANF technique, which had a higher cumulative total

set score of 54,196ms and a lower hit rate of 49.0%.

4 Discussion

In this study, an approach for online BCI-based machine error

detection in the continuous EEG was proposed and applied in

a human-machine interaction experiment as a winning strategy

in a challenge at the IJCAI 2023 conference. This approach

effectively combined three types of temporal features with an

effect size-based feature selection strategy for model training,

and was further enhanced by a lightweight noise filtering

technique, specifically designed for non-calibrated online sessions.

Extended research was conducted to validate the feasibility of

the proposed methods. Offline training resulted in high cross-

validation accuracies of 89.9% and a simulated online test resulted

in a good hit rate on continuous data. Furthermore, despite a

performance drop, the classifier maintained a high BA in the

online continuous classification 3 months after training without
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FIGURE 8

Impact of feature types on average balanced accuracy (BA). The figure shows the classification accuracy achieved with di�erent numbers of selected
features under five di�erent conditions: using only temporal average features, temporal di�erence features, temporal dynamics features, a
combination of temporal average and temporal di�erence features, and a combination of temporal average, temporal di�erence, and temporal
dynamics features. Feature selection was guided by the ranked Cohen’s d values. For comparison, the average BA of the reference method, which
uses 1,024 temporal average features, is shown as a horizontal line. The gray zone indicates the ideal range for selecting the number of features,
specifically between 200 and 300, which is associated with achieving the highest BA. The x-axis, representing the number of features, is logarithmized.

recalibration, achieving high BAs across all sets while maintaining

a fast error prediction capability.

4.1 Classification performance in the
competition

In the offline stage of the competition, the average BA during

cross-validation on the training sets was 89.9 ± 5.1% (mean ±

SD) across all participants, indicating a good fit to the training

data. The average TPR was 83.1 ± 8.7% (mean ± SD), which was

lower than the average TNR of 96.7 ± 2.0% (mean ± SD). This

discrepancy suggests a relatively weaker performance in identifying

errors compared to rejecting FAs. There are two reasons for this:

First, due to the high probability of FAs in continuous online

classification, a conservative strategy was taken to minimize FAs,

potentially at the expense of missing some errors. This involved

setting a conservative error detection threshold and implementing

a noise filtering technique. Secondly, the limited number of error

epochs available for training, coupled with the limitations of

SMOTE to address class imbalance, further contributed to the

challenge of accurate error detection. Furthermore, our proposed

method in the competition did not outperform the reference

method in terms of metrics (see Section 3.3.1). However, when

using 80ms windows and 350 selected features, the proposed

method achieved a slightly higher BA than the reference method,

which used a 50ms window and all 1,024 average features. We

believe the reason for this result lies in optimizing window size

and feature selection. Longer window sizes and a condensed feature

set can increase the relevance of the data and reduce overfitting,

thereby enhancing the overall efficiency of the classifier. We then

simulated real-time data acquisition on the test sets using a buffer-

like moving window that progressed through the EEG data. The

trained SVM classifier produced prediction scores for each of these

moving windows and the top six prediction scores were chosen

for each test set containing six errors. This resulted in a total

set score of 44,030ms, corresponding to a sum of 58 TPs and

a hit rate of 60.4%. Although the model’s efficiency in detecting

errors decreases compared to its performance during the training

phase, this decrease should be contextualized by the application on

continuous data and the competition rule that limited submissions

to the top six errors per test set. Such a restriction inevitably led

to missed errors that did not fall within these top six ranks. The

grand average curve of prediction scores across all participants

peaks ∼800ms after the onset of the error, coinciding with the

moment when the buffer fetches EEG data from 0 to 800ms

post-error for prediction (see Figure 5). In terms of the model’s

ability to detect errors in continuous data, even the participant

with the lowest prediction score peak achieved a mean score of

0.91 at the moment of error occurrence. In contrast, the grand

mean of prediction scores outside the time range from 600 to

1,000ms post-error consistently remains below zero, underscoring

the classifier’s ability to accurately classify them as error-free. In

real-time applications, it is advisable to establish a unique decision

threshold for SVM prediction scores for each individual, with

prediction scores above the threshold being identified as errors. For
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TABLE 4 Comparative analysis between the condition using the MANF

technique and the condition without the MANF technique.

