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Introduction: Research over the last couple of decades has demonstrated

a relationship between psychophysiological measures, specifically cardiac

functions, and cognitive performance. Regulation of the cardiac system under

parasympathetic control is commonly referred to as cardiac vagal tone and is

associated with the regulation of cognitive and socioemotional states. The goal of

the current study was to capture the dynamic relationship between cardiac vagal

tone and performance in a vigilance task.

Method/Results: We implemented a longitudinal growth curve modeling

approach which unveiled a relationship between cardiac vagal tone and vigilance

that was non-monotonic and dependent upon each person.

Discussion: The findings suggest that cardiac vagal tone may be a process-

based physiological measure that further explains how the vigilance decrement

manifests over time and di�ers across individuals. This contributes to our

understanding of vigilance bymodeling individual di�erences in cardiac vagal tone

changes that occur over the course of the vigilance task.

KEYWORDS

vigilance decrement, heart rate variability, individual di�erences, longitudinal growth

curve modeling, cardiac vagal tone

Introduction

Heart rate variability (HRV) measures the time fluctuations between cardiac cycles.

This fluctuation is influenced by both parasympathetic and sympathetic nervous system

activity (Berntson et al., 1997). The parasympathetic nervous system controls autonomic,

or involuntary functions when the body is at rest, like digestion, heart rate, and breathing,

to name a few. This is in comparison to the sympathetic nervous system which, broadly

speaking, controls the body’s “fight or flight” response, as it mobilizes the body’s response

to environmental and psychological stressors. Both the parasympathetic and sympathetic

nervous systems are a part of the autonomic nervous system. Given autonomic functioning

is highly individualistic, its measures have been found to differentiate the efficacy of cognitive

and emotional regulation (Porges, 2003), or in other words, “the ability to respond flexibly

to changing demands” (Forte et al., 2019).

The vagus nerve is the main nerve of the parasympathetic nervous system, receiving

an estimated 75% of its fibers, and is the main contributor for regulating cardiac functions

(McCorry, 2007; Brodal, 2010). Regulation of the cardiac system under parasympathetic
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control is commonly referred to as cardiac vagal tone (Laborde

et al., 2017). Research has connected cardiac vagal tone to the

regulation of several psychological processes (e.g., Hansen et al.,

2003; Porges, 2007; Duschek et al., 2009; Thayer et al., 2009).

According to the neurovisceral integration model (Thayer et al.,

2009), cardiac vagal tone is related to the regulation of activity in the

prefrontal cortex. Specifically, the areas of the brain responsible for

this regulation are also involved in cardiac functioning through the

vagus nerve (see Forte et al., 2019 for review). Research supporting

this theory includes the observed association of higher resting HRV,

an index of high tonic cardiac vagal tone, and increased activity in

the prefrontal cortex (Thayer et al., 2012). By contrast, hypoactive

prefrontal functioning was associated with lower resting HRV, an

index of lower tonic cardiac vagal tone (Thayer and Sternberg,

2006; Park and Thayer, 2014). Polyvagal theory similarly states

that higher cardiac vagal tone is associated with improved social

functioning and that this relationship has evolved to support fast,

resilient responses to environmental demands that allow one to

remain calm under stress (Porges, 2003). Research also showed that

changes in cardiac vagal tone in response to cognitive stressors

was associated with cognitive and emotional regulation abilities

(Obradović and Finch, 2017).

As an attestation to the connection between cognitive and

emotional control and cardiac vagal tone, stimulation of the vagus

nerve is used in the treatment of several neurologic conditions. For

instance, cervical transcutaneous vagal nerve stimulation (ctVNS)

mitigated the effects of fatigue and reduced the negative impacts

observed on arousal and multi-tasking (McIntire et al., 2021).

Vagal nerve stimulation also had several benefits to cognitive

performance, including memory and plasticity-enhancing effects;

it is postulated this effect occurs because stimulation of the vagus

nerve activates the locus coeruleus (Hulsey et al., 2017; McIntire

et al., 2021), a brainstem nucleus strongly associated with the

regulation of cognitive processes, including, arousal regulation, task

engagement, attentional processing, and affective state (Foote et al.,

1980; Aston-Jones and Bloom, 1981; Morrison and Foote, 1986;

Sara and Segal, 1991; Aston-Jones et al., 1996; Nieuwenhuis et al.,

2005; Robison and Brewer, 2022). The vagus nerve’s association

with both the brain areas that regulate prefrontal processes and

those that regulate cardiac functions may serve as a source of

the association between cardiac vagal tone and emotional and

cognitive regulation. Notwithstanding, this relationship is likely to

be complex and not fully explained by an association between a

single region or neural pathway. Several brain areas are associated

with the control of cognition and behavior (e.g., Critchley and

Harrison, 2013) with lateralized and overlapping regions identified

regarding sympathetic and parasympathetic functioning (Sturm

et al., 2018). Beissner et al. (2013) applied activation likelihood

estimation (ALE), to determine common activated regions across

imaging studies, and found both a dissociation between the

autonomic system (sympathetic and parasympathetic) and type of

task (cognitive, affective, and somatosensory-motor). The findings

of their meta-analysis contribute to the idea that dissociable brain

regions support the regulation of sympathetic and parasympathetic

functions, including cardiac vagal tone, in line with previous

research (Cannon, 1929; Recordati, 2003). Though the direct

mechanism by which the vagus nerve influences regulation of

cognitive and emotional processes is not clear, it is apparent that

cardiac vagal tone is positively associated with these processes, as it

has been observed in several domains (Forte et al., 2019).

One prominent cognitive skill people are tasked with is

monitoring information sources. Early interest in studying

prolonged attention of people came from the observed

performance degradations over time among radar operators

during World War II. Research aimed to identify an optimal

length of watch that resulted in radar operators maintaining their

attentional performance (Mackworth, 1948). It continues to be

widely studied, in large part due to the rise of automation in

the information age (Wohleber et al., 2019). Many active roles

have shifted the operator to be a passive observer, akin to radar

operators. These aforementioned roles require vigilance, or paying

attention to an information source in order to detect an infrequent

event over a lengthy period of time. The decline in event detection

and/or increase in response latency that is often experienced when

tasked with responding to rare-event stimuli is referred to as the

vigilance decrement (Parasuraman and Davies, 1976). In seminal

work by Mackworth (1948), the decrement was most prominent

after 30min in a 2-h long task, but follow-up research found it

could occur as soon as 5-min depending on task demands (e.g.,

Nuechterlein et al., 1983). In addition to studying the onset and

magnitude of the decrement (Parasuraman et al., 1987; See et al.,

1995), researchers have also investigated methods to mitigate

it, like giving observers a break from monitoring (McCormack,

1958; Bergum and Lehr, 1962; Ariga and Lleras, 2011; Helton and

Russell, 2012, 2015, 2017; Ross et al., 2014; Ralph et al., 2017).

An improved understanding of the underlying neurocognitive

and psychophysiological associations with performance in vigilance

tasks may be important to understanding the factors that

influence the vigilance decrement and its mitigating factors. The

exact mechanisms underlying the decrement are still debated.

Neuroscience findings have implicated the right prefrontal

cortex and nonadrenergic reticular formation in overall vigilance

performance (whereas brain regions associated with the temporal

decrement are not as well-known; Parasuraman, 2000), areas

associated with executive functions and arousal regulation. These

findings bolster existing theories of the vigilance decrement.

Resource theory assumes the decrement is due to the high

mental workload inherent in the task that depletes attentional

resources over time (Hitchcock et al., 1999; Grier et al., 2003;

Warm et al., 2008), whereas mindlessness theory suggests that

the monotonous nature of the task over time lulls observers into

an absent-minded state (Robertson et al., 1997; Manly et al.,

1999). Mindlessness theory has been replaced by mind-wandering

theory, which attributes the vigilance decrement to the redirection

of attention to task-unrelated thoughts—not absent-mindedness

(Smallwood and Schooler, 2006). Last, resource-control theory

attributes the decrement to a failure in executive control processes

where resources abscond away from the task and toward mind-

wandering processes (Thomson et al., 2015). While these theories

imply different mechanisms, they all agree that available cognitive

resources devoted to the task are impacted with time on task.

