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fNIRS
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To succeed, e�ective teams depend on both cooperative and competitive

interactions between individual teammates. Depending on the context,

cooperation and competition can amplify or neutralize a team’s problem solving

ability. Therefore, to assess successful collaborative problem solving, it is first

crucial to distinguish competitive from cooperative interactions. We investigate

the feasibility of using lightweight brain sensors to distinguish cooperative from

competitive interactions in pairs of participants (N=84) playing a decision-making

game involving uncertain outcomes. We measured brain activity using functional

near-infrared spectroscopy (fNIRS) from social, motor, and executive areas during

game play alone and in competition or cooperation with another participant.

To distinguish competitive, cooperative, and alone conditions, we then trained

support vector classifiers using combinations of features extracted from fNIRS

data. We find that features from social areas of the brain outperform other

features for discriminating competitive, cooperative, and alone conditions in

cross-validation. Comparing the competitive and alone conditions, social features

yield a 5% improvement over motor and executive features. Social features show

promise as means of distinguishing competitive and cooperative environments

in problem solving settings. Using fNIRS data provides a real-time measure of

subjective experience in an ecologically valid environment. These results have

the potential to inform intelligent team monitoring to provide better real-time

feedback and improve team outcomes in naturalistic settings.

KEYWORDS

competition, cooperation, fNIRS, machine learning, classification, neuroimaging,

wearable sensors, collaborative problem solving

1. Introduction

1.1. Team competition and cooperation

Professionals across all disciplines compete and cooperate every day to achieve personal

and collective goals in their work. These personal and collective goals are often achieved

through teams. In teams, multiple individuals interact to complete tasks in an organizational

setting (Kozlowski and Bell, 2013). Competition arises in teams when two or more

individuals interact to achieve mutually exclusive goals. Whereas cooperation occurs when

individuals interact to achieve common goals. As one of the oldest research topics in social

psychology, a huge number of studies relate competition, cooperation, and individualistic

effort to individual and team outcomes, often with contradictory findings. In a meta analysis

of these studies, Johnson (2003) found that the average individual in a cooperative setting

outperforms their peers working in either competitive environments or alone. In contrast,
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other studies have found that cooperative teams are less productive

than groups of individual workers (Young et al., 1993).

Apart from achievement, cooperation and competition can

have a significant effect on psychological outcomes experienced

by team members. Psychological outcomes are an important

assessment of not only an individual’s health within a team, but

also a strong predictor of team success. Successful teams are

composed of confident individuals with positive interpersonal

relationships (Tjosvold et al., 2003). While meta analysis reveals an

overall positive effect of cooperation on interpersonal relationships,

compared to competition (Johnson, 2003), other studies have found

that competition can improve team satisfaction under certain

settings (Tjosvold et al., 2003; Abraham et al., 2019).

In addition to the workplace, the classroom is another

ideal setting to study team dynamics. In a large meta-analysis

of North American schools, Johnson et al. (1981) found that

cooperation between students led to significantly increased

achievement compared to individualistic competition. Canning

et al. (2020) show that competitive classroom environments have

a tendency to increase the prevalence of imposter feelings in

first generation college students and lead to negative education

outcomes Ames and Archer (1988) show that when students focus

on outperforming their peers, they develop more negative feelings

regarding their ability in the face of failure. Urdan (2004) found that

classroom environments that emphasized competition led to self-

handicapping behaviors amongst students. In a review, Meece et al.

(2006) describe that generally competition decreases motivation

among students. Indeed, an overemphasis on competition in

college classrooms could be a contributing factor to the lack of

collaborative problem solving skills amongst college graduates

(Fiore et al., 2018).

1.2. Behavioral measures of team
cooperation and competition

Based on these diverse, and often contradictory behavioral

findings, there is a clear need in the teams literature to better

understand and measure competition and cooperation. Although

competition and cooperation can have a diverse and considerable

effect on team outcomes, measuring the degree to which individuals

are engaging in these behaviors can be difficult. To measure

competition, researchers often extract features from interactions

between individuals (Abraham et al., 2019). This process can

involve many hours of training research assistants to record and

code team interactions. Coding frameworks themselves can be

subject to bias in the case where coders disagree on how to

categorize interactions. To alleviate these issues researchers often

turn to surveys to gauge individual perceptions of competition

and cooperation in teams (Canning et al., 2020). However,

surveys sent during task time can distract individuals and derail

interactions. Surveys sent after team interactions have the opposite

problem in that they fail to capture accurate, real-time, and

granular information regarding individual perceptions of specific

interactions (Dang et al., 2020).

