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Vigilance decrement refers to a psychophysiological decline in the capacity to

sustain attention to monotonous tasks after prolonged periods. A plethora of

experimental tasks exist for researchers to study vigilance decrement in classic

domains such as driving and air tra�c control and baggage security; however, the

only cyber vigilance tasks reported in the research literature exist in the possession

of the United States Air Force (USAF). Moreover, existent cyber vigilance tasks

have not kept up with advances in real-world cyber security and consequently

no longer accurately reflect the cognitive load associated with modern network

defense. The Western Australian Cyber Defense Task (WACDT) was designed,

engineered, and validated. Elements of network defense command-and-control

consoles that influence the trajectory of vigilance can be adjusted within the

WACDT. These elements included cognitive load, event rate, signal salience and

workload transitions. Two forms of the WACDT were tested. In static trials, each

element was adjusted to its maximum level of processing di�culty. In dynamic

trials, these elements were set to increase from their minimum to their maximum

values. Vigilance performance in static trials was shown to improve over time.

In contrast, dynamic WACDT trials were characterized by vigilance performance

declines. The WACDT provides the civilian human factors research community

with an up-to-date and validated vigilance task for network defense accessible to

civilian researchers.
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Introduction

The natural limitations of the human attentional system are the weakest link in modern

cyber defense (Chappelle et al., 2013; Thomason, 2013; Cavelty, 2014). Security Event

InformationManagement Systems (SEIMs) are command and control consoles that network

defense analysts are required to sustain vigilant attention (Komlodi et al., 2004; Spathoulas

and Katsikas, 2010, 2013; Tyworth et al., 2012; Albayati and Issac, 2015; Newcomb and

Hammell, 2016). The United States Air Force Research Laboratory (AFRL) pioneered

experimental platforms, known as cyber vigilance tasks, that facilitated studies of sustained

attention in network defense analysts (McIntire et al., 2013; Mancuso et al., 2015; Sawyer

et al., 2016). Cyber vigilance tasks are designed to emulate the cognitive demands associated

with operating a SEIM (McIntire et al., 2013; Mancuso et al., 2015; Sawyer et al., 2016).

Existent vigilance tasks, however, are out-dated simulations of the cognitive demands

associated with modern network defense and are also preventatively difficult to access by

researchers external to the military (McIntire et al., 2013; Mancuso et al., 2014; Sawyer et al.,

2016; Guidetti et al., 2023). The Western Australian Cyber Defense Task (WACDT) was

developed to fill the need for an updated cyber vigilance task accessible to civilian human

factors researchers.
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Research significance

Network defense analysts’ vigilance performance has only

recently been recognized as a cyber incident risk factor (Chappelle

et al., 2013; Mancuso et al., 2014). The capacity of human

operators to identify and appropriately defend against virtual

threats is bottlenecked by the amount of attention they can

sustain for prolonged periods. The WACDT was designed to

accurately emulate the cognitive demands associated with SEIM

work so it can serve as an experimental platform to study

vigilance in network defense. Lessons learned through human

factors research conducted with the WACDT could significantly

enhance the protective capacity of network defense analysts

defending critical cyber infrastructures (Maybury, 2012). For

example, increasing reliance on global cyber infrastructures

encompasses virtual and physical assets associated with the

military, government, central banking, power distribution, and

telecommunications (Gordon et al., 2011; Jolley, 2012; Saltzman,

2013; Ormrod, 2014; Hicks, 2015; Skopik et al., 2016; Rajan

et al., 2017). The more cyber infrastructures are relied on,

the greater the impact of their compromise (Ben-Asher and

Gonzalez, 2015; Goutam, 2015). Since the human operator is a

bottleneck to the security of cyber infrastructures, an updated

experimental platform to study vigilance in network defense

is required to address the weakest link in the cyber security

chain (Maybury, 2012; Thomason, 2013; Cavelty, 2014). Civilian

researchers could, therefore leverage the WACDT to study

the human factor bottlenecking cyber infrastructure security

(Wall and Williams, 2013).

Cyber vigilance tasks

Resource control theory

Defending networks from malicious attacks requires that

analysts sustain attention to complex task-relevant processes

(Reinerman-Jones et al., 2010; Hancock, 2013). The protective

capability of network analysts is determined partly by their

capacity to sustain attention to cyber-attacks presented in SEIMs

(Jajodia et al., 2011). However, sustaining attention to SEIM

alerts is fundamentally an energetically draining experience

for analysts. Thomson et al. (2015) theory of resource control

can be used to understand sustained attention performance in

operational contexts like cyber security. Over time, executive

resources allocated to network defense processes decrease,

and mistakes begin to snowball (D’Amico et al., 2005; Sarter

et al., 2006; Chappelle et al., 2013; Gartenberg et al., 2015;

Sawyer et al., 2016; Erola et al., 2017). Lapses in analysts’

attention to SEIM alerts due to vigilance decrement can

have disastrous effects on network security and severely

compromise the integrity of critical cyber infrastructures

(Maybury, 2012; Thomason, 2013; Cavelty, 2014). The cyber

vigilance task put forward in this study provides an experimental

platform by which to probe the attentional capacity of network

defense analysts.

Development challenges

Guidetti et al. (2023) identified cyber-cognitive elements

of software design and three central challenges in creating a

cyber vigilance task. Firstly, civilian researchers cannot easily

access existent vigilance tasks developed within a military context

(Paul, 2014; Gutzwiller et al., 2015). The WACDT was therefore

developed by civilians to expand cyber vigilance research beyond

the military. Secondly, existent cyber vigilance tasks could be

presented on a single computer monitor (McIntire et al., 2013;

Mancuso et al., 2014; Sawyer et al., 2016; Guidetti et al., 2023).

However, modern network defense is too complex a role to perform

on a single computer monitor (D’Amico et al., 2016; Axon et al.,

2018). The volume and complexity of network defense dashboards

often force analysts to divide their attentional resources across two,

three, or more computer monitors to interact with the virtual threat

landscape (Knott et al., 2013; D’Amico et al., 2016; Axon et al.,

2018). The WACDT is a more accurate simulation of the cognitive

demands associated withmodern network defense, as analysts must

sustain attention across three computer monitors, not just one

(Knott et al., 2013; D’Amico et al., 2016; Axon et al., 2018).