Noise filtering
condition

Cumulative total
set score (in ms)

Total no. of TPs

Without the MANF

technique

54,196 47

Using the MANF

technique

44,030 58

Cumulative total set score refers to the cumulative temporal deviations across all 12 errors

within the two test sets across all participants. Misses were counted with a deviation of

1,000ms. True Positives (TPs) are defined as detections occurring within a 1,000ms span

following the error onset, with the maximum number of TPs per set being 6 (see Section

2.3.1.2 for further details).

the online stage, we chose 1.5 as a conservative threshold. In sum,

our model was successful in detecting errors close to their actual

time of occurrence in the simulated online test.

To confirm that our model relied on neurophysiological

patterns rather than artifacts for simulated online classification, we

visualized the grand averaged online simulation ErrP topographies,

and compared it to the average Cohen’s d topographies from the

training sets across all participants (see Figure 4). Haufe et al.

(2014) pointed out that patterns of forward models in EEG or

other neuroimaging analyses have meaningful neurophysiological

interpretations. Given that the presented Cohen’s d topographies

provide a statistical representation of the differences between two

classes as derived from the output of the forward model, we can

claim that these topographies reflect the sources of neural activity

that are relevant to our study and can be used in the context

of other research. As shown in Figure 4, in the first row, higher

absolute Cohen’s d values, which indicate a higher discriminability

between the two classes (error/no error) and are used for feature

selection, closely match with the centro-parietal positive deflection

of the ERP shown in Figure 6. This congruence between averaged

Cohen’s d topographies and averaged ERP topographies supports

our model’s use of neurophysiological patterns for classification

rather than artifacts.

In the online stage of the competition that happened 3

months later, the pre-trained model of one participant without any

additional calibration or tuning was applied to the same participant

doing the same experiment again, but with a new scenario of no

physical response to errors. Here, similar accuracies were obtained

in both scenarios, indicating that the performance of our model

was primarily driven by the detection of ErrPs, rather than by

motor preparation. Consistent with the offline training results, the

TPRs were much lower than the TNRs in all sets, again due to

our conservative strategy and the issue of class imbalance. While

the TNRs remained consistent from the offline training session to

the online classification session, we observed significant variability

in TPRs during the online session for both scenarios, specifically

40% in set1 and 80% in set2. This intra-session variability was likely

due to differences in ERP morphology; the ERP morphology in the

offline session closely resembled that in set2 of the online session,

but diverged from that in set1. This observation indicates that the

proposed feature selection method is highly sensitive to variations

in ERP morphology. Additionally, the reduction in TPRs between

the offline session and the online session 3 months later may be

attributed to EEG cross-day non-stationarity, a phenomenon also

documented in other studies (Shenoy et al., 2006; Christensen et al.,

2012; Krumpe et al., 2017). Furthermore, the obtained tscore values

are above 0.77 in all sets. For this metric, which is in the (0,1) range,

a higher score corresponds to a shorter duration between the true

error stimuli and the real-time identification of the error. This score

embodies both the efficacy of the model and the computational

duration involved as we indicated both the estimated true error

onset as well as the time that was required for our model to arrive

at this decision. Our model used a buffer window of 800ms and

the prediction score rose above 1.5 around the 750ms mark post-

error (see Figure 5). We subtracted 800ms from the time of this

prediction score above 1.5 to arrive at an estimate of the true error

onset. Prematurely detected errors were discarded according to the

rules, so we can assume that the model caught most errors without

any relevant delay. The computation time for the SVM model was

in the range of 20ms on our machine. The most relevant aspect

contributing to a delay in detecting errors is thus the fact that our

model requires a buffer window of 800ms and can only detect an

error around that time after it occurred. Depending on the use

case, this might be an acceptable situation, but it could be explored

whether a decrease in the buffer width results in a lower delay while

maintaining a high prediction accuracy. In sum, our model was

effective in detecting 60% of errors in an online application without

almost no FAs even months after training, and it did so in a timely

manner, most likely <1 s after the error occurred.