Adapted subjective measure systems, such as the Team

Workload Questionnaire, have been proposed and adopted for

teams that attempt to mitigate some of the issues detailed above

(Sellers et al., 2014). But these surveys, similarly to their individual

subjective measure counterparts, can only be elicited after a

teaming task has been completed, limiting the ability of researchers

to determine how, why, or when a teaming scenario may have been

derailed. By instead focusing on the real time physiological activity

within the brain where these types of states are elicited (Dehais

et al., 2020), researchers have a better opportunity to collect a real

time measure that is not as subject to some of the constraints of

subjective measures.

1.3. Neurophysiological sensors for
measuring cooperation and competition

One way to capture accurate, real-time, and granular

information from interactions between individuals is through

neuroimaging. Neuroimaging has been a useful tool for studying

the neural and cognitive bases of competition and cooperation.

In competition and cooperation, two major cognitive processes

play a role: executive and social functioning. Executive function

refers to the ability to plan future actions, suppressing some while

actualizing others. Executive function, in the case of competition

and cooperation, has been shown to primarily recruit the prefrontal

cortex, or more specifically the superior frontal gyrus (Decety et al.,

2004). Social processing, on the other hand, primarily involves

predicting the future actions of others. These social functions are

typically associated with the temporal parietal junction which has

been shown to activate in both cooperative (Abe et al., 2019) and

competitive (Decety et al., 2004) interactions. These foundational

studies have employed fMRI machines which are not well suited to

capturing neural data in a naturalistic setting.

For monitoring interactions in naturalistic settings, portable

and economic sensors have been developed which can also alleviate

the biases associated with measuring individual interactions

based on surveys. Using these sensors, researchers are in the

process of developing tools for monitoring other individual

states like engagement and affect (Dich et al., 2018; Henderson

et al., 2020; Sümer et al., 2021). These methods currently use

widely available sensors like cameras, microphones, and galvanic

skin response wristbands. However, brain imaging technology is

advancing rapidly and could soon be accessible in workplaces

and classrooms (Davidesco et al., 2021). Here, we use functional

near infrared spectroscopy (fNIRS), a non-invasive sensor for

measuring blood-flow in the cerebral cortex. The fNIRS device

provides a portable alternative to fMRI, the gold standard for high

spatial resolution brain imaging, for use in naturalistic settings.

This makes fNIRS a promising candidate for measuring team

collaborative experiences. Our goal is to assess the feasibility of

fNIRS for detecting and distinguishing competitive and cooperative

interactions. These results can be used to inform intelligent

agents (Brawner and Goldberg, 2012) and improve workplace and

classroom monitoring.

Although previous studies have investigated competition and

cooperation using fNIRS, they tend to focus on synchrony, or

coherence, between brains as users interact. This kind of between-

brain analysis, called “hyperscanning”, was first introduced twenty
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years ago as a promising new method for studying social cognition

in fMRI (Montague et al., 2002; Misaki et al., 2021). Early

hyperscanning studies used fMRI to assess participant interactions,

but later became a popular analysis tool for portable neuroimaging

devices like EEG (Dikker et al., 2017) and fNIRS (Pinti et al., 2020)

(see Tsoi et al., 2022 and Czeszumski et al., 2020 for a review of

hyperscanning). In fact, one of the first studies to simultaneously

record two individuals using fNIRS investigated cooperation and

competition as participants played a computer game. In that study,

Cui et al. (2012) determined that the coherence between individual

signals in the superior frontal cortex increases in cooperation

compared to competition. Coherence results in the frontal cortex

during cooperation have also been found using EEG (Babiloni et al.,

2006). In contrast, Liu et al. (2017) found increased synchrony

in the inferior parietal lobule during competition compared to

cooperation. These studies provide evidence that cooperative and

competitive states can be distinguished using synchrony.