The final challenge overcome by the WACDT is that SEIM

consoles are not designed according to a typical operating design

(Reinerman-Jones et al., 2010; Guidetti et al., 2023). SEIM

consoles lack a standardized design because each is built according

to context-specific cyber security needs (Work, 2020). Hence,

designing a modern cyber vigilance task based on any existing

SEIM console was impossible, as industry-wide design standards do

not characterize these. The WACDT, therefore, had to be designed

according to elements of SEIM software design that influence

human vigilance performance. For example, Parasuraman (1979,

1985) identified three essential task parameters that can lead

to vigilance decrement on sustained attention tasks: cognitive

load, event rate, and signal salience. Cognitive load refers to the

volume, complexity, and diversity of information that must be

retained in working memory while critical signals are appraised

(Guidetti et al., 2023). In network defense, critical signals of

cyber threats are the alerts visually displayed to analysts on

SEIM consoles (McIntire et al., 2013; Mancuso et al., 2015). In

cyber security, background event rate refers to how frequently a

SEIM presents new information to an analyst surrounding non-

threatening network activity (McIntire et al., 2013; Sawyer et al.,

2014; Mancuso et al., 2015). Finally, signal salience refers to the

modality and clarity by which a SEIM presents malicious network

activity to the analyst for their appraisal consoles (McIntire et al.,

2013; Mancuso et al., 2015).

Cognitive load, signal salience, and event rate are task features

that influence vigilance performance (Grier et al., 2003; Oken

et al., 2006; McIntire et al., 2011, 2013; Knott et al., 2013; Sawyer

et al., 2014, 2016; Warm et al., 2015, 2018; Neigel et al., 2020).

For example, during traditional sustained attention tasks, signal

salience, and event rate are directly and inversely related to

vigilance performance (Warm et al., 2015, 2018). Sawyer et al.

(2014, 2016) likewise demonstrated that cyber vigilance task

performance is directly related to signal salience and inversely to

event rate. Similarly, the cognitive load associated with network

defense has also been associated with vigilance decrement on
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both traditional and cyber-specific sustained attention tasks (Grier

et al., 2003; Oken et al., 2006; McIntire et al., 2011, 2013; Knott

et al., 2013; Neigel et al., 2020). Hence, Parasuraman (1979, 1985)

parameters were derived from studies of earlier vigilance tasks

than those built for network defense. However, Guidetti et al.

(2023) review suggested cognitive load, background event rate,

and signal salience are also characteristics of SEIM tasks that

influence network defense analysts’ vigilance performance capacity.

Therefore, even though SEIM designs vary immensely across the

cyber defense industry, these cyber-cognitive elements of software

design that influence analysts’ vigilance performance are common

across vigilance tasks in general (Silva et al., 2014; Gutzwiller et al.,

2015; Vieane et al., 2016).

Cyber-cognitive elements of SEIMs

The WACDT was designed based on the cyber-cognitive

elements of SEIM consoles that influence vigilance decrement in

network defense analysts that Guidetti et al. (2023) reviewed. In

addition to workload transitions, these encompassed Parasuraman

(1979, 1985) original parameters: cognitive load, event rate, and

signal salience (Guidetti et al., 2023).

Sensitivity to cognitive load
Most of the brain’s cognitive and executive functions are

superordinate cognitive processes that facilitate planning, problem-

solving, response selection, attention regulation and control

(Topçuoglu et al., 2009; Harden et al., 2020). The executive

functions required to sustain attention depend on task-specific

information processing demands. Vigilance performance declines

according to task-specific cognitive workload demands (Wickens,

1980, 2002, 2008; Wickens et al., 1985, 2015; See et al., 1995). The

behavioral manifestation of vigilance decrement varies according

to the cognitive workload associated with sustained discrimination

of critical task targets (Guidetti et al., 2023). For example, cyber

vigilance problems require the commitment of multiple executive

resources that are much greater than those required by classic

vigilance domains, such as nuclear plant monitoring, baggage

security and air traffic control (Wickens et al., 1997; Hancock

and Hart, 2002; Chappelle et al., 2013; Gartenberg et al., 2015;

Reinerman-Jones et al., 2016). Typically, this is ascribed to

several challenging aspects surrounding the data, which analysts

must process to distinguish between malicious and benign SEIM

alerts (D’Amico et al., 2005). Challenges include data volume,

diversity, and specificity of virtual threat information that must be

continuously processed from SEIM consoles (D’Amico et al., 2005;

McIntire et al., 2013; Mancuso et al., 2015). Gradual reductions in

vigilance task performance cannot be called “vigilance decrement”

unless their behavioral presentation changes under different levels

of cognitive load (Parasuraman, 1979, 1985). Hence, cognitive

load sensitivity is a fundamental criterion by which to design and

validate new vigilance tasks (Parasuraman, 1979, 1985).

Sensitivity to background event rate
In addition to cognitive load, the rate at which analysts must

process new information can amplify performance losses associated

with cyber vigilance decrement (Richter et al., 1981; McIntire

et al., 2014; Mancuso et al., 2015; Sawyer et al., 2016). This

interaction between cyber vigilance decrement and the frequency of

background information presentation is known as The Event Rate

Effect (Richter et al., 1981). For example, accelerating the rate at

which information is processed during a cyber incident response

exercise will also cause analysts to accelerate the rate at which

energy is used up (Thomson et al., 2015). This is analogous to the

fuel a car uses when at high vs. low speed. If the driver demands

high speed, the fuel used within the car to sustain that activity

will not last for the same distance as if the driver demanded a

lower speed. In this analogy, the driver represents the vigilance

task operator, the speed represents the task’s event rate, and the

car’s fuel represents the executive resources required to sustain

performance. Thus, if a vigilance task presents background events

relatively quickly, this will accelerate the depletion of the neuronal

fuel reserves required to sustain performance. The rate at which

background information is presented to analysts over their SEIM

contributes to the performance deficits known as cyber vigilance

decrement (Mancuso et al., 2015; Sawyer et al., 2016). Cyber

vigilance tasks’ validity relies on demonstrating a relationship

between sustained attention performance reductions and event rate

(Parasuraman, 1979, 1985).

Sensitivity to signal salience
Some information in an alert will signal a threat, and some

will signal a non-threat to the analyst (Heeger, 1997; Sawyer

et al., 2014). Analysts must sustain control of their executive

functions to weigh both sources of information against each

other in assessing the degree of threat presented within the alert

(Bridges, 2011; Thomson et al., 2015). However, no SEIM alert is

considered in isolation (Alserhani et al., 2010). Network defense

analysts must consider alerts relative to the wider virtual threat

landscape, communicated through every other alert in the SEIM

(Heeger, 1997; Alserhani et al., 2010; Bridges, 2011). This means

the analyst must process a second noise level before deciding on

a threat designation for any given alert. This second noise level

refers to the analyst’s contextual knowledge of the wider virtual

threat landscape their SEIM presents (Heeger, 1997; Alserhani

et al., 2010; Bridges, 2011). That is, the more noise in an SEIM,

the more information analysts must process in order to draw a

judgment. This translates to an increase in neurological resources

used to sustain the executive functions required by that process.