For the purposes of this paper, we will simplify the existing

vigilance theories as either one of task engagement that depletes

resources or one of task disengagement that redirects resources
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elsewhere. Cardiac vagal tone is used as a measure of general

cognitive and emotional regulation, so it does not further detail

engagement, disengagement, and/or the reallocation of resources.

Rather, our goal is to use cardiac vagal tone to better understand

the relationship between cognitive and emotional regulation over

time and vigilance performance. The aforementioned vigilance

theories suggest that the cognitive ability of executive control

and/or the emotional dimension of arousal may be a factor in

the vigilance decrement. Across all theories, it is widely accepted

that vigilance requires sustained attention (e.g., Mackworth, 1948;

Parasuraman and Davies, 1976; Parasuraman et al., 1987; See et al.,

1995) that draws upon available cognitive resources. According to

the circumplex model of affect, valence (i.e., pleasantness), and

arousal (i.e., alertness), are two independent neurological systems

from which all emotions arise (Russell, 1980; Posner et al., 2005).

Findings from vigilance paradigms have also shown that self-

reported measures of arousal predict overall vigilance performance

and the decrement (Shaw et al., 2010). The authors argued that

increased arousal may have enhanced the attention toward the task

and lead to improved performance. In comparison, Luna et al.

(2022) found a greater vigilance decrement in individuals who

experienced greater declines in executive control with time on

task. These, and other findings (e.g., Robison and Nguyen, 2023),

indicate both cognitive and emotional elements may underlie

vigilance, which may relate to cardiac vagal tone (Laborde et al.,

2017; Forte et al., 2019). Given that HRV can index cardiac vagal

tone, which is associated with the neural substrates that regulate

cognitive and emotional resources, both of which are proposed

to be essential elements of vigilance, it stands to reason that

cardiac vagal tone should correlate with vigilance performance. The

authors note that such a correlation would not suggest evidence for

one theory over another, but rather improve our understanding of

how resources that support vigilance may change and/or fluctuate

over time and the subsequent effect such dynamism has on

vigilance task performance.

Our overarching research goals include understanding how

cardiac vagal tone trends over the course of a vigilance task, how

it changes when participants are given a break during the task,

its relation to performance (i.e., the vigilance decrement) and/or

task load. Overall, we set out to quantify the individual differences

of cardiac vagal tone trends. Previous research found individual

differences in HRV measures over time were due to external task

demands and features (Smolders et al., 2012; Obradović and Finch,

2017; Blanck et al., 2019; Smith et al., 2019; Schwarck et al., 2021;

Spangler et al., 2021; Tung et al., 2021; Benz et al., 2022), even with

very low birth weight neonates (Padhye et al., 2009). Similarly, prior

research has shown differences in autonomic activity in response to

emotional stimuli when investigated as longitudinal trajectories—

a feature not previously found when the autonomic activity was

averaged across trials (e.g., Golland et al., 2014; Pasquini et al.,

2022). Thus, autonomic functions including cardiac vagal tone are

not likely to remain stable over long periods of time and have been

used to measure individual differences in cognitive and emotional

regulation. It should be noted that a myriad of additional variables

underlie individual differences in cardiac vagal tone (e.g., age,

sex assigned at birth, physical fitness, genetics, to name a few;

Umetani et al., 1998; De Meersman and Stein, 2007) as well as

vigilance performance (e.g., gender, personality, ability, participant

engagement, motivation, coping skills, etc.; Eysenck, 1989; Rose

et al., 2002; Matthews et al., 2010, 2017; Shaw et al., 2010; Neigel

et al., 2017, 2018; Peltier and Becker, 2017; Claypoole et al., 2018;

Teo et al., 2018; Rice and Greenlee, 2019; Robison and Nguyen,

2023). Given the exploratory nature of this investigation, we do not

further explore these factors nor do we have a priori hypotheses

on how cardiac vagal tone will trend during a vigilance task,

before and after a break, for different magnitudes of the vigilance

decrement and/or for different task loads, and if (and how) this

all depends on the individual. Rather, we aim for this work’s

contribution to predominantly be the rich source of information

that is gathered when we study psychophysiological measures as a

process for each individual participant. Not only is this important

for studying cardiac vagal tone, previous vigilance research has

also suggested the need to study vigilance and its corresponding

psychophysiological measures at the individual level, as a single,

average trajectory for the whole sample of participants may not

reflect each individual participant’s trajectory (Smith et al., 2019),

which greatly revises vigilance theory and its relevant applications.

One way to conduct this type of analysis is with a method called

growth curve modeling.

Growth curve modeling estimates trends over time based on

how each individual trends over time (Curran et al., 2010). It also

can include person-level measures, such as the magnitude of a

person’s vigilance decrement, to understand how these trends over

time are moderated. To our knowledge, cardiac vagal tone during

vigilance tasks has not been analyzed with growth curve modeling

approaches, specifically. We believe growth curve modeling will

accurately characterize how cardiac vagal tone trends over time,

the effect of individual differences, and further inform the relation

between cardiac vagal tone and the vigilance decrement. We

expect the outcome of these analyses to emphasize that each

person responds physiologically and, in turn, behaviorally, to the

vigilance task, break, and resumption of a vigilance task differently.

Importantly, we expect the growth curve models to detect and

quantify these differences, which is in stark contrast to pairwise

comparison methods. The latter cannot detect nor quantify trends

at the individual level, given they are comparing mean values that

are calculated from the entire sample of participants. In other

words, we believe that cardiac vagal tone represents dynamic

visceral functions related to cognition and requires an approach

capable of capturing temporal changes. Growth curve modeling

will not only accurately capture how cardiac vagal tone trends over

time, but also assess how meaningful and distinct individual trends

of cardiac vagal tone are during the aforementioned vigilance

task paradigm.

Though the literature investigating vigilance and its decrement

spans about 75 years, interest in the topic has not waned. There

are a growing number of workplace settings where vigilance is

embedded into the day-to-day activities of the job, such as positions

within the Transportation Security Agency, long-haul truck drivers,

and supervisory control operators in the military, to name a few.

However, these exemplary environments are still suffering from the

unintended consequences of vigilance tasks, which prompts new

research initiatives, especially ones that include new measures and

analysis techniques. The current research seeks to contribute to the
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vigilance knowledge base by exploring the changes in cardiac vagal

tone over the entire span of a vigilance task and its corresponding

relation to vigilance performance, while simultaneously studying

the dependency they both have on the individual participant.

Method

The reported data were collected as a part of one of

the author’s doctoral dissertation (Neilson, 2022). HRV and

vigilance performance data were reanalyzed to address the current

research questions.

Participants

Thirty-two volunteers from Texas Tech University, including

undergraduate and graduate students, faculty, and staff,

participated in the study (28 women; age: M = 24 years, SD

= 9 years) and were compensated $15 for their time. Participants

were required to be at least 18 years old, have normal or correct-

to-normal vision, no color vision deficits and no history of cardiac

problems that may impact physiological recordings (Berntson

et al., 1997).

Materials

Tasks and images were presented on a computer monitor, and

a standard keyboard was used to record responses and reaction

times to the vigilance task. The vigilance task was administered

through SuperLab 6 (Cedrus Corporation, 2020) software installed

on a Dell Optiplex 7050 machine. The monitors were 469.9 ×

269.88mm with screen resolution of 1,920 × 1,080. Participants

were seated about 48.5 cm from the monitor to ensure the stimuli

were presented at approximately the same visual angle.