However, in this study we do not evaluate synchrony for three

reasons. First, we had hoped to target more easily interpreted

neural metrics. For instance, coherence has been found between

participants presented with the same stimuli but who do not

interact (Burgess, 2013). Separating the neural effects of interaction

from those elicited by a shared stimulus requires complex

experimental designs (Hamilton, 2021). Those experimental

designs are not employed here. Instead, we are interested

in evaluating interpretable neural features for distinguishing

cooperative and competitive interactions. As such, we devote a

section titled “Interpretability” to deciphering the features used

in our machine learning analysis. The second reason for focusing

on activation rather than synchrony is our aim to develop

features for distinguishing individual experiences of cooperation

and competition. Synchrony is more difficult to use as a feature

for distinguishing individual experiences of cooperation and

competition because it requires the simultaneous recording ofmore

than one individual at a time. For evaluating a single individual at

a time (e.g., a student interacts with an AI-based tutoring system,

a pilot conducts a formation flight on a simulator) activity-based

features are more feasible than their synchony-based counterparts.

One previous fNIRS study has measured activity differences in

competitive and cooperative motor movement tasks. Chen et al.

(2020) showed increased activation for social brain regions in

competition and cooperation with greater increases in competitive

conditions. Finally, to clarify the function of these social brain

regions, we chose to use an activity-based rather than synchrony-

based analysis. With this activity-based analysis, we specifically

target the temporal parietal junction (TPJ) which “contributes

to decision making specifically when there is a social context

relevant for current behavior” according to the nexus model of

the TPJ (Carter and Huettel, 2013). Using features extracted from

the TPJ and other relevant brain regions, we aim to investigate

the usefulness of fNIRS for predicting individual experiences of

competition and cooperation.

The task we chose for this study is the Balloon Analogue Risk

Task (BART). Since its introduction twenty years ago, researchers

have used the BART in the lab to measure real-world risk-

taking behavior (Lejuez et al., 2002). A small number of studies

have investigated the BART using fNIRS. Cazzell et al. (2012)

published the first study to use fNIRS in conjunction with the

BART and aim primarily to validate findings from fMRI studies

and identify gender differences in win and loss conditions. In

support of previous fMRI research, they find that increased bilateral

dorsolateral prefrontal cortex (dlPFC) activity correlates with risk

aversion and that females show more dlPFC activity during loss

conditions. In a follow-up study, Li et al. (2017) performed a similar

experiment on older adults and found decreased dlPFC activation

in older adults during winning conditions. Using the BART, Huhn

et al. (2019) find useful fNIRS features in the dlPFC for predicting

cocaine relapse amongst drug recovery patients. In all of these

BART studies, participants complete the task alone. However, here

we use a competitive version of the BART (Fairley et al., 2019) and

add our own cooperative condition.

1.4. Contributions and novelty

Wemeasure brain activity during competition and cooperation

using fNIRS as participants interact through the BART game. We

find that both cooperation and competition increase activity in

social areas of the brain. Although activity in these areas increases

in both competitive and cooperative conditions, it increases

much more in competitive conditions. Guided by these activation

differences, we train support vector classifiers based on features

extracted from social, motor, and executive regions of the brain.

We show that social region features significantly outperform other

feature sets for discriminating competitive, cooperative, and alone

conditions.

We present the following contributions:

• We characterize brain activation in competitive and

cooperative scenarios using unobtrusive functional near-

infrared spectroscopy sensors in an ecologically valid

decision-making game involving uncertain outcomes.

• We demonstrate that fNIRS features from social regions

of the brain outperform other features for distinguishing

collaborative interactions, which paves the way for the

development of more reliable and unobtrusive tools for

workplace and classroom monitoring of team interactions.

• We perform additional analysis of the features salient to

competitive and cooperative conditions to find that both

cooperative and competitive conditions increase activity in the

social regions of the brain but that competition shows larger

increases in social areas than cooperation.

2. Methods

The following sections outline our data collection procedure,

dependent measures, machine learning paradigm, and

interpretability procedure. We fit machine learning classifiers

to features extracted from our sensors and evaluated the usefulness

of those features for distinguishing collaborative interactions.

Additionally, to better interpret our machine learning results, we
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performed a univariate analysis which revealed how fNIRS activity

levels changed during competition and cooperation.

2.1. Data collection

2.1.1. Participants
One hundred and sixteen participants enrolled in our study.

Email screenings excluded participants under eighteen and those

with a history of seizures. Dyads of participants who had met

previously were excluded from the study, or were reassigned

to different partners. Written informed consent was obtained

from all subjects in a protocol approved by a local university

institutional review board. During analysis, thirty two participants

were excluded based on fNIRS data quality issues, leaving eighty

four healthy volunteers (age 31 ± 13.8 years, 44 females, 39 males,

1 unanswered) in the final analysis.