However, the more conspicuous the threat component of an alert’s

information is to an analyst, the less this additional noise decays

their performance. If threat salient information is more perceptible,

fewer resources are necessary to delineate this against the noisy

backdrop of non-critical SEIM alarms.

Sensitivity to workload transitions
Workload transitions refer to changes in the level of cognitive

load required to perform a task (McKendrick and Harwood, 2019).

For example, air traffic controllers must sustain vigilant processing
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of a variable number of aircraft and non-fixed parameters

associated with each, such as speed and trajectory (McKendrick and

Harwood, 2019).

Vigilance performance has consistently been demonstrated to

be negatively impacted by transitions in task-specific workloads

(Krulewitz et al., 1975; Thornton, 1985; Matthews, 1986; Hancock

et al., 1995; Cox-Fuenzalida et al., 2004, 2006; Cox-Fuenzalida

and Angie, 2005; Cox-Fuenzalida, 2007; Bowers et al., 2014).

Transitions in task-specific workload are hence robustly associated

in the literature with a cognitive cost that decreases vigilance

performance (Krulewitz et al., 1975; Thornton, 1985; Matthews,

1986; Hancock et al., 1995; Cox-Fuenzalida et al., 2004, 2006; Cox-

Fuenzalida and Angie, 2005; Cox-Fuenzalida, 2007; Bowers et al.,

2014). Workload transitions are also seen in vigilance critical cyber

security tasks (Knott et al., 2013).

The Western Australian cyber defense
task

The WACDT is a modern cyber vigilance task developed

to accurately simulate the cognitive demands associated with

sustained attention tasks in network defense performed with

command-and-control consoles. The WACDT presents the user

with a simulated network defense dashboard across three computer

monitors (referred to as the left, center, and right screen subtasks).

The left and right screen subtasks, outlined in the methodology,

were designed to explore how signal salience, event rate, and

cognitive load impact the user’s capacity to sustain vigilant

attention to the WACDT. The central screen subtask simulates the

cognitive load associated with domain-specific skill use in network

defense (Helton and Russell, 2011; McIntire et al., 2013; Mancuso

et al., 2015; Vieane et al., 2016).

Advantages of the WACDT over existent
cyber vigilance tasks

The WACDT was designed to overcome several shortcomings

of existent vigilance tasks outlined by Guidetti et al. (2023).

Firstly, no existent vigilance task simulated the cognitive load

associated with domain-specific skill use in network defense (Knott

et al., 2013; McIntire et al., 2013; Mancuso et al., 2015; D’Amico

et al., 2016; Sawyer et al., 2016; Axon et al., 2018). For example,

driving requires sustained vigilant attention to road hazards and

a sufficient understanding of how to operate a car (Cox et al.,

2000; Satterfield et al., 2019; Fu et al., 2020). Cyber security

similarly necessitates two performances: sustaining attention to

SEIM consoles and exercising the practical cyber security skills

required to triage appropriately and action cyber threats (Naidu

and Dharaskar, 2010; Satterfield et al., 2019). Skills central to

the cyber security domain are not required to perform cyber

vigilance tasks (McIntire et al., 2013; Mancuso et al., 2014; Sawyer

et al., 2016; Guidetti et al., 2023). In contrast, performing each

of the WACDT’s subtasks requires the sustained application of

several core cyber security skills. For example, the center and

right screens emulate a threat detection task commonly performed

in operational network defense (McIntire et al., 2013; Mancuso

et al., 2015; Sawyer et al., 2016; BugCrowd., 2020). Anomaly

detection is additionally emulated within the right screen subtask,

another similarly common task in operational network defense

(Keyvanpour et al., 2020).

Secure Socket Layer Blacklist (SSLBL) threat priority rating

that the users must memorize before beginning the WACDT

(Figures 2, 3). Secure socket layer certificates, or SSLs, are used to

detail an organization’s identity, location, server name, hostname

and domain names (AboutSSL, 2021; Kaspersky, 2021). Secure

Socket Layer certificates are used to encrypt communication

between clients and servers; however, criminals can misuse them to

mask their actions from network defense analysts (AboutSSL, 2021;

Kaspersky, 2021). Blacklisted Secure Socket Layer certificates, or

SSLBLs, are threats network defense analysts associate with threats

discovered in the virtual landscape (AboutSSL, 2021; Kaspersky,

2021). SSLBL certificates are collated by analysts across the globe

in large databases, such as BugCrowd. (2020) and the ICE. (2016)

project Abuse.ch. SSLBLs are associated with discreet levels of

technical severity, which indicate the priority they should be

afforded in the work inventory of a network defense analyst

(ICE., 2016; BugCrowd., 2020; AboutSSL, 2021; Kaspersky, 2021).

Therefore, because analysts use SSLBL ratings to guide anomaly

detection in the real world, these are used as threat priorities in

the right screen subtask to enhance the WACDT’s verisimilitude

(BugCrowd., 2020). That is the domain-specific skills required

to perform each subtask, therefore, making the WACDT a more

realistic simulation of the cognitive workload associated with cyber

security than existent cyber vigilance tasks, which do not require

any cyber security skill application (Guidetti et al., 2023).

A second shortcoming of existent vigilance tasks is that the

demands associated with detecting critical targets are maintained

at a fixed or static level (Helton et al., 2004; Chappelle et al.,

2013; Knott et al., 2013; Guidetti et al., 2023). However, in the real

world, task demands associated with operational network security

can dynamically fluctuate rather than remain fixed (Helton et al.,

2004). Roles in cyber security often feature frequent transitions

in cognitive workload, whereby task-specific processing demands

fluctuate dynamically between extremes (Helton et al., 2004;

Chappelle et al., 2013; Knott et al., 2013). Neglecting to include

workload transitions would have made it harder to generalize any

conclusions derived from existent vigilance tasks to cyber vigilance

performance beyond the lab (Helton et al., 2004; Chappelle et al.,

2013; Knott et al., 2013). Signal salience, event rate and cognitive

load were designed as controllable parameters within the WACDT,

facilitating the simulation of workload transitions during network

defense (Equations 5–8). The WACDT, therefore, provides a more

realistic simulation of the cognitive work associated with cyber

vigilance performance than any of the existent tasks reviewed

by Guidetti et al. (2023), which did not simulate transitions in

signal salience, event rate, or cognitive load (McIntire et al., 2013;

Mancuso et al., 2014; Sawyer et al., 2016).