Participants performed a 2-D sensory vigilance task (Greenlee

et al., 2015), in which they were required to monitor and respond

to changes of a simulated pressure gauge. The needle (width =

0.4 cm, 0.47◦ visual angle) on the pressure gauge (height = 5.2 cm,

6.13◦ visual angle) was positioned at 12:00 to indicate safe pressure

levels, representing a non-target that required no response. Unsafe

pressure levels were indicated by a 2.5-degree clockwise movement

of needle on the gauge, representing a target that warranted a

response. The response was a spacebar click on the keyboard. The

task involved presentation of an image of a gauge (either target

or non-target) followed by a gray screen; this was deemed one

event. Figure 1 demonstrates the difference between a target and

non-target stimuli. Task load was manipulated via the event rate

and inter-stimulus interval (see Table 1), with the target probability

set to a constant 10%. Task load was manipulated by target events

per minute (EPM) and the interstimulus interval (ISI; presentation

of the gray screen) per time block. A target event rate above 40

is more demanding (Parasuraman and Giambra, 1991; Mouloua

and Parasuraman, 1995; Rose et al., 2002) along with a variable ISI

compared to a constant ISI (MacLean et al., 2009).

Electrocardiogram (ECG) signals were collected (200Hz

sample rate) on a separate Dell Optiplex 7050 machine using

FIGURE 1

Visual representation of non-target pressure gauge (left) and target

pressure gauge (right). Adapted from Greenlee et al. (2015).

TABLE 1 Gauge monitoring vigilance task load condition.

Stimulus presentations Task load condition

Low High

Events per

block

Total events 150 500

Non-target events 135 450

Target events 15 50

Trial

presentations

Trial duration

(ms)

4,000 1,200 (mean)

Events per minute

(EPM)

15 50 (mean)

Gauge

presentation (ms)

200 200

ISI (ms) 3,800

(constant)

800, 900, 1,000, 1,100,

1,200 (varied)

the Biopac MP150 data acquisition system. Biopac AcqKnowledge

software (version 4.1.1) was used to process the ECG data and

extract R-R time intervals. Kubios Heart Rate Variability Premium

software (version 3.5.0) was used to compute HRV metrics

from the R-R time intervals. Participants were fit with three

disposable electrodes and electro-leads placed in a standard three

lead configuration on their torsos as indicated in Figure 2. ECG

data were collected continuously throughout the duration of the

experiment with event markers automatically recorded to denote

experimental time blocks.

Procedure

Upon entering the lab, participants completed a COVID

screening followed by informed consent. Participants were then

instructed to appropriately place the ECG electrodes onto

themselves with a demonstration by the researcher. Once ECG

electrodes were properly placed, a 5-min ECG baseline was
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FIGURE 2

Diagram demonstrating accurate placement of ECG electrodes.

recorded while participants focused on a black screen on the

computer monitor. Participants then completed questionnaires,

which were outside the scope of the present work, followed by

the gauge monitoring vigilance task. Participants were randomly

assigned to the High or Low Task Load Condition.

Participants were provided instructions on how to perform

the task and completed two practice sessions with feedback.

Then, participants performed three, 10-min experimental blocks

of the vigilance task. After the vigilance task, participants were

presented with a 5-min and 48 s break that involved passively

looking at nature or urban images, depending on the experimental

condition, on the computer monitor. Prior analyses demonstrated

that this break manipulation also resulted in no significant

differences (Neilson, 2022), and therefore, the data from both break

conditions were combined for the present work. A final, post-

break 10-min vigilance task was then performed. The purpose

of the post-break vigilance task was to assess whether the break

benefitted vigilance task performance, by comparing Block 3 of

the experimental vigilance task to the post-break vigilance task

(i.e., Block 4). Each vigilance task (pre and post break) was

broken down into 5-min time intervals for the HRV analyses

(further rationale provided below). Figure 3 details the timing

of the experiment. After both vigilance tasks ended, participants

completed additional questionnaires, which were also outside the

scope of the current research, removed ECG electrodes, and

were debriefed.

Data analytic approach

Behavioral data
Response latencies were trimmed to remove very fast trials that

were akin to false starts and did not represent actual responses.

Trials under 150ms were removed given the inspection of correct

responses suggested this latency was unlikely to represent actual

responses, which resulted in the removal 0.620% of trials in the

High Task Load Condition. The remaining responses were all

slower than 350ms. All of the response latencies in the Low Task

Load Condition were slower than 350ms and thus, not trimmed.

These data were processed in R (version 4.2.2; R Core Team, 2022).

ECG
The Biopac Acqknowledge software was used to determine R-R

peaks in the ECG data. The ECG data was first visually inspected

to confirm the accuracy of automatic detection of the peaks, and

manual changes were made as needed. R-R time intervals were

exported using Biopac Acqknowledge software and then imported

to Kubios for HRV computation. HRV data was analyzed in 5-

min time intervals per HRV analysis guidelines (Task Force of the

European Society of Cardiology and the North American Society

of Pacing and Electrophysiology, 1996; Berntson et al., 1997). The

Kubios automatic noise detection indicated that all signal noise

was below 5%, indicating that each 5-min segment of data had

<15 s of noise. Only three out of 320 (0.009%) 5-min segments of

data had noise within this threshold, and that data was retained.

The Kubios automatic beat correction algorithm (Lipponen and

Tarvainen, 2019) was used to identify extra, missing, or misaligned

heart beats. This algorithm removes extra heart beats and includes

missing heart beats and then recomputes the R-R interval. It also

interpolates new R-R intervals for misaligned beats (i.e., beats that

are too short or too long). Again, the threshold of 5%was used, such

that for each 5-min segment of data,<15 s included beat correction.

The R-R interval data was detrending using a smoothness priors

method and autoregressive (AR) modeling was used to compute

HRV (Laborde et al., 2017).

We computed the root mean of squared successive differences,

herein referred to as RMSSD, using Kubios. This measure computes

the root mean square of successive time differences between

heartbeats. This measure was chosen as it is a reliable measure

of cardiac vagal tone, well grounded in HRV theory, and less

influenced by respiration compared to other HRV measures

(Laborde et al., 2017; Tung et al., 2021). It was then transformed

with the natural log to satisfy the unequal variances assumption

(e.g., Prinsloo et al., 2011; Laborde et al., 2017) and other modeling

assumptions (Tung et al., 2021).

Growth curve modeling
Growth curve modeling estimates trends over time based on

how each individual person trends over time (Curran et al., 2010).

A first step is establishing a model that accurately estimates the

dependent variable’s trajectory over time; what is known as the

unconditional growth curve model. Parameters are estimated to

capture how the dependent variable is trending over time on

average and assess the amount of variability in those estimates, as

this determines if there are significant individual differences in the

parameter estimates. In this work, the unconditional growth curve

model estimates cardiac vagal tone trends during both vigilance

tasks, how they change when participants are given a break, and

any significant individual differences associated with each. Once

a best fitting unconditional growth curve model is established,

predictors can be added to understand how parameter estimates

are moderated. This model is known as a conditional growth
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FIGURE 3

Schematic of the experiment.

curve model and it is built by adding predictor(s) to specific or

all parameter estimates in the established unconditional growth

curve model. The predictors of interest for this work are change in

the sensitivity metric known as A (1A), median response latency

of hits (1HitRTMed), and task load. The conditional growth

curve models inform how vigilance performance and task load are

associated with the cardiac vagal tone trends previously established

in the unconditional growth curve model and begin to offer an

explanation on any individual differences that were observed.

All growth curve modeling related analyses were conducted in

R (version 4.0.5; R Core Team, 2021). Growth curve models

were built via multilevel modeling (i.e., mixed effects modeling,

hierarchical linear modeling, etc.; Curran et al., 2010; Hall, 2022).

Results

Behavioral performance

To verify our paradigm created a vigilance decrement as it

is traditionally defined (e.g., an ultimate, significant decline in

performance over time), we compared mean target detection rates

and response latencies across the vigilance task. For comparison

purposes, performance was broken down into four 10-min Blocks,

with Blocks 1–3 occurring before the break and Block 4 occurring

after the break. Significance was set at α = 0.05. Bonferroni

corrections were applied to account for multiple comparisons.

Target detection was calculated as A, a measure of sensitivity

(see, Zhang and Mueller, 2005). A 2 (Task Load Condition) ×

4 (Block) Analysis of Variance (ANOVA) was conducted on A.