2.1.2. Task and conditions
Participants played a version of the BART alone, which we call

solo BART (Figure 1A), a cooperative BART, and a competitive

BART. For the entire experimental session, Dyads completed

one block of the solo BART at the beginning and at the end

of the session. In the middle of the session, dyads completed

two cooperative BART blocks and two competitive BART blocks

in a random order, for a total of 6 blocks (one solo block,

two competitive blocks, two cooperative blocks, followed by one

final solo block). Each block, regardless of condition, lasted

approximately seven minutes and thirty seconds (participants

would finish their final balloon once the timer had been met, so

block times would vary slightly). Rest conditions, which had the

participant stare at a fixation cross for a period of 30 seconds,

immediately preceded each block.

For all BART conditions, Participants complete the BART

alone by pumping a virtual balloon on a computer screen. The

balloon randomly pops after a predetermined, but unknown to the

participant, number of pumps. Participants accrue tokens for each

pump and can choose when to cash in their tokens any time before

the balloon pops. If the balloon pops, participants lose all their

accumulated tokens. During the solo BART condition, participants

play alone, where they are able to pump the balloon and cash out

tokens without any input from the other user (Figure 1A)

In the cooperative BART condition (Figure 1B), both

participants must agree on an action in order for that action to

occur. Each participants’ action is registered on the screen for

both players to see. If participants cannot agree on an action

after ten seconds, then the balloon automatically cashes in. If the

shared balloon pops, then both participants earn zero tokens.

When a balloon is cashed in, participants split the total number of

accumulated tokens.

In the competitive BART condition (Figure 1C), each

participant sees both their own balloon and their opponents

balloon on the screen. Each participant is free to pump and cash

their own balloon whenever they like and can see the pumping and

cashing behavior of their opponent. If both participants balloons

pop, then neither person earns any tokens. If both participants

cash in, then the person who cashed in with more tokens earns all

their accumulated tokens and their opponent earns nothing. In the

case of a tie, participants split the earnings.

2.1.3. Experiment procedure
The experiment was conducted with a dyad and two

research assistants. Upon arrival, participants signed consent

forms, were guided to separate data acquisition rooms, and and

through the use of a self-paced guided tutorial learned about

the experimental conditions while the tutorial provided real

time feedback to participants. Upon completion of the tutorial,

researchers configured the fNIRS devices for each participant. Cap

alignment was verified based on the 10-20 location of Fpz and data

quality was checked. All experiment materials were presented using

PsychoPy.

2.2. Dependent measures

2.2.1. Behavioral data
For each participant and condition the adjusted number of

pumps, or the average number of pumps during cashed out trials

was calculated from keypresses collected during gameplay.

2.2.2. fNIRS
fNIRS data was collected in both participants using two

continuous-wave NIRSport2 devices (NIRx Medical Technologies,

LLC) implemented wirelessly, allowing for brain measurement in

operational settings. The devices emitted light from LED sources at

wavelengths of 760 nm and 850 nm corresponding to oxygenated

hemoglobin and deoxygenated hemoglobin concentrations,

respectively. We collected the data at a sampling rate of 10 Hz

using Aurora fNIRS, the NIRx data acquisition software. The

fNIRS cap contained 15 sources, 16 detectors, and 42 channels

covering bilateral frontal cortex, motor cortex, and the temporal

parietal junction (TPJ).

The locations of fNIRS channels on the scalp were determined

using custom software to assess the relevance of specific regions

of the cortex for our study. To generate the channel locations,

first association test maps were downloaded from Neurosynth.org

for three relevant search terms: “social”, “executive”, and “finger

tapping”. Using these maps, weighted centroids were calculated

on the cortex to mark the most relevant areas. Then, the closest

fNIRS channels in the 10-20 coordinate system to each centroid

were added to the headcap. Figure 2 shows fNIRS channel locations

overlaid on NeuroSynth association maps. During the classification

of participant interactions, features were extracted from channels

over each of the three regions: “social”, “executive”, and “finger

tapping”.

2.3. Analysis

2.3.1. Behavioral analysis
To assess the effectiveness of each experimental manipulation,

we analyze adjusted pumps, or the average number of pumps for

Frontiers inNeuroergonomics 04 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1265105
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Hayne et al. 10.3389/fnrgo.2023.1265105

FIGURE 1

Gameplay. Examples from the (A) solo, (B) cooperative, and (C) competitive BART.