The third shortcoming of existent cyber vigilance tasks

considered here is that they require only a single computer

monitor. However, modern network defense requires that analysts

sustain attention to cyber threats presented across multiple screens

displaying relevant network information (D’Amico et al., 2005;
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FIGURE 1

Honeyfile alert system. This figure depicts the honeyfile alert system

in the left screen subtask of the WACDT. Icons that begin to flicker

from green (left) to red (right) indicate a potential security breach

that the participant must notify a senior analyst about. Participants

escalate the alert by activating a macro triggered by simultaneously

pressing the “Control” + “D” buttons.

FIGURE 2

SSLBL alert prioritization and rating on the center screen. This

represents the center screen where participants are tasked with

assigning correct ratings to SSLBL alerts based on their priority. Each

alert discloses the originating IP address. The participant’s task

includes identifying and rating each alert, with the severity of the

alert inversely correlating to its score.

Axon et al., 2018). The existent cyber vigilance tasks that Guidetti

et al. (2023) reviewed employ a single monitor and hence do

not accurately reflect the complexity of modern network defense

(McIntire et al., 2013; Mancuso et al., 2014; Sawyer et al., 2016).

TheWACDT was, therefore, designed to present virtual threat data

across three computer monitors (Figures 1–5).

WACDT validation

Research design

The validity of the WACDT could not be explored by

comparing vigilance performance on it with that observed on

existent cyber vigilance tasks, inaccessible to civilian researchers

(Guidetti et al., 2023). However, Parasuraman (1979, 1985)

suggested that valid vigilance tasks were characterized by declines

in sustained attention with time on tasks that depend on

FIGURE 3

SSLBL alert priority distribution reference sheet. This demonstrates

how participants should keep track of the priority for each SSLBL

alert. It forms part of the instructions for the center screen task.

the salience of critical signals, event rate, and cognitive load.

Parasuraman’s parameters provided an alternative method of

validating the WACDT.

The validity of the WACDT was explored within two

hypotheses. Firstly, if the WACDT is a valid vigilance task,

then performance will decline over time. Moreover, Parasuraman

suggested that signal salience, event rate and cognitive load impact

performance declines in a valid vigilance task. The workload

associated with Parasuraman’s parameters can be controlled within

the WACDT’s internal settings (Equations 6–8). The impact of

signal salience, event rate and cognitive load on vigilant WACDT

performance was explored by testing a dynamic and static task

version. In the dynamic WACDT, the cognitive workload was

parameterised to dynamically increase in difficulty with time-on-

task. In the static version of the WACDT, the cognitive workload

was parameterised as static values set to the most challenging

level of processing. Dynamic WACDT trials are expected to be

harder to perform than the static version, as the former forces

users to adapt constantly to an event rate and cognitive load that

both increase while signal salience simultaneously decreases all

throughout the task. In contrast, there is no additional demand to

adapt to changes in event rate, cognitive load, and signal salience

during the static WACDT, during which these parameters are held

as fixed constants. It was, therefore, secondly hypothesized that if

the WACDT is a valid vigilance task, then dynamically changing

signal salience, event rate and cognitive load during the dynamic

WACDT should lead to greater performance deficits than in the

static version where each parameter was kept constant.
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FIGURE 4

Right screen frequency bar charts and anomaly reporting. This showcases the right screen’s evolving frequency bar charts that expand correlating to

the rating of alerts. A dark horizontal bar signifies the threshold for an anomalous number of alerts. Participants need to monitor these charts and

report any above-threshold activity by clicking “Alert the Admin” and inputting the linked IP address.

Research objective

The objective behind developing the WACDT was to provide

the research field with an accessible, valid vigilance task for network

defense. Therefore, this study aims to validate the WACDT so

that generalisable conclusions can be derived from cyber security

human factors experiments conducted on the platform. The driving

question examined by this study was whether the cognitive load,

event rate, signal salience, and workload transitions required to

correctly detect critical signals in the left, center, and right screen

subtasks influenced vigilant performance on the WACDT.

Participants

After approval was granted from the Edith Cowan

University Human Research Ethics Committee (Higher

Research Ethics Project Code, 2019-00786), 25 participants

were recruited from the Cyber Security Research Cooperative

(CSCRC), and the pool of Western Australian Department

of Digital Government (WADG) trainee network analysts.

This sample size was selected on the basis that Sawyer et al.

(2016) recruited 24 participants for their cyber vigilance

task study.
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FIGURE 5

Vertical view of the WACDT setup.

The recruited participants had an average age of Mage = 35.68

years old with σage = 11.93 years, slightly younger than the cyber

security professional population average of 42 years old (ISC²,

2020). Furthermore, women comprise only eleven percent of the

global workforce (Poster, 2018; ISC², 2020). Similarly, only twelve

percent of the sample were female. Moreover, on average, men and

women working in cyber security typically have 6.9 and 5.3 years

of experience, respectively (ISC², 2020). Similarly, the men and

women who composed this study’s sample had an average of 6.4

and 5.0 years of experience working in cyber security, respectively.

Therefore, whilst the participants in the sample were younger than

the population average, their gender distribution and range of work

experience in cyber security reasonably approximated that of the

wider population of network defense professionals (ISC², 2020). For

convenience, participation took place in the Western Australian

Office of Digital Government’s offices to minimize disruption to

the participants.

Equipment

Participants completed the WACDT in an isolated room, using

a single computer with three computer monitors, a keyboard, and a

mouse (Figures 5–7). Each computer monitor was used to run one

of the three subtasks of the WACDT that participants completed

simultaneously. The left, center, and right screen subtasks of

the WACDT outlined here were designed to explore how signal

salience, event rate, and cognitive load impact the user’s capacity

to sustain vigilant attention to virtual threat landscapes.

WACDT left screen subtask

The purpose of the central screen subtask was to simulate

the cognitive load associated with domain-specific skill use in

network defense, namely monitoring a system of honeyfiles

(Figure 1) (Helton and Russell, 2011;McIntire et al., 2013;Mancuso

et al., 2015; Vieane et al., 2016). Network defense analysts use

honeyfiles to guard against data theft and unauthorized system

access (Whitham, 2016). Honeyfiles are designed to resemble “real”

documents that attract data thieves. Network defense analysts are

prompted with a security alert any time a honeyfile is interacted

with, including being opened, copied, deleted or moved around

(Whitham, 2016). Data thieves are susceptible to honeyfile traps

primarily because they are indistinguishable from legitimate system

files (Tirenin and Faatz, 1999; Yuill et al., 2004; Voris et al., 2013).