There were main effects of Block, F(3, 90) = 4.26, p = 0.007, η2p
= 0.124 and Task Load Condition, F(1, 30) = 23.76, p < 0.001, η2p
= 0.442. The interaction was not significant, F(3, 90) = 0.89, p =

0.450, η2p = 0.029. Sensitivity was higher in Block 1 compared to

Block 3 (p= 0.022) and Block 4 (p= 0.040) and the Low Task Load

Condition outperformed the High Task Load Condition. No other

comparisons were significant.

We compared median response latencies in a 2 (Task Load

Condition) × 4 (Block) ANOVA with a Greenhouse Geiser

correction for sphericity. There were main effects of Block,

TABLE 2 Summary of the vigilance performance results.

Measure Block Task load condition

High task
load M

(SD)

Low task
load M

(SD)

Target sensitivity (A) Block 1 0.86 (0.03) 0.94 (0.05)

Block 2 0.84 (0.04) 0.92 (0.06)

Block 3 0.84 (0.03) 0.91 (0.07)

Block 4 0.85 (0.04) 0.91 (0.06)

Avg. median response

latency (ms)

Block 1 636 (66) 702 (93)

Block 2 660 (59) 743 (119)

Block 3 673 (75) 770 (128)

Block 4 642 (86) 745 (103)

F(2, 61.85) = 3.33, p = 0.043, η2p = 0.097 and Task Load Condition,

F(1, 31) = 10.94, p = 0.002, η2p = 0.261, showing faster latencies

in the High Task Load Condition compared to the Low Task

Load Condition. The interaction was not significant, F(2, 61.85) =

0.50, p = 0.610, η2p = 0.016. Follow-up pairwise comparisons

between Block with Bonferroni correction revealed moderately

slower latencies in Block 3 than Block 1, t(32) = −2.75, p = 0.058.

There were no statistically significant differences (p > 0.05 for all

comparisons). Table 2 summarizes these findings.

Growth curve modeling of cardiac vagal
tone

Unconditional and conditional growth curve models are

defined by their fixed and random effects. In this work, fixed

effects are parameter estimates for the “average participant” in the

sample and there is only one estimated value for all participants

in the sample. Specifically, the fixed effects estimated how cardiac

vagal tone (i.e., the natural logarithm of RMSSD) trended over
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the course of the different experimental blocks (see Figure 3).

Random effects estimate the parameter for each participant, which

in turn quantifies the variability associated with the fixed effect

parameter estimate. With model comparisons, we assess if that

variance is significantly >0. If so, then that parameter is said

to be a random effect, which means each individual participant

has their own, unique estimate for that parameter. In total,

random effects suggest there is evidence of significant individual

differences for that parameter, meaning a fixed effect parameter

is not a sufficient characterization of the dependent variable

(Mirman, 2014). In this work, random effects were implemented

to assess the presence of individual differences in cardiac vagal

tone trends over the course of a vigilance task, break, and post-

break vigilance task. In growth curve modeling, fixed and random

effects consist of time slopes, which in this work, were composed

of the consecutive 5-min time periods throughout the experiment.

All models included piecewise time slopes because the experiment

had a priori demarcations (i.e., baseline, the vigilance task, the

break, and the post-break vigilance task). The slopes were centered

on the first time period (T1), which was when baseline cardiac

vagal tone was measured, making this the intercept parameter of

all estimated models. All growth curve models were modeled as

a general linear multilevel model and built with R packages lme4

(Bates et al., 2015) and nlme (Pinheiro et al., 2023) as needed.

The degrees of freedom and the corresponding p-values for each

parameter estimate in the general linear multilevel models relied

on Satterthwaite’s method (via the R package lmerTest). In the

interest of brevity, the likelihood ratio test results for each model

compared are reported, but only the details from the best fitting

growth curve model are thoroughly discussed. All pertinent details

about the growth curve modeling process can be reviewed in the

link that is provided in the Supplementary material. Both Task Load

Conditions were modeled in a single model given the spaghetti

plot did not show a clear separation between the two, as seen in

Figure 4.

One participant (Participant 32) was removed from the analysis

given nearly impossible and nonvarying RMSSD values (see the line

that is nearly flat across the entire session at the bottom of Figure 4).

No other outliers were detected. The intraclass correlation (as

calculated from an empty means, random intercept only model)

was 0.830 [−21LL(∼1) = 423.37, p < 0.001], indicating that

83.0% of the RMSSD variance was due to person mean differences

(i.e., random intercept variation), whereas 17.0% was due to

within-person residual variation over time. This led to including

a random intercept in all subsequent models. Several versions

of unconditional growth curve models were estimated. Model

selection was done via a maximal model, backwards-selection

approach, meaning the most maximal model feasible was fit

and iteratively compared to less maximal models. This approach

minimized Type I error rates while maintaining maximal power

(Barr et al., 2013; Matuschek et al., 2017). The basis of the most

maximal model was the saturated means, unstructured variance

model (Hoffman, 2015, p. 124). The most maximal model was then

compared to a lessmaximalmodel (e.g., one with a reduced random

effects structure), which in this work means reducing a time slope

from a random effect to a fixed effect (see Barr et al., 2013 for

more details). The significance of fixed effects was evaluated via

their Wald test p-values, and the significance of random effects was

evaluated via −21LL tests (i.e., likelihood ratio tests using degrees

of freedom equal to the difference in the number of estimated

parameters), with significance set at α = 0.05. To compare non-

nested models, the Bayesian information criteria (BIC) was used.

All models were fitted with restricted maximum likelihood (REML)

estimation unless their BIC values needed to be compared, then

the model was refitted with maximum likelihood (ML) estimation.

Singular models (i.e., models where the variance of at least one

random effect was estimated as non-positive) were not considered

as the likelihood of the model is no longer comparable (Hoffman,

2015, p. 198), Rather, the random effects structure of singular

models was reduced and refit for comparison. To describe the

size of the random variation around each effect, 95% confidence

intervals were computed as: fixed effect ±1.96 × SQRT (random

variance). Finally, the within-person residual variance was specified

as constant over time with no residual covariance over time after

accounting for any between-person random effects variances and

covariances in all models.

Unconditional growth curve model
Originally, there were five piecewise slopes in the unconditional

growth curve model that map to the different parts of the

experiment (see Figure 3). Specifically, they consisted of the

following: T1–T2 (baseline and the first time period in the Block

1), T2–T7 (Blocks 1–3 of the vigilance task), T7–T8 (the last time

period in the vigilance task and the break), T8–T9 (the break and

the first time period in Block 4), and T9–T10 (Block 4). Figure 5

shows the estimated marginal means at each time period based on

the saturated means, unstructured variance model.

Figure 5 depicts a general increase in RMSSD over the course

of the experiment, one where the rate was increased upon starting

the vigilance task (T1–T2), during the latter part of it (i.e., T4–T7),

and then finally again during the post-break vigilance task (T9–

T10). Therefore, the maximal growth curve model is a random time

slope model, meaning all piecewise time slopes and the intercept

are estimated as random effects. Also, per the estimated marginal

means at each time period of the saturated means, unstructured

variance model, both a random linear and quadratic slope was

estimated for T2–T7. However, this model was singular, so it was

not considered for comparison. The most maximal, non-singular

model consisted of having a fixed quadratic time slope for T2–T7,

a fixed linear time slope for T9–T10, with all else being random

time slopes, and a random intercept. Therefore, this model was

used as the baseline model for the backwards selection process,

where the goal was to see if a more parsimonious model was a

significantly worse fit. Each of the remaining random time slopes

were individually removed and compared to this model via a

−21LL test. Making the slope for T7–T8 a fixed effect did not

significantly worsen model fit [−21LL(∼5) = 4.482, p = 0.482].

Reducing any other random time slopes either led to a singular

model or significantly worse model fit (all p < 0.007). Given it

was more parsimonious and not a significantly worst fit, the new

baselinemodel was one with a fixed quadratic time slope for T2–T7,

a fixed linear time slope for T7–T8, a fixed linear time slope for T9–

T10, all else as random time slopes/effects. Reducing any other time

slope led to significantly worse model fit (p < 0.004). There was no

significant difference between the predicted means over time of this

model and that given by the saturatedmeans, unstructured variance
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FIGURE 4

Spaghetti plot of all 32 participants across both low and high task load. Just as detailed in Figure 3, T1 was the 5-min baseline, T2–T7 are the six,

5-min time periods in the vigilance task (two time periods per block), T8 was the first 5min of the break, and T9–T10 were the two, 5-min timepoints

in the post-break vigilance task.