FIGURE 2

Sensor placement. Association test statistical maps from NeuroSynth.org used as a guide to place our fNIRS channels (yellow dots). (Left) Association

test z-scores between the term “social” used in abstracts compiled by NeuroSynth.org and voxel activations reported by the corresponding paper

(right lateral view). Association test z-scores are generated from a two-way ANOVA aimed at detecting a non-zero association for a particular voxel

and term pair. The association test measures how much more likely each region is to be active in cases where the term of interest appears in the

abstract versus when it does not appear. So, in the case of “social,” the red regions activate more consistently in studies with the term “social” in the

abstract. (Center) Association test z-scores for the term “executive” (anterior view). (Right) Association test z-scores for the term “motor” (dorsal

view). Red dots denote fNIRS sources, brown dots denote fNIRS detectors, and yellow dots represent channels in between each source-detector pair.

all cashed out balloons. Two-sided T-tests were performed between

the distributions of average adjusted pumps in each condition.

We hypothesize that participants pump significantly less in the

competitive condition compared to the solo BART.

2.4. General linear model

We fit a general linear model (GLM) following the procedure

outlined in Meidenbauer et al. (2021). fNIRS data was processed

using the NIRS Brain AnalyzIR Toolbox (Santosa et al., 2018).

Raw light intensity data was downsampled to 4 Hz, converted

into optical density, then converted into oxygenated (HbO)

and deoxygenated (HbR) hemoglobin concentrations via the

modified Beer-Lambert law (Strangman et al., 2003). After the

conversion to hemoglobin, subject-level statistics were calculated.

The autoregressive iteratively weighted least squares algorithm

(AR-IRLS) was run in conjunction with the general linear model

(GLM) to alleviate the statistical difficulties associated with the

fNIRS signal. The AR-IRLS algorithm prewhitens the signal

to decorrelate the noise and iteratively downweights outliers

associated with motion artifacts in the data (Barker et al., 2013)

(see Huppert, 2016 for more details). We selected a canonical HRF

basis set for this analysis.
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2.5. Machine learning

2.5.1. Brain activity features
Brain activity features were computed by coding each block

as a different stimuli and fitting a subject-level GLM to produce

coefficients for each participant, channel, and block combination

(see Section 2.4 for details on subject-level GLM). Channels

located over the “social” region according to Figure 2 Left

were grouped together. Similarly, channels located over the

“executive” and “motor” regions according to Figure 2 Right,

Figure 2 Center respectively were grouped together (see Appendix

for details). These regions produced three feature sets which were

evaluated independently for their ability to distinguish competitive,

cooperative, and solo gameplay.

2.5.2. Models
Support vector machines (SVMs) were used to assess the

performance of each feature set for distinguishing cooperative and

competitive interactions. We performed nested cross validation

across participants such that each participant was placed in either

the training or test set, but not both. At the beginning of each outer

loop of nested cross validation, 20% of the data was reserved for

a test set. Traditional 5-fold cross validation was then performed

on the remaining 80% of the data (inner loop) to optimize the

hyperparameters (L2 weight penalty, kernel choice). The best

performing model in the inner loop was then refit on all 80% of

the data and evaluated on the held out test set. The outer loop

was repeated 50 times to evaluate 50 models on 50 randomly

chosen test sets from the data (see Varoquaux et al., 2017 for

more details on nested cross validation). Nested cross validation

was performed separately for each feature set (“social”, “motor”,

and “executive”) to distinguish competitive vs. solo, cooperative vs.

solo, and competitive vs. cooperative. T-tests conducted between

model accuracies determined whether one feature set significantly

outperformed another on a given classification task. All brain

activity features were standardized based on the training set. We

used scikit-learn for all our machine learning models.

2.5.3. Interpretability
After the subject-level analysis (Section 2.4), group-level

statistics were calculated. Group-level statistics were calculated

using a mixed effects model to determine the effect of each

condition controlling for subject. The group-level statistical

analysis uses the full covariance from the subject-level analysis to

performweighted least squares regression. The results of the group-

level analysis were used for group contrasts between conditions at

each channel. We use statistical maps to report group-level contrast

activations based on Benjamini-Hochberg p-values (Benjamini and

Hochberg, 1995).

3. Results

3.1. Behavioral analysis

Participants pump significantly less in the competitive

condition (t=6.34, p < 0.001) and significantly more in the

cooperative condition (t=2.41, p < 0.05) compared to the solo

BART.