Honeyfile alerts were selected as a basis for the left-screen

subtask. An array of sixteen square icons is presented to the user on

the left screen subtask. These icons illustrate the security status of

honey files distributed within a highly sensitive sub-network. Green

icons indicate an uncompromised, secure sub-network, and icons

that flicker between red and green indicate a honeyfile that has been

opened, copied, deleted, moved, or otherwise compromised.
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FIGURE 6

Horizontal view of the WACDT setup.

FIGURE 7

Over the shoulder view of the WACDT setup. This depicts the positioning of each WACDT subtask across three distinct computer displays, as seen by

an experimenter over the shoulder of a participant.

The sixteen icons in the left screen sub-task illustrate a specific

honey file’s security status within a highly sensitive sub-network

that the user is told requires protection. Honey file icons that

are un-compromised display a steady color of green. When a

honey file is compromised, an alert is triggered that causes the

relevant icon to rapidly switch color between green and red,

which is referred to as “flickering.” All sixteen icons are in an

uncompromised (green) state at the beginning of the WACDT and

randomly begin to flicker from red to green increasingly as time

progresses on the task. The frequency that icons can be made to

flicker between 20 and 48 times per second. The exact placement

of honeyfile icons is not crucial to the main task. The reason for

displaying 16 icons was to ensure that the operators’ attention was

distributed across a wide field of view and across enough icons

to make the location of a given alert uncertain at any given point

in time.

Keyboard macros are recorded keystroke combinations that

can trigger software operations (Gunnarson, 1993). Encoding

repetitive, monotonous features of a task into a keyboard macro

can reduce network defense analysts’ steps to command and

control a SEIM console (Gillespie, 1986). Network defense is

just one of many computer science sub-domains where keyboard

macros are commonly used (Kurlander, 1993). A keyboard

macro was hence used as the mechanism to be actioned
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when a user identifies a critical alert on the WACDT’s left

screen subtask.

Specifically, the user is told to press “Control” and “D” as soon

as they notice a left screen icon flickering between red and green.

Simultaneously pressing the “Control” and “D” buttons causes the

left screen icon to stop flickering and immediately revert to green.

The WACDT registers a left hit when the user presses “Control”

and “D” after an icon begins to flicker. If a user performs an action

other than “Control” and “D” after an icon begins to flicker, the

WACDT registers this as a left miss. A left screen false alarm is

registered if the user presses “Control” and “D” when no icon

is flickering.

WACDT central screen subtask

The center screen threat intelligence subtask demands domain-

specific skills from the participating network analyst. The center

screen presents the participant with a queue of common

operational network threat alerts (BugCrowd., 2020) (Figures 2, 3).

Center screen alerts encompass an originating IP address and an

SSLBL threat priority rating that users commit to memory before

beginning the WACDT (Figures 2, 3). The WACDT registers a

hit on the center screen if the user’s threat score matches the

alert’s SSLBL rating. If an alert is given a lower threat score than

its SSLBL rating, the WACDT registers a false alarm. A miss is

registered when an alert is given a higher threat score than its

SSLBL rating. Basing center screen alerts on SSLBL scores improves

the WACDT’s concordance with the kind of information network

defense analysts process in the real world. For example, more severe

security breaches have lower scores, as during an incident response,

these would be closer to a top priority.

WACDT right screen subtask

The center and right subtasks are designed to simulate the

cognitive load associated with anomaly detection, a prevalent

domain-specific skill used in network defense (McIntire et al., 2013;

Mancuso et al., 2015; Sawyer et al., 2016). Anomaly detection

is a SEIM task that involves the identification of non-conformal

patterns and features, also known as outliers or contaminants, in

subsets of network traffic data (Chandola et al., 2010; Alabadi and

Celik, 2020). Government, military and private businesses derive

critical and actionable insights from anomalies detected in data

(Chandola et al., 2010). For example, financial anomalies are a

signature of identity or monetary theft, anomalies in MRI data

can indicate cancer, and anomalous spaceship telemetry could

cause massive loss of life (Aleskerov et al., 1997; Spence et al.,

2001; Fujimaki et al., 2005; Kumar, 2005). Anomalous patterns of

network traffic are signals of malicious cybercrime (Kumar, 2005).

For example, data exfiltration attacks target repositories of sensitive

information, which can be leaked publicly, sold to an unauthorized

external party, or held for ransom (Kumar, 2005). Network defense

analysts must monitor inbound and outbound traffic for signatures

that suggest a malicious actor has deployed a data exfiltration attack

(Kumar, 2005).

TABLE 1 Threat alert threshold values.

Threat priority rating Admin alert threshold value

1 3

2 5

3 7

4 9

5 11

Anomaly detection has become an increasingly critical skill for

network defense analysts (Kumar, 2005). The right screen subtask

was therefore designed to simulate SEIM anomaly detection by

requiring users to identify non-conformal patterns and features

in the network traffic initially presented on the center screen

(Chandola et al., 2010; Alabadi and Celik, 2020; Keyvanpour et al.,

2020).

What constitutes an anomalous volume of alerts that requires

the attention of a network defense analyst differs across

organizations, network environments, and threat types (Bhatt et al.,

2014). Admin alert thresholds are pre-defined values that signify

an anomalous number of alerts within the WACDT (Coviello and

Mariniello, 2010). The SSLBL score of an alert is directly related

to the admin alert threshold it is associated with. For example, the

SSLBL score for a corporate privacy violation is 1 and has an admin

alert threshold of 3, whereas unknown traffic has an SSLBL score of

4 and an admin alert threshold of 9 (BugCrowd., 2020). An admin

alert threshold has hence been assigned to each of the five types

of alerts integrated into the WACDT (Table 1). The right screen

contains five frequency charts, one for each of the types of alerts

integrated into the WACDT.

The IP address of each alert, processed by the user in the center

screen, is presented along the horizontal axis of each right screen

chart (Figure 4). The vertical axes of each chart present a count

of the number of alerts detected from each of these originating IP

addresses. As the user rates the SSLBL score of each center screen

alert, their entries cause the columns within the frequency charts

on the right screen to grow.