FIGURE 5

Estimated marginal means of a saturated means, unstructured variance model for cardiac vagal tone. It is estimating a non-monotonic increase in

cardiac vagal tone, on average, over the course of the vigilance task, break, and post-break vigilance task.

model [F(3, 180) = 0.228, p = 0.877], but there was a difference in

its predicted variance over time (−21LL = 73.103, p = 0.004). In

an attempt to better match the model of the variance estimated by

the saturated means, unstructured variance model, several slight

variations of the previous model were fit. Specifically, the piecewise

slope for T2–T7 was broken up into two different piecewise time

slopes (e.g., a model with all the original piecewise time slopes,

but now slope T2–T7 had one slope for T2–T3 and then another

slope for T3–T7; another model that was identical to the above,

except now the two slopes for T2–T7 was a slope for T2–T4 and a

slope fromT4–T7, etc.). This investigation led to two unconditional

growth curve models where the model for the means and the model

for the variance did not significantly differ fromwhat was estimated

by the saturated means, unstructured variance model (all p> 0.05):

1. An unconditional growth curve model that had a random time

slope for T1–T2, a random quadratic and linear time slope for

T2–T6, a random time slope for T8–T9, a fixed time slope for

T6–T7, a fixed time slope for T7–T8, and a fixed time slope for

T9–T10 [F(2, 179.999) = 0.073, p = 0.930; −21LL = 50.854, p

= 0.097].

2. An unconditional growth curve model that had a random time

slope for T1–T2, a random quadratic time slope for T5–T7, a

random time slope T8–T9, a fixed time slope T2–T5, a fixed time

slope T7–T8, and a fixed time slope for T9–T10 [F(2, 150.502) =

0.201, p= 0.818;−21LL= 46.415, p= 0.193].

Figure 6 presents the model of the means for these two models

and how they compare to the saturated means, unstructured

variance model.

To determine the final unconditional growth curve model, BIC

values were compared, which required refitting these two models

with maximum likelihood estimation. The unconditional growth

curve model that had a random time slope for T1–T2, a random
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FIGURE 6

Estimated means of each unconditional growth curve model that was compared to the saturated means, unstructured variance model for cardiac

vagal tone (i.e., the natural log of RMSSD). All models estimate an increase in cardiac vagal tone, on average, but the rate and timing at which it

increases di�ers.

TABLE 3 Parameter estimates of the best fitting growth curve model

(random T1–T2 time slope, random quadratic T5–T7 time slope, random

T8–T9 time slope, fixed T2–T5, T7–T8, and T9–T10 time slope).

Parameter Parameter estimate
(SE)

Baseline cardiac vagal tone (β0i) 3.301∗∗∗ (0.082)

T1–T2 time slope (β1i) 0.060 (0.056)

T2–T5 time slope (β2) 0.007 (0.008)

Instantaneous linear T5–T7 time slope (β3i) 0.014 (0.072)

T5–T7 quadratic time slope (β4i) 0.019 (0.031)

T7–T8 time slope (β5) 0.006 (0.025)

T8–T9 time slope (β6i) 0.047 (0.036)

T9–T10 time slope (β7) 0.031 (0.025)

Baseline cardiac vagal tone variance (τ 2
U0
) 0.19692

T1–T2 time slope variance 0.07898

Instantaneous linear T5–T7 time slope variance 0.10142

Quadratic T5–T7 time slope variance 0.01532

T8–T9 time slope variance 0.01966

Residual variance (σ 2
e ) 0.01003

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05.

quadratic time slope for T5–T7, a random time slope T8–T9, a

fixed time slope T2–T5, a fixed time slope T7–T8, a fixed time

slope for T9–T10 had the smaller BIC (BIC=−116.751) compared

to the other, aforementioned model (BIC = −112.221), so it was

designated as the final unconditional growth curve model, with its

summary information is provided in Table 3.

Per Wald t-tests, none of the fixed time slope estimates were

significant (all p > 0.05). The interpretation of this finding depends

on whether the specific time slope was a significant random effect

or not. For the fixed time slopes (i.e., the slopes between, T2–

T5, T7–T8, and T9–T10) the non-significant fixed effect suggests

a lack of evidence that cardiac vagal tone changed significantly

over these time periods. However, for the four time slopes that

were significant random effects (i.e., the time slope between T1–

T2) the quadratic and linear time slope between T5–T7, and the

time slope between T8–T9, the non-significant fixed effect estimates

could be due to the fact that they were significant random effects.

Recall, a significant random effect means the variability associated

with the fixed effect estimate is significantly>0. Given the equation

for the Wald test statistic (see Hoffman, 2015, p. 36), the lack of

significance for the fixed effect may be due to the fact that the

variance is (relatively) large. Also, given the fixed effect estimate

is based on the “average participant,” if the parameter estimates

for each individual is distributed above and below zero rather

equally, then the fixed effect estimate will converge to or near zero,

which is what a Wald test is assessing (i.e., the probability the

estimate is significantly different than zero given its distribution).

Regardless, a significant random effect suggests a single estimate

for all individuals may not accurately capture the trend for each

individual (i.e., there is evidence of individual differences for the

given parameter estimate). This can be assessed by evaluating the

95% confidence interval (CI) for each significant random effect.

First, the 95% CI for the intercept was (2.431, 4.170), which means

the 95% CI for baseline RMSSD was (11.368, 64.740) ms. The 95%

CI for the four random time slopes were (−0.491, 0.610) for the T1–

T2 slope, (−0.611, 0.638) for the linear T5–T7 slope (−0.223, 0.262)

for the quadratic T5–T7 slope, and (−0.228, 0.322) for the T8–T9

slope. These CIs show how cardiac vagal tone trends during these

time periods varied greatly across participants, as all the CIs suggest

some participants’ cardiac vagal tone was estimated to increase

while for others it was estimated to decrease during the same time

period(s). Figure 7A shows the unconditional growth curve model

for three participants whose estimated trajectories greatly varied

and Figure 7B shows this estimate for all of the 31 participants.

Conditional growth curve model
In order to understand how the unconditional growth curve

model related to performance and task load, these measures were

evaluated as time-invariant predictors in the model. A time-

invariant predictor is a measure of the individual that is not

expected to change over time and/or is only reliably measured
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FIGURE 7

The estimated unconditional growth curves for (A) three participants whose estimated unconditional growth curve model are particularly di�erent

than (B) all participants.

once throughout an experiment (Hoffman, 2015, p. 282). The latter

served as the present rationale. Of specific interest was to assess

if these measures could account for the variability estimated for

the random time slopes in the unconditional growth curve model

of cardiac vagal tone. This consisted of adding these measures

as (mean-centered) time-invariant predictors to the intercept and

specific time slopes and assessing if they accounted for significantly

more variance than the unconditional growth curve model, as

quantified by a change in Total R2. The significance of this change

was assessed with a multivariate Wald test where degrees of

freedom were corrected with Satterthwaite’s method (α = 0.10;

Mathieu et al., 2012; Gries, 2021; Voeten, 2021).