3.2. Machine learning models using fNIRS
data

SVM models based on features extracted from each

participant’s fNIRS data in a nested cross-validation procedure

(inner 5 fold split, outer 50 random tests) perform above chance

(> 50%): cooperative vs. competitive 55.3%; cooperative vs. solo

56.5%; competitive vs. solo 60.2%. Although lower than we hoped,

these accuracies are comparable to other fNIRS studies which

predict complex mental states (Gateau et al., 2015).

To determine how executive, motor, and social features

were contributing to the model, we constructed SVMs using a

similar procedure but including each feature set independently.

Features extracted from fNIRS channels positioned over social

regions significantly outperformed executive and motor features

for distinguishing competitive from solo conditions as shown

FIGURE 3

Machine learning results. Accuracy results for SVMs evaluated using either social, motor, or executive fNIRS features. Binary classifiers were trained to

distinguish either (A) competitive and solo, (B) cooperative and solo, or (C) competitive and cooperative conditions. Stars indicate significant

di�erences between accuracies for groups of classifiers trained in nested cross validation (see Section (2.5.2)).
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FIGURE 4

Interpretability. Social features are more active in competitive than cooperative and alone conditions. Contrast maps for solo BART vs. rest (upper

left), cooperative BART vs. solo BART (upper right), competitive BART vs. solo BART (bottom left), and competitive BART vs. cooperative BART

(bottom right). Maps are colored according to the direction and group-level reliability of the di�erence (t-values) in oxygenated hemoglobin

concentrations (HbO) group-level HbO contrasts, red is more active (see Section (2.5.3)). Solid (dashed) lines are significant (insignificant).

in Figure 3A. SVMs trained on social features performed on

average 5% better than classifiers trained on other feature sets.

For distinguishing cooperative from solo conditions, both social

and motor features outperformed executive features by 5% and 3%

respectively (Figure 3B). In the case of distinguishing competitive

and cooperative conditions, social features alone outperformed

both motor and executive features by 7% and 6% respectively

(Figure 3B).

3.3. Interpretation of the fNIRS model

The results of our group-level fNIRS analysis indicates whether

particular features showed more activity or less activity in each

social condition. We focus on four statistical contrast maps for

interpretation: Solo BART vs. Rest (Figure 4, top left), Cooperative

BART vs. Solo BART (Figure 4, top right), Competitive BART

vs. Solo BART (Figure 4, bottom left), and Competitive BART vs.

Cooperative BART (Figure 4, bottom right).

The first contrast (Figure 4, top left) reveals increased HbO

activation in executive (bilateral dorsal lateral prefrontal cortex,

dlPFC) and motor regions (primary motor cortex, pmc) during

the solo BART condition compared to rest. Compared to the solo

condition, the cooperative BART condition produced decreased

HbO activation in the executive regions (bilateral dlPFC), motor

regions, and social regions (left temporal parietal junction, TPJ)

(Figure 4, top right).

The competitive BART condition produced decreased HbO

activation in executive (bilateral dlPFC) and motor regions, but

increased activation in social regions (bilateral TPJ) (Figure 4,

bottom left). This difference is also evident in the final contrast

between competitive and cooperative conditions, where the

competitive BART condition produced significantly increased

HbO activation in social regions (bilateral TPJ) compared to the

cooperative condition.

4. Discussion

We present results investigating the feasibility of distinguishing

collaborative interactions using fNIRS, a lightweight and portable

brain sensor. Our aim was to identify brain activity features

that distinguish cooperation and competition. We recruited a

large sample of participants (N=84) to play an ecologically valid

decision-making game with competitive, cooperative, and alone

Frontiers inNeuroergonomics 07 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1265105
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Hayne et al. 10.3389/fnrgo.2023.1265105

conditions. During these interactions, we used fNIRS sensors to

measure executive, motor, and social regions based on a large

meta analysis of neuroscientific studies. We found that support

vector classifiers trained on these features could be used to

distinguish social conditions.When comparingmodels constructed

using subsets of features, social regions of the cortex significantly

outperformed motor and executive features in distinguishing

competitive, cooperative, and alone conditions. fNIRS features

collected over social regions of the brain show promise as a means

of distinguishing competitive and cooperative interactions in a

problem solving settings.