Users are told that they must monitor the right screen for

chart columns that reach the anomaly threshold that is indicated

by a dark horizontal bar (Figure 4). Users are required to then

click the “Alert the admin” button when they see this, and enter

the IP address associated with anomalous chart elements. When

the correct IP address for an anomaly is entered, this causes its

associated column chart element to reset to zero. This variation

in anomaly thresholds helps minimize harm in real-world network

defense, as it allows network defense analysts to prioritize response

resources and actions more efficiently (Vilendečić et al., 2017).

A right screen hit is hence registered by the WACDT when

the user correctly enters the IP address of a threshold-breaking

bar chart element. A miss is registered if a right screen bar chart

breaches the horizontal threshold line and the user does anything

other than enter that bar chart’s IP address into the admin alert text

box. This includes reacting to left screen signals or continuing to

work through the center screen work queue. A right screen false

alarm is registered when the user enters an incorrect IP address into

the “Alert the admin” window.
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WACDT positioning

A trio of computer monitors were used to complete the

WACDT, which was completed on an ergonomically arranged

computer setup. The WACDT sub-tasks were positioned on the

left, center, and right screens. These screens are referred to as

the secondary, primary, and tertiary monitors, respectively. The

center screen task is presented on the primarymonitor in landscape

orientation and directly in front of the user. The left screen sub-

task is displayed on the secondary monitor situated to the left of

the primary monitor. The right screen sub-task is displayed on the

tertiary monitor situated to the right of the primary monitor. Each

display is 59.9 cm along the diagonal, with a width of 50.8 cm and a

height of 31.8 cm. Size twelve font was used in all textual elements

of the WACDT, including information in the center screen alerts

and the IP addresses in the right screen sub-task.

Primary monitor
The center screen sub-task is displayed on the primary

monitor, which is positioned directly in front of the user, who

sits approximately an arm’s length away. The top of the primary

monitor is aligned with the users’ eye level to reduce neck strain.

Secondary monitor
The left screen sub-task is displayed on the secondary monitor,

and this is positioned directly to the left of the primary monitor to

avoid a visual gap. The secondary monitor is positioned at the same

height as the primary monitor and aligns with the user’s eye level.

Tertiary monitor
The right screen sub-task is displayed on the tertiary monitor,

which is in a portrait orientation and is positioned at the same

height and to the right of the primary monitor.

Monitor angles
The primary monitor is positioned directly in front of the

user. The secondary and tertiary monitors were angled toward

the user to minimize head movement. More specifically, the

secondary monitor, which displays the left screen sub-task, is

angled toward the user by approximately 15 to 30 degrees to

minimize head movement while performing the task. Similarly, the

tertiary monitor was angled toward the user by around 15 to 30

degrees. This arrangement gave the primary, secondary and tertiary

monitors a gentle curve, making it easier for the user to glance from

one screen to the next.

Keyboard and mouse placement
The keyboard andmouse were positioned so their elbows rested

at a comfortable angle, approximately 90 degrees, to ensure straight

wrists that are not bent upwards or downwards while typing or

moving the mouse.

Lighting
The experiment was undertaken in a windowless room

under standard office lighting to minimize glare on the

computer monitors.

Behavioral parameters tracked by the
WACDT

The concept of hits, misses, and false alarms from signal

detection theory were adapted to parameterise performance on the

WACDT. These terms have only been conceptually borrowed from

Signal Detection Theory to describe how well users respond to the

various signals presented across the left, center and right screen

subtasks of the WACDT.

Left screen sub-task performance metrics: hits,
misses, and false alarms
• Hit: “Control”+ “D” after a left screen icon begins to flicker.

• Miss: Performing any WACDT action other than pressing

“Control”+ “D” when an icon flickers.

• False Alarm: Pressing “Control” + “D” when no icon

is flickering.

Center screen sub-task performance metrics:
hits, misses, and false alarms
• Hit: Correctly rating the threat level of an alert.

• Miss: Underestimating the threat level of an alert.

• False Alarm: Overestimating the threat level of an alert.

Right screen sub-task performance metrics: hits,
misses, and false alarms
• Hit: Entering the correct IP address when a bar chart column

crosses the threshold.

• Miss: Doing anything other than entering the correct IP after

a column crosses the threshold.

• False Alarm: Entering an incorrect IP address when no column

has crossed the threshold.

Notes on terminology
• Miss vs. Non-Response: A “miss” involves some action but the

wrong one, while a “non-response” involves no action at all.

• Miss vs. Error of Commission: A “miss” is a specific incorrect

action within the WACDT, while an “error of commission”

could be any incorrect action.

• False Alarm vs. Error of Commission: A “false alarm” is a

specific action taken in the absence of a stimulus, while an

“error of commission” is an incorrect action taken in the

presence of a stimulus.

The WACDT tracks and outputs the minute-by-minute total

number of hits, misses, and false alarms to critical signals across

each screen subtask. That is, dH
dt
, dM

dt
, and dF

dt
are taken as the total

count of all hits, misses, and false alarms recorded per minute on
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the WACDT. More specifically, the WACDT tracks and records

the number of hits, misses, and false alarms made per minute

on the left, center, and right screen subtask,
dHLeft

dt
,
dMLeft

dt
,
dFLeft
dt

,
dHCentre

dt
, dMCentre

dt
, dFCentre

dt
,
dHRight

dt
,
dMRight

dt
, and

dFRight
dt

. The variable,

“t” is a continuous variable taken to represent time, ranging from

0min to 60min on the WACDT. “dt” denotes an infinitesimally

small change in of time. The WACDT tracks and records the

number of hits, misses, and false alarms made per minute on the

left, center, and right screen subtask, denoted by dHLeft, dMLeft,

dFLeft, dHCentre, dMCentre, dFCentre, dHRight, dMRight, and dFRight

(Equations 1–4). As a fraction,
dHLeft

dt
,
dMLeft

dt
,
dFLeft
dt

, dHCenter
dt

, dMCenter
dt

,
dFCenter

dt
,

dHRight

dt
,

dMRight

dt
, and

dFRight
dt

reflect differential changes in

the rate that hits, misses, and false alarms are made on the left,

center, and right subtasks. Vigilance performance on the WACDT

is then parameterised as the 2-min bucket average correct detection

percentage on the left, center, and right screen subtasks, as well

as across the total WACDT and is denoted by the component

100
∫ t + 2

t
(Equations 1–4). Recording hits, misses, and false

alarms in this way allows performance on the WACDT to be

explored as a whole or at the level of the individual subtask.