4.2 Feasibility of using time-derivative
features and e�ect size-based feature
selection technique in EEG-based
classification

In this study, we hypothesized that a combination of three

different feature types, including two time-derivative features and

the traditional averaged amplitude features would more effectively

capture the pattern of ERPs and distinguish them from artifacts

with different patterns. However, our results showed that although

the proposed time-derivative features were effective in predicting

errors, they did not outperform traditional average features. The

temporal difference features showed a comparable capacity in

feature representation, but did not exceed the effectiveness of

the temporal average features. The combined use of temporal

average features and temporal difference features resulted in only

a marginal improvement in the BA when using a certain number of

features. Using temporal dynamics features alone resulted in lower

BA compared to the other two types, suggesting that incorporating

this feature type into the classification may not be beneficial

as it led to decreased BA. The limited improvement of EEG-

based classification performance by time-derivative features can be

attributed to the nature of information they encapsulate. Most of

the information relevant for classification is already captured by

the temporal average features, which explains why the addition of

derivative features may not substantially improve performance. In

particular, second-order derivatives may add even less value due

to their higher redundancy compared to first-order derivatives, as

well as their sensitivity to noise in the data. In addition, classifiers

such as SVMs are adept at interpreting and extracting relevant
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information from average features, which reduces the potential

added value of time-derivative features. Therefore, the effectiveness

of incorporating different types of features into classification

models is highly dependent on the uniqueness of the information

that each feature contributes. If the features are highly correlated

or convey analogous information, their combined use may not lead

to a substantial improvement in performance. To this end, when

integrating different feature types for classification or in cases of

modality fusion, it is crucial to ensure that each feature type or

modality provides complementary information to enrich the model

with new insights and dimensions.

Furthermore, we used Cohen’s d values for feature selection.

As shown in Figure 8, the highest BA for any combination of

feature types was not achieved by using all features. Instead,

optimal results were achieved with a subset of ∼200–300 features,

as identified by the ranked Cohen’s d values. Compared to the

reference method using 1,024 temporal-spatial features, this feature

selection method can efficiently identify the most discriminative

temporal-spatial features, reducing the feature dimension to one-

fifth of its original size in this study. Moreover, the classification

accuracy remained impressively high, exceeding 87% for most

conditions, even with an extremely reduced feature dimension of

only 10 features. This observation highlighted the effectiveness of

our feature selection method in substantially reducing the feature

dimension without much loss of classification performance. Lotte

et al. (2018) highlight that precise feature selection, by reducing

the number of features, leads to a reduction in the parameters that

need to be optimized by the classifier. This reduction not only

increases computational efficiency, allowing faster predictions for

new samples, but also simplifies the identification of features that

are truly relevant to the mental states under consideration. In real-

time scenarios, where fast computation is essential for the viability

of passive BCI-based applications, the development of more

efficient feature extraction strategies is crucial. The feature selection

method based on Cohen’s d demonstrated its effectiveness in the

continuous online classification in the competition. In addition,

as shown in Figure 6, the visualization of the discriminability

between two classes, represented by Cohen’s d in the topographies,

effectively identifies the temporal-spatial features that make a great

contribution to the ErrP-based classification. This ensures that the

classification is truly neurophysiologically based and is not biased

by artifacts. In summary, this feature selection method is able to

select the most discriminative temporal-spatial features, effectively

reducing the feature dimension, which could be beneficial in time-

critical circumstances or when computing on low-end hardware.

Furthermore, it also provides a convenient way to investigate the

neurophysiological background of the ongoing phenomenon.

4.3 O	ine to online session transfer

Regarding the transfer from offline to online sessions, we first

addressed the issue of potentially high FAs in real-time applications

by implementing a simple noise filtering technique. This method,

based on amplitude variability, effectively minimized FAs caused by

large artifacts. Due to its minimal computational complexity, this

technique is expected to perform efficiently in real-time scenarios,

although a detailed computational time analysis has not been

conducted within this study. However, it is particularly suited to

controlled scenarios, such as situations where participants remain

relatively stationary, as it does not correct for artifacts, but rather

excludes entire epochs that are considered noisy.