When interpreting these models, we found that the alone

task increased activation in motor and control, but not social

regions of the brain. These increases reflect the use of cognitive

functions implicated in risky decision making and are consistent

with previous findings from both fMRI (Rao et al., 2008) and fNIRS

(Cazzell et al., 2012; Li et al., 2017). Although social features were

identified as bringing the largest improvement to our models, the

interpretation analysis also revealed strong activity increases in all

regions of the cortex during competitive interactions. We interpret

this result as indicating that the competitive game was, on the

whole, more taxing than the alone or cooperative game. The fact

that interpretation analysis also showed increases in social regions

indicates the competitive game is not just a more difficult task but a

task that engages social processing. The overall increase in activity

for the competitive condition echos findings from others showing

that competition is more engaging than cooperation (Bitsch et al.,

2018). This question is extremely important for the use of neural

features of social engagement in models of team behavior. If

problem solving is best in cooperative conditions, those may be

best targeted by light but not strong activation in social areas of

the brain.

The question still remains how these activation changes relate

to hyperscanning results in cooperation in competition. Previous

hyperscanning studies found increased coherence in the frontal

cortex between participants engaged in cooperation (Babiloni

et al., 2006; Cui et al., 2012). This frontal cortex coherence could

be due to the fact that participants recruit the same executive

processing resources when working on the same task together

(Burgess, 2013). When working together, each person’s actions

become more predictable and the overall activity and coherence

between social processing regions of the brain decreases. The

opposite is true for competition where the overall activity and

coherence in social processing regions increases (Liu et al., 2017).

This increase occurs because both people become engaged in the

difficult task of predicting their opponent’s actions. The interplay

between individual and hyperscanning brain dynamics should

be investigated in future studies with games that simultaneously

involve intra-team cooperation and inter-team competition. Until

then, this study represents an important step forward in the field of

neuroergonomics for collaborative teams.

We found that lightweight portable brain sensors show promise

as tools for indexing collaborative experiences in teams. These

tools can support usability testing on organizational materials

designed for the workplace and the classroom. For instance,

in recent years, there has been an increasing interest in the

gamification of educational materials (González and Area, 2013).

Gamified education materials inevitably provoke competition

and cooperation amongst students with design elements

like scores, leaderboards, teams, and missions. These game

elements have varying effects on student satisfaction (Agapito

et al., 2018; García Iruela et al., 2019). Similar incentives

have been introduced in Fortune 500 companies to induce

interteam competition (Young et al., 1993). How might these

game elements affect individual experiences of competition

and cooperation? As evidenced in this study, lightweight

portable brain sensors can be used to evaluate individual

experiences of gamified organizational materials in naturalistic

team settings.

5. Limitations

Our study has several limitations which should be addressed

in future work. First, our cooperative game may be less engaging

than the competitive game. Although there is some evidence to

support increased engagement for competition over cooperation

in general, creating a more engaging cooperative game would

provide interesting insights. For instance, intra-team cooperative

games show promising results (Morschheuser et al., 2019). Second,

we chose to capture only one social area, the TPJ. As our

results indicate, future studies would benefit from recording

more social areas shown in Figure 2. Apart from collecting data

from more social regions, we believe that more participant data,

shorter trials, different features, and better data cleaning would

improve classification accuracies in future studies.We acknowledge

the importance of synchrony-based features for classifying team

interactions. Future studies would benefit from interpreting

potentially useful synchrony-based features and reconciling those

interpretations with those presented here. In addition, short-

channel regressors should be used in future studies to further

reduce sources of physiological noise following current best

practices in the field (Tachtsidis and Scholkmann, 2016; Yücel et al.,

2021). Third, although games, like the one used in this study,

can be popular learning tools like those used in classroom teams

(González and Area, 2013), future work should consider tasks that

more directly reflect other common real-world team environments.

Finally, a comparison of neuroimaging results with subjective

measures of teammate perceptions is warranted. For example, do

TPJ activation increases correlate with subjective ratings of task

engagement or teammate competence? While unaddressed in the

present work, these limitations point in exciting future directions

for the study of teams using fNIRS.

6. Conclusion

Competitive and cooperative interactions in the workplace and

the classroom can have a strong effect on team and individual

outcomes. Measuring these interactions in real time has the

potential to help organizations evaluate different goal structures

and environments on individuals in teams. fNIRS provides a

promising non-invasive tool for assessing individual interactions in

teams in real time. This study identifies promising fNIRS features
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that can be used to distinguish competition and cooperation. These

fNIRS features have exciting implications for teaming systems

designed to improve team and individual outcomes.
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