To understand if any of the trends in cardiac vagal tone were

moderated by the magnitude of the vigilance decrement (i.e., the

change in performance from Block 1 to Block 3), we added 1A

as a time-invariant predictor to the intercept and all the piecewise

time slopes in the unconditional growth curve model established

above [1A from Block 1 to Block 3;M = 0.024, SD= 0.043, range:

(−0.0466, 0.174)]. A multivariate Wald test found a significant

omnibus effect, F(8, 51.195) = 2.319, p = 0.033, specifically, the

magnitude1 of the vigilance decrement significantly moderated the

intercept (i.e., baseline cardiac vagal tone; p= 0.037), the time slope

between T1–T2 (p= 0.023), and the time slope between T7–T8 (p=

0.012). There was no evidence that 1A significantly moderated any

other time slopes (p> 0.10). For a vigilance decrement that was one

standard deviation worse than average, baseline cardiac vagal tone

1 For this measure, positive values indicate a decrement in performance

given the formula for this measure was: 1A = A for Block 1 – A for Block

3. A performance decrement was observed for 2/3 of participants.

(i.e., its value at T1) was larger by 0.171, the time slope from T1–

T2 decreased more by 1.266, and the slope from T7–T8 decreased

more by 0.649. The Total R2 for this model was 0.081, which was

more than double that of the unconditional growth curve model

(total R2 of unconditional growth curve model = 0.039). Table 4

has this model’s parameter estimates and Figure 8 illustrates how

different vigilance decrements moderated cardiac vagal tone over

the course of the entire experiment for those with above average

decrement (worse performance), below average decrement (better

than average), and mean decrement.

To understand if any of the trends in cardiac vagal tone

were moderated by the change in the speed of correct responses

throughout the vigilance task, we added the change in median

response time of hits from Block 1 to Block 3 as a time-invariant

predictor to the intercept and all of the piecewise time slope in the

unconditional growth curve model established above [1HitRTMed

between Block 1 and Block 32;M =−49.600ms, SD= 113.366ms,

range: (−441ms, 193ms)]. A multivariate Wald test found no

significant omnibus effect, F(8, 51.451) = 0.899, p= 0.524, suggesting

this decrement (i.e., slowed responding) during the vigilance task

did not moderate the growth curve model.

To understand if the trends in cardiac vagal tone immediately

before, during, and after the break were moderated by how much

the vigilance decrement was mitigated by the break, 1A between

Block 3 and Block 4 was added as a time-invariant predictor to the

2 For this measure, negative values indicate a decrement in response time

given the formula for this measure was: 1HitRTMed=Median response time

for Block 1 – Median response time for Block 3. A decrement in median

response time was found for 1/2 of participants.
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TABLE 4 Parameter estimates of the conditional growth curve model that

has the change in A as a time-invariant predictor.

Parameter (by level) Parameter estimate
(SE)

Baseline cardiac vagal tone (β0i)

Baseline cardiac vagal tone (γ 00) 3.301∗∗∗ (0.077)

1A (γ 01) 4.012∗ (1.837)

T1–T2 time slope (β1i)

T1–T2 slope (γ 10) 0.060∗ (0.052)

T1–T2 slope× 1A (γ 11) −2.971∗ (1.240)

T2–T5 time slope (β2)

T2–T5 slope (γ 20) 0.007 (0.008)

T2–T5 slope× 1A (γ 21) 0.079 (0.189)

Instantaneous T5–T7 time slope (β3i)

T5–T7 slope (γ 30) 0.013 (0.070)

T5–T7 slope× 1A (γ 31) 1.871 (1.679)

Quadratic T5–T7 time slope (β4i)

T5–T7 slope (γ 40) 0.019 (0.030)

T5–T7 slope× 1A (γ 41) −0.538 (0.726)

T7–T8 time slope (β5)

T7–T8 slope (γ 50) 0.006 (0.025)

T7–T8 slope× 1A (γ 51) −1.522∗ (0.599)

T8–T9 time slope (β6i)

T8–T9 slope (γ 60) 0.047 (0.036)

T8–T9 slope× 1A (γ 61) 0.317 (0.854)

T9–T10 time slope (β7)

T9–T10 slope (γ 70) 0.031 (0.025)

T9–T10 slope× 1A (γ 71) −0.378 (0.599)

Baseline cardiac vagal tone variance (τ 2
U0
) 0.174

T1–T2 time slope variance 0.067

Instantaneous linear T5–T7 time slope

variance

0.097

Quadratic T5–T7 time slope variance 0.015

T8–T9 time slope variance 0.020

Residual variance (σ 2
e ) 0.010

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05.

intercept and the T5–T7, T7–T8, T8–T9, and T9–10 time slopes

in the unconditional growth curve model established above [1A

between Block 3 and Block 43; M = −0.001, SD = 0.035, range:

(−0.071, 0.092)]. A multivariate Wald test found no significant

omnibus effect, F(6, 52.515) = 1.522, p= 0.189, suggesting the change

in cardiac vagal tone that happens between Block 3, the break, and

3 For this measure, positive values indicate a decrement in sensitivity

performance given the formula for this measure was: 1A = A for Block 3

– A for Block 4. A performance decrement was observed for about ½ of

the participants.

Block 4 was not moderated by how much the vigilance decrement

was mitigated between Block 3 and Block 4.

To understand if the trends in cardiac vagal tone immediately

before, during, and after the break were moderated by how much

the vigilance decrement was mitigated by the break, the change

in median response time of hits between Block 3 and Block 4 was

added as a time-invariant predictor to the intercept and the T5–T7,

T7–T8, T8–T9, and T9–10 time slopes in the unconditional growth

curve model established above [1HitRTMed between Block 3 and

Block 44; M = 25.100ms, SD = 107.130ms, range: (−173.5,302)].

A multivariate Wald test found no significant omnibus effect,

F(6, 45.896) = 1.23, p = 0.309, suggesting the change in cardiac

vagal tone that happens in Block 3, the break, and Block 4 was

not moderated by the change in hit median response time between

Block 3 and Block 4.

Finally, to understand if task load moderated any of the trends

in cardiac vagal tone, Task Load Condition was added as a time-

invariant predictor to the intercept and to each piecewise time

slope in the unconditional growth curvemodel established above. A

multivariate Wald test found no significant omnibus effect of Task

Load Condition, F(8, 51.112) = 1.563, p = 0.161, further supporting

our initial assumption that cardiac vagal tone trends were not

moderated by task load.

Discussion

The goal of the present work was to explore the changes in

cardiac vagal tone over the entire span of a vigilance task and

its corresponding relation to performance, while simultaneously

studying the dependency they both have on the individual

participant. Our goals were exploratory in nature given the

dearth of research that studies cardiac vagal tone during a

vigilance task. In summary, our current results suggest cardiac

vagal tone during vigilance is non-monotonic, individualistic,

and associated with vigilance task performance. However, it

seems cardiac vagal tone does not fully explain performance

nor its competing theories. Although exploratory in nature,

these results benefit the knowledge base as they start to

better inform the applicability of existing theory and potential

ways to revise it. They also start to inform how to develop

individualized, psychophysiological-based countermeasures to the

vigilance decrement in an operational setting. We discuss our

present findings in detail with a focus on the interpretation of the

growth curve modeling results and their subsequent impact on

theory and application.

Performance

To confirm our manipulation produced a vigilance decrement,

we analyzed average performance across the experimental blocks.

We found evidence of a vigilance decrement in both measures

4 For this measure, negative values indicate a decrement in response time

performance given the formula for this measure was: 1HitRTMed = Median

response time for Block 3 – Median response time for Block 4. A decrement

in median response time was found for about 2/3 of participants.
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of sensitivity and decision speed during the vigilance task. This

suggests our experimental design replicated the typical, temporal-

based decline in performance observed during a vigilance task.

An examination of performance for each individual from Block

1 to Block 3 showed a number of participants (one third to

two thirds of the sample) improved in performance rather than

worsened. Similarly, comparing performance from Block 3 to Block

4 showed about half to two-thirds of participants improved in

sensitivity or latency from the break. Importantly, these findings

were not captured when comparing. These types of variations in

performance have been previously observed (Aue et al., 2009; Smith

et al., 2019). Albeit descriptive and ad hoc, this is evidence that

aggregated trends may not accurately represent all, or in some

cases, the majority of participants. This further substantiates our

claim that performance during a vigilance task should be analyzed

at an individual level and this should be the focus of future

work. Presently, these variations in performance strengthen our

conditional growth curve modeling analysis because having diverse

values for a given predictor increases our understanding on how a

vigilance decrement moderates a growth curve model.