Left Screen Vigilance Performance : = L (t ),

L(t) =
100

∫ t+2
t

{

dHLeft

dt

}

∫ t+2
t

{

dHLeft

dt
+

dMLeft

dt
+

dFLeft
dt

} (1)

Center Screen Vigilance Performance : = C(t),

C (t) =
100

∫ t+2
t

{

dHCentre
dt

}

∫ t+2
t

{

dHCentre
dt

+
dMCentre

dt
+

dFCentre
dt

} (2)

Right Screen Vigilance Performance : = R(t),

R(t) =
100

∫ t+2
t

{

dHRight

dt

}

∫ t+2
t

{

dHRight

dt
+

dMRight

dt
+

dFRight
dt

} (3)

Total WACDT Vigilance Performance : = T(t),

T(t) =
100

(

∫ t+2
t

{

dHL
dt

}

+
∫ t+2
t

{

dHCentre
dt

}

+
∫ t+2
t

{

dHRight

dt

})

∫ t+2
t

{

dHLeft

dt
+

dMLeft

dt
+

dFLeft
dt

}

+
∫ t+2
t

{

dHCentre
dt

+
dMCentre

dt
+

dFCentre
dt

}

+
∫ t+2
t

{

dHRight

dt
+

dMRight

dt
+

dFRight
dt

} (4)

Parameterizing the WACDT’s
neurocognitive workload factors

The cognitive demands associated with real-world network

defense are more than static values and can dynamically change

within a short window of time (Vieane et al., 2016). For example,

a prevalence denial attack involves flooding a network defense

analysts’ system with a high number of low-level threats to mask

the presence of a more malicious attack (Vieane et al., 2016). Signal

salience, event rate, and cognitive load in the WACDT were hence

engineered to vary between natural human processing boundaries

(Glassman et al., 1998; Shady et al., 2004; Tse et al., 2004; Herbst

et al., 2013; Alais et al., 2016; Sawyer et al., 2016). This feature

distinguished the WACDT from previous cyber vigilance tasks,

which explored cyber vigilance performance under static cognitive

demand conditions (McIntire et al., 2013; Mancuso et al., 2015;

Sawyer et al., 2016).

Each parameterising expression for signal salience, event rate

and cognitive load adopt the use of “t” and “dt” to respectively

reflect time in minutes, and an infinitesimally small change in

time (Equations 5–8). Hence the expression “∀t∈ [0,60]” reflects all

values of time within the interval of 0min to 60min, which is the

duration of each WACDT trial.

Parameterizing signal salience
The left screen subtask served as the mechanism by which

signal salience was controlled. Critical left screen signals manifested

as blinking icons that flickered between green and red at a

particular frequency (F , Hz). Flickering icons are common

operational critical signals used to communicate critical threat

salient information to the user (Shady et al., 2004; Tse et al., 2004;

Herbst et al., 2013). For example, Alais et al. (2016) demonstrated

that attention to flickering signals was optimized at a flicker

frequency between 20Hz and 48Hz. Beyond 48Hz, Alais et al.

(2016) demonstrated that the probability that a human could detect

a flickering icon decreased to chance. Signal salience, S(t), was

parameterised according to Alais et al. (2016) perceptual flicker

boundaries to linearly increase processing difficulty with time on

task. However, by setting the gradient to zero within the WACDT’s

internal settings, signal salience could also be held as a fixed

constant (Equation 5).

S(t) =

{

F = 20Hz

F = 48Hz

at t = 0minutes

at t = 60minutes

⇒ S(t) =
7

15
t + 20 ∀t ∈ [0, 60]. (5)

Parameterizing event rate
The left screen subtask was the mechanism by which the event

rate, E(t), was controlled as a linear function of time and spanned

between Sawyer et al. (2016) event rate domain of eight to sixteen

events per minute. Therefore, the rate that critical left screen signals

presented during the WACDT was defined by Equation 6.

E(t) =

{

8 events per minute

16 events per minute

at t = 0minutes

at t = 60minutes

⇒ E(t) =
2

15
t + 8 ∀t ∈ [0, 60]. (6)

Parameterizing cognitive load
As the user processes center screen alerts, they must

remember which right screen chart elements had a count

one below the admin alert threshold. These are referred
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to as near-critical right screen signals. A fictitious artificial

intelligence (AI) was built into the WACDT to control the

number of near-critical right screen signals presented at

any time. The user is told that the AI provides additional

column chart elements uncovered elsewhere in the network as

they work.

The right screen AI mechanism is hence used to control

cognitive load as a linear function of time, bounded by natural

human processing limitations associated with working memory.

Miller (1956) demonstrated that human working memory capacity

is generally limited to 7 ± 2 elements. However, cognitive load

is not bounded between one and nine because the user already

retains five items in working memory in performing the center

screen subtask. Instead, cognitive load is bounded between one and

four elements that are added to randomly selected column chart

elements throughout the WACDT (Equation 7).

C(t) =

{

Near − critical right screen signals = 1 t = 0

Near − critical right screen signals = 4 t = 60

}

H⇒ C(t) =
1

20
t + 1 ∀t ∈ [0, 60] . (7)

The components of the vector function describe the

neurocognitive workload associated with the WACDT, w̃

(Equation 8). These components of the WACDT control the

implementation of Parasuraman (1979, 1985) parameters as

functions of time-on-task to capture the dynamic cognitive

workloads required in operational network defense.

w̃ =







S(t)

E(t)

C(t)






∀t ∈ [0, 60]

H⇒ w̃ =







7
15 t + 20
2
15 t + 8
2
15 t + 1







H⇒ w̃ =







7
15
2
15
2
15






t +







20

8

1






∀t ∈ [ 0, 60]. (8)

Methodology

Procedure

Each subtask was run concurrently during each trial. This

meant that each participant completed two trials of the WACDT,

one static, and one dynamic. The timing of each trial was the same

across the static and dynamic conditions, 60min. The timing of

each WACDT trial was determined by Guidetti et al. (2023) review

of existing cyber vigilance tasks presented by McIntire et al. (2013),

Mancuso et al. (2015), and Sawyer et al. (2016). In these prior

studies, the duration of each cyber vigilance task was limited to

50, 50, and 40min, respectively. Since time on task is a factor that

influences vigilance decrement, it was decided to round up the

duration of each WACDT trial to a full hour (Ziino and Ponsford,

2006). By extending the WACDT’s trial duration beyond that

Guidetti et al. (2023) reported in previous studies, allows for a more

nuanced observation of changes in cyber vigilance performance.

This longer time frame provides a more robust examination of

participants’ performance on the WACDT task. The duration of

each WACDT was therefore fixed at 60min for both the static and

dynamic conditions.