In addition, our study shows how classification performance in

online sessions can be affected by EEG non-stationarity, especially

when no pre-calibration is performed before using an offline pre-

trained classifier. Although our approach achieved a remarkable BA

in online classification, we observed a decrease in TPR compared

to the offline session and variability in TPR even within the same

online session, likely due to cross-day and intra-session variability

in EEG signals. These findings not only confirm known challenges,

but also highlight the complexity of the transfer from offline to

online sessions in BCI systems.

4.4 Limitations and future work

While our study shows considerable potential, it has

certain limitations that require further investigation. First,

the proposed method in the competition did not achieve optimal

performance compared to the reference method, mainly due

to time constraints during the competition and non-optimal

choices of hyperparameters such as number of features. Therefore,

a more in-depth study of time-derivative features and effect

size-based feature selection technique was conducted after the

competition to improve the proposed approach. Regarding the

online application, while our approach proved to be feasible for

continuous online classification during the competition, we had

no opportunity to conduct a comparative analysis with other

existing methods in an online context after the competition. As

a result, the advantages of our approach for online scenarios

in feature dimension reduction remain insufficiently explored.

Second, additional research in different experimental contexts,

real-world scenarios, and different datasets is needed to thoroughly

assess the feasibility of the proposed approach. In particular,

while the proposed time-derivative features did not outperform

traditional amplitude average features in this study, results may

vary across different datasets or applications. In addition, the

feature selection method using Cohen’s d showed promise in

selectively identifying the most discriminative temporal-spatial

features and substantially reducing feature dimensionality in

this study, but future studies on standard datasets are needed to

evaluate its effectiveness in improving classification performance.

Furthermore, the MANF technique, which is effective in controlled

scenarios where participants are mostly stationary, does not really

remove the artifacts but excludes entire noisy epochs, potentially

leading to missed detections in noisy environments. This highlights

the clear need for future research to develop lightweight artifact

removal techniques suitable for continuous online classification

scenarios where fast computation is critical. Finally, to better

accommodate the transfer from offline to online sessions, the

development of adaptive classifiers capable of tracking potentially

changing feature distributions is essential to maintain effectiveness

amidst the non-stationarity of EEG signals (Lotte et al., 2018).

In all, our study serves as a feasibility research concerning

these aspects, while paving the way for future investigations

to address these limitations, with the aim of developing more
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robust and adaptable BCI systems for continuous online

error detection.

5 Conclusion

This study presents a comprehensive approach for continuous

online machine error detection during a human-robot interaction

task, integrating two time-derivative features, an effect size-based

feature selection technique for model training, and a lightweight

noise filtering method suitable for online sessions. The approach

yielded a 89.9% accuracy during calibration, a 60.4% hit rate in

online simulation, and an averaged accuracy of 79.2% in online tests

conducted 3 months later without recalibration, while maintaining

a low FA rate of 1.7%. In addition, a detailed analysis was performed

to further validate the proposed method. Although time-derivative

features were effective in predicting errors, they did not outperform

traditional average features. In particular, the effectiveness of first-

order time-derivative features was found to be equivalent to that of

time-averaged features, while second-order features did not show

the same level of effectiveness. The combined use of these features

resulted in only a slight improvement in BA within a certain

selected feature number range. The feature selection method based

on Cohen’s d not only efficiently identified the most discriminative

temporal-spatial features, but also facilitated the exploration of

the neurophysiological basis of the observed phenomena. The

noise filtering technique designed for online sessions proved highly

effective in minimizing FAs. The study also sheds light on the

challenges posed by EEG cross-day and intra-session variability

on classification performance in online sessions, highlighting the

complexities involved in the transfer from offline to online sessions

in BCI systems. Going forward, comprehensive research in different

experimental settings, real-world scenarios and across different

datasets is imperative to fully establish the practicality of the

proposed approach. Furthermore, there is an urgent need for

further studies aimed at developing more robust and adaptable BCI

systems for continuous online error detection.
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