Unconditional growth curve modeling

As a reminder, the unconditional growth curve model in this

work estimated how cardiac vagal tone trends over the course of

a vigilance task, a break, its resumption of and its corresponding

dependency on the individual participant—all of which were

our overarching research goals. Upon reviewing the magnitude,

direction, timing, and associated variability of the time slope

estimates in the final unconditional growth curve model, it is

clear cardiac vagal tone trends differ depending on (1) the person,

(2) the immediate task demands (i.e., time period within the

vigilance task and the break), (3) time-on-task, and (4) the person’s

vigilance decrement.

Immediate task demands
The statistical significance of a random intercept suggests

baseline cardiac vagal tone is unique to each person (i.e., an

individual difference). This was not a surprising result (Magnon

et al., 2022), but for the remaining random time slopes, this is

novel, insightful, and informative for understanding the way in

which cardiac vagal tone trends during a vigilance task, break, and

post-break vigilance task. In short, the way in which cardiac vagal

tone trends during certain time periods depends on the participant

and does not change significantly otherwise. For example, the

significant random time slope that spans from baseline to the

first 5min of the vigilance task and the significant random time

slope that spans from the break to the first 5min of the post-

break vigilance task were followed by non-significant fixed time

slopes. In other words, an individual’s cognitive and emotional

regulation within the first 5min of the task remained for some

portion of the task. However, this trend did not persist for its entire

duration. Cardiac vagal tone in the latter parts of the vigilance task

were dependent upon the individual and did not converge at the

group level until the onset of the break. This was supported by the

finding of a random quadratic time slope for the final 10min of the

vigilance task. We discuss this finding further in the next section

(Time-on-task) to better understand the effect time-on-task had on

cardiac vagal tone.

To understand the effect of the break, we examine the non-

significant fixed time slope between the last 5min of Block 3 and

the break and the random time slope between the break to the

first 5min of Block 4. The former suggests there is no evidence

that cardiac vagal tone changed during the break. Previous research

found a performance benefit from a break and suggests it was

due to cognitive resource recovery (McCormack, 1958; Bergum

and Lehr, 1962; Ariga and Lleras, 2011; Helton and Russell, 2012,

2015, 2017; Ross et al., 2014; Ralph et al., 2017). If a break

allowed cognitive resources to replenish, we would expect cardiac

vagal tone to increase, indicating an increase in parasympathetic

nervous system activity and thus, a recovery in cognitive and

emotional resource regulation. Therefore, at first glance, these

results do not align with previous research. However, the time slope

between the break to the first 5min of Block 4 was a random

effect, indicating it differed across individuals (i.e., cardiac vagal

tone increased, decreased, or stayed the same depending on the

individual participant). This finding suggests that the effect of the

break depends on the individual. In addition, the parasympathetic

activity of interest may happen on a time scale that is shorter than

5min and therefore was undetected in this analysis and/or only

happens for some individuals and not all. The latter is supported by

our descriptive, ad hoc investigation of performance, as we found

½ to 1/3 of participants potentially do not benefit from the break

as their performance from Block 3 to Block 4 did not improve.

Future work should further explore this by either analyzing indices

of cardiac vagal tone on shorter time scales (e.g., some suggest

HRV recordings of 1min are sufficient; Laborde et al., 2017) and/or

increase the duration of the break and study longitudinal cardiac

vagal tone trends during this period specifically.

Time-on-task
Cardiac vagal tone did not monotonically change with time-on-

task, rather it changed at particular time points in the experiment.

Some of these changes coincided with the different phases of

the experiment (Blocks 1–3, the break, Block 4), whereas some

did not. More interestingly, the way in which cardiac vagal tone

changed was dependent on the participant. For example, the

best fitting growth curve model had two separate piecewise time

slopes during the vigilance task, which means a singular slope

estimate for the entire vigilance task (i.e., Blocks 1–3) was not

sufficient in characterizing how cardiac vagal tone trended over

time. Specifically, cardiac vagal tone during the first 20min of

the vigilance task was estimated by one, fixed linear piecewise

slope, suggesting each participant’s cardiac vagal tone trended the

same for this length of time. However, for the last 10min of the

vigilance task a separate, random quadratic piecewise slope was

necessary. Importantly, this specific piecewise slope was unique

to the individual, meaning that the change in cardiac vagal

tone differed in direction and/or steepness for each participant.

This finding aligns with previous work that also found non-

monotonic and inconsistent changes in psychophysiology during
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FIGURE 8

The estimated conditional growth curve for the average vigilance decrement observed, as well as 1 standard deviation above and below it,

respectively.

a vigilance task (Smith et al., 2019). Although it does not further

disentangle theories of task engagement or disengagement, it

does suggest that the decrement depends on the individual. In

some cases, it could be that some individuals might be able to

maintain engagement for the entire experiment, whereas others

may disengage or have increasing task-unrelated thoughts, as

explained by resource-control and/or mind-wandering theories.

Alternatively, some individuals may have the cognitive resources

to maintain performance whereas others do not, as explained by

resource theory. Our current analysis cannot currently specify this,

but future work should investigate further with other experimental

manipulations and time-based, person-level measures and analyses

as it seems cognitive and emotional regulation are essential to

completing a vigilance task.

Conditional growth curve modeling

Performance and task load
To this point, we have discussed how cardiac vagal tone trends

across the vigilance task, but we have yet to discuss how these

trends are associated with its performance. The conditional growth

curve model that included a vigilance decrement (specifically 1A)

between Block 1 and Block 3 was a significant moderator on cardiac

vagal tone trends and its effect was noteworthy as the amount of

variance accounted for doubled. It specifically indicated that the

vigilance decrement was associated with three aspects of the growth

curve: (1) baseline cardiac vagal tone, (2) the change from baseline

to the first 5min of the vigilance task and, unexpectedly, (3) the

change from the last 5min of the vigilance task to the break. The

vigilance decrement was not a significant moderator of cardiac

vagal tone during the middle 20min of vigilance task, its change

after the break, nor during the post-break vigilance task.

Overall, the conditional growth curve model suggested those

with a larger than average vigilance decrement (i.e., worse

performance decline) had a higher cardiac vagal tone at baseline,

a steeper decrease in cardiac vagal tone when starting the vigilance

task, (i.e., starting Block 1) as well as a steeper decrease in cardiac

vagal tone from the last 5min of the vigilance task (i.e., the end

of Block 3) to starting the break, with the changes in cardiac

vagal tone being reversed with a smaller than average vigilance

decrement. Evidently, the vigilance decrement is associated not

only with baseline cardiac vagal tone, but also how much it

changes once starting and stopping a vigilance task. Although all

novel, it is particularly interesting that higher baseline cardiac

vagal tone, thought to indicate better cognitive and emotional

regulation (Porges, 2003; Thayer et al., 2012), was associated

with a larger vigilance decrement, however, Laborde et al. (2017)

point out that the relationship between those with high and

low vagal tone may be different depending on when HRV was

measured (e.g., at rest or during the task). Matthews et al. (2010)

found pre-task engagement predicted cerebral blood flow response

during the vigilance task. They suggested that pre-task engagement

represented “a state of readiness for resource mobilization.” Recent

research similarly found children with higher working memory

capacities showed higher initial cardiac vagal tone followed by

greater withdrawal compared to those with lower working memory

capacities who demonstrated lower initial cardiac vagal tone and

subsequent augmentation in cardiac vagal tone. These authors

made a comparable argument to that of Matthews et al. (2010)

suggesting the trends in cardiac vagal tone better prepared the high

working memory group for cognitive tasks and allowed improved

maintenance of arousal during task engagement (Obradović and

Finch, 2017). These findings align with polyvagal theory (Porges,

2003) and neurovisceral integration theory (Thayer et al., 2009).

However, our findings of larger baseline cardiac vagal tone being

associated with poorer vigilance performance may be due to

differences in our experimental design. Unlike Matthews et al.

(2010), we measured changes in cardiac vagal tone instead of

changes in cerebral blood flow, which may capture related, but

different cognitive processes. Additionally, Obradović and Finch

(2017) assessed changes in cardiac vagal tone in children across

eight, 30-s epochs, which was much shorter than our vigilance

task paradigm. The differences in population (children vs. adults)
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and task duration (4 vs. 45.8min) may account for differences in

our findings. This further emphasizes the need for future research

to better understand the relationship between cardiac vagal tone,

cognitive and emotional regulation, and vigilance performance.

The vigilance decrement was not a significant moderator of

cardiac vagal tone during the vigilance task, its change after the

break, or during the post-break vigilance task. This is interesting

because this differs from the relationship observed between cerebral

blood flow and vigilance performance (Tripp and Warm, 2007;

Shaw et al., 2009, 2013). Also, task load was not found to be

a significant moderator of the growth curve model of cardiac

vagal tone. This further supports the notion that these two

psychophysiological processes may not be measuring the same

construct and furthers the call for vigilance research to study

measures on the individual level. Collectively, these findings

support the concept that cognitive and emotional regulation during

a task is a process and how psychophysiological measures manifest

during these phases may impact behavioral outcomes. Obradović

and Finch (2017) define three distinct phases of said process: an

initial arousal, reactivity, and recovery phase. We specifically found

evidence that a person’s initial physiological state, physiological

reaction to starting a vigilance task, and recovery from it is

more indicative of how they are going to perform than the

psychophysiology during the task or its respective task load. Our

phases were defined post hoc, but our results suggest this cycle

may be happening for some individuals during the vigilance task.

Undoubtedly, further work is needed to replicate these results,

but regardless, it is evident that cardiac vagal tone is a highly

individualized process and is partially indicative of how a person

will perform in a vigilance task. Not only will this further the

psychophysiological knowledgebase, but also help to address the

previously discussed shortcomings in vigilance theory.

Impact current results have on theory and
applications

Our work does not disentangle existing theories of vigilance, as

our goal was to explore a potential relationship between individual

differences in cardiac vagal tone trends and its association with

vigilance task performance. The current findings suggest cardiac

vagal tone and its changes across different time periods of

a vigilance task are informative on a person’s vigilance task

performance. In general, this finding further supports the notion

that physiological responses during a cognitive task are highly

individualized (Obradović and Finch, 2017). We argue this work

provides evidence to revise vigilance theory to place a stronger

emphasis on the role of individual differences and calls for analysis

methods to analyze temporal data properly. Simultaneously,

this work demonstrates how aggregated analyses obscure the

uniqueness of each individual’s functioning and changes in

performance over time. Individual differences in vigilance tasks

have been previously observed, somewhat consistently, but its

rationale has not been well-explained. This work may serve as

a catalyst to better understand why individual differences exist—

they are due to the highly individualistic nature of cognitive and

emotional regulation.

On amore applicable level, this suggests that measuring cardiac

vagal tone prior to starting any vigilance task may be an indicator

of how someone is going to perform in that environment. This is in

line with the individualistic nature of vigilance task performance;

however, our findings further suggest this may serve as a potential

way to screen and predict how people will perform in vigilance

tasks. Further, understanding how cardiac vagal tone changes upon

starting a vigilance task may also be indicative of the severity

(let alone presence of) a vigilance decrement, which is arguably

easier to apply in real-life settings than determining thresholds of

baseline cardiac vagal tone, as the former only requires detecting

the directional change of cardiac vagal tone once starting a vigilance

task. For example, it may be advantageous to stop a person from

completing a vigilance task if their cardiac vagal tone declines

rapidly at the onset of the task, which can be done administratively

(e.g., job rotations) and/or with adaptive technology (e.g., decision

aids, automation, etc.).

Finally, although there were no performance differences due to

the break, on average, (i.e., performance was not better between

Block 3 and Block 4), the breakmay have functionality in predicting

the magnitude of the vigilance decrement, as those with a larger

than average vigilance decrement before the break were predicted

to have a steeper decline in cardiac vagal tone upon starting the

break. It may be that worse performance on the task was due to

greater decline in cognitive and emotion regulation, which may

impact the ability to complete the vigilance task. Future research

needs to better understand the vigilance decrement-cardiac vagal

tone relationship, specifically if cardiac vagal tone is reflecting

cognitive regulation, emotional regulation, or some combination

of both during vigilance performance. Additionally, a break may

not be beneficial if someone is not using it to actively regulate

the cognitive and/or emotional resources that are necessary to

complete a vigilance task. Further supporting this notion is the

random time slope between the end of the break and starting

Block 4. This random time slope could be capturing the different

approaches participants took during the break, resulting in their

cardiac vagal tone trajectory to differ upon returning to a vigilance

task. This information would not have been known without growth

curve modeling because pairwise comparisons would not have

captured the dynamic, individual nature of these changes. In fact, it

may have reported that, on average, there was no change in cardiac

vagal tone upon resuming a vigilance task from a break—which

has very different implications to what was observed with growth

curve modeling.

Limitations and future work

It is interesting that the vigilance decrement did not

significantly moderate the random time slope in Block 3 nor the

random time slope from ending the break to starting Block 4. There

are several potential reasons for this: (1) the performance measures

that were used in this investigation (A and median response time

of hits) are not the best indicators of these respective changes in

cardiac vagal tone; (2) the time scale these measures were calculated

on was not resolute enough, as they were calculated on a block

basis not a time period basis; and/or, (3) it could be the variability
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in these random time slopes is better moderated by measures of

engagement, fatigue, and/or other individual differences measures

previously mentioned in the introduction. Nevertheless, the

vigilance decrement was a significant moderator of how cardiac

vagal tone changed once starting and stopping a vigilance task,

suggesting the latter is the most probable explanation. This further

supports the notion that psychophysiological measures need to be

modeled over time given they are process-based measures. Future

research should explore if more granular analyses are warranted

to understand if vagal tone changes occur more frequently than

every 5min in line with research finding changes in other

measures of autonomic functioning at smaller time scales (e.g.,

Golland et al., 2014; Pasquini et al., 2022). Even though 5min

is thought to be the minimum amount of time necessary for an

accurate HRV measure, other work finds reliable estimates for

shorter time periods (Laborde et al., 2017; Tung et al., 2021).

Future work should continue to explore the relationship between

baseline cardiac vagal tone and the vigilance decrement, especially

in the context of theories relating pre-task engagement to the

decrement (see Matthews et al., 2010). An additional area of

future work concerns the “change point” in cardiac vagal tone

during a vigilance task. Of interest is to better understand if

such a point is the same or also differs per the individual.

For example, latent change point modeling empirically derives

when another piecewise slope should be created for a given

individual. This analysis requires significantly more participants

(Hoffman, 2015, p. 230), but previous vigilance research that has

somewhat explored this for cerebral blood flow velocity during

a vigilance task and found interesting results (Tolston et al.,

2020), so it may be worthwhile. Last, vigilance theories may be

further informed and disentangled by directly studying different

manipulations of a vigilance task with individual differences and

longitudinal modeling methods. Our current experiment is not

able to directly flesh out any of the various theories, but it

clearly demonstrated the effect of studying psychophysiology on

an individual and longitudinal basis. Overall, future work should

continue to include other person-level predictors in growth curve

models to better understand if variability is an individual or

sub-group difference.

Conclusion

We set out to explore the dynamic relationship between trends

in cardiac vagal tone and performance in a vigilance task. Though

the nature of this work was exploratory and is not without

limitations, it is clear that implementing longitudinal analyses, like

growth curve modeling, to study cardiac vagal tone trends during

a vigilance task is informative. Our findings further suggest that

cardiac vagal tone and its relationship to performance in cognitive

tasks is not unitary and is unlikely to be accurately characterized

by a single averaged measure for each person. Specifically, the

unconditional growth curve modeling results illustrated several

ways in which individual differences affected cardiac vagal tone.

Results indicated that cardiac vagal tone at rest and how it changes

once starting and stopping a vigilance task may be more indicative

of performance than how it trends during the task. Cardiac

vagal tone should continue to be explored as a process-based

psychophysiological measure in both basic and applied vigilance

research efforts to better understand how the vigilance decrement

manifests over time, its dependency on individual differences, and

how it is mitigated against the vigilance decrement.
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