Intra-trial learning effects could confound any continuous

vigilance performance data analysis recorded during the WACDT

(Valcour et al., 2009). Thus, the only randomized component of the

study was whether participants performed under static conditions

first or if they performed under dynamic conditions first. Stimuli

position, text and information were not randomized between the

left, center, and right-screen subtasks. In the Western Australian

Cyber Defense Task (WACDT), the static and dynamic conditions

were controlled by manipulating task workload factors (Equation

8). These factors increased processing difficulty over time for the

dynamic version of the WACDT. The WACDT was made with

Python, and so the variation between the static and dynamic

conditions needed to be controlled by implementing Equations 5–

8, within the WACDT’s back end. Conversely, the static version

of the WACDT featured task workload factors that were held

constant at their most difficult processing values, which again

were governed by the same equations. What was randomized

was the type of trial that individual participants completed. More

specifically, balanced randomization was used to manage the risk

that learning effects could confound vigilance performance on

either the static or dynamic WACDT (Engleman et al., 1998).

Participants were allocated to one of two protocols: either they

completed the dynamic form of theWACDT first, or their first trial

was completed under static conditions.

After providing their informed consent, each of the sub-

tasks was explained to participants. The subtasks for the left,

center, and right screens were explained to participants in the

following manner:

1. The responsible investigator began by addressing the left

screen’s functionality. The responsible investigator informed

participants that if any icon on the left screen flickered between

red and green, it signified a compromise in the honeyfile system.

Participants needed to notify a senior analyst about the potential

breach in such cases by activating amacro, which the responsible

investigator explained could be triggered by simultaneously

pressing the “Control” and “D” buttons.

2. Moving on to the center and right screens, the responsible

investigator clarified that participants must remember the

priority of each SSLBL alert (Figure 3). They were then tasked

with assigning the correct rating to each alert in the center screen

queue (Figure 2).

3. The investigator further explained that every center screen alert

includes the originating IP address. The responsible investigator

explained that as participants rate alerts, the frequency bar

charts on the right screen would expand (Figure 4). The dark

horizontal bar on each graph of the right screen represents the

threshold for an anomalous number of alerts.

4. The responsible investigator lastly guided participants on how

to report anomalies. If they detected alert levels surpassing the

threshold, they were to click the “Alert the admin” button and

input the IP address associated with the anomalous bar chart
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into a provided text box (Figure 4). The were then shown the

five types of alerts.

The Responsible Investigator demonstrated the WACDT

before participants began each trial.

Ethics

The Responsible Investigator contacted potential participants

from the CSCRC and WADG by email after ethical approval to

do so had been granted by the Edith Cowan University Human

Research Ethics Committee. Information letters were then sent

to those who replied to the initial email that described what

would be required of them during the study. Participation dates

and times were arranged for each network defense analyst who

volunteered for the research. It was explained that participants’

data would be anonymised, that they retained the right to

withdraw from the research at any stage without prejudice, and

that they would be remunerated for each completed WACDT

with a $50.00 gift card. Participants who decided to withdraw

consent would have had their data and any record of their

involvement in the project erased. However, no participant

withdrew their consent.

Results

Data analysis

Vigilance decrement refers to a decline in sustained attention

task performance over time (Parasuraman, 1979, 1985; Wickens,

1980, 2002, 2008; Wickens et al., 1985, 2015; See et al., 1995).

Moreover, the direction in which vigilance performance changes

with time-on-task is known as its “trajectory” (MacLean et al.,

2009). For example, a positive trajectory would suggest a net

increase in vigilance performance with increasing time spent on the

WACDT (MacLean et al., 2009). In contrast, a negative trajectory

would suggest vigilance decrement (MacLean et al., 2009). The

WACDT keeps a count of the number of hits, misses and false

alarms participants make on the left, center, and right screen

subtasks, which were then transformed into the percentage of

correctly detected alerts in the WACDT (Equations 1–4). Vigilance

performance across the total set of sub-tasks, T(t). T(t), L(t), C(t),

and R(t) of the WACDT were then computed as the ensemble

average of all participants’ detection percentages for static, Savg, and

dynamic Davg trials.

The Kendall (1962) and Sen (1968) slope analyses are non-

parametric tests and are more appropriate for exploring the

trajectories of vigilance performance on the WACDT for several

reasons. This is because Sen’s slope and the Mann-Kendall

estimates can detect monotonic trends in vigilance performance

without an underlying assumption about the data’s structure or

distribution (Mustapha, 2013). Trends estimated by regression

are based on minimizing the difference between observed values

and values predicted according to a presupposed function, which

means they are less flexible at exploring more complex changes

in data. In contrast to regression, trends estimated by Mann-

Kendall and Sen’s slope analyses are robust against abrupt

jumps or heavy tails, which negates the need to pre-process

the data (Cao et al., 2011; Chantre et al., 2014). Moreover,

the only assumption of Sen’s slope and the Mann-Kendall tests

is that data are not autocorrelated (Hamed and Rao, 1998;

Koutsoyiannis, 2003). However, time series data derived by

observation, such as that generated by the WACDT, are commonly

autocorrelated (Caloiero et al., 2018). If the assumption of no

autocorrelation is violated, the trend significance levels generated

by the Sen’s slope and Mann-Kendall tests can be underestimated

(Hamed and Rao, 1998; Koutsoyiannis, 2003). Hence, despite the

advantages of using the Mann-Kendall and Sen’s slope analyses

to explore changes in WACDT vigilance performance, additional

steps were needed to ensure that these analyses were robust

against this assumption violation. To this end, a Durbin (1950)

autocorrelation test was used to explore autocorrelation within

each participant’s vigilance performance data. Secondarily to

the Durbin-Watson test, each participant’s vigilance performance

curve was graphed so that the trends estimated by the Mann-

Kendall and Sen’s slope analyses could be compared with the

direction observed through visual inspection of the data. That is,

the outputs of each analysis were validated by comparison to a

graphical plot of the trend component of each WACDT vigilance

performance curve.

T(t), L(t), C(t), and R(t) were formed by theWACDTs’ vigilance

performance curves (VPCs) for Savg and Davg. The validity of the

WACDT firstly relied on demonstrating that task performance

declines over time. Demonstrating that declines in performance are

sensitive to cognitive load, event rate, signal salience, and workload

transitions is the second requirement of validating the WACDT

(Parasuraman, 1979, 1985; Guidetti et al., 2023). The static and

dynamic versions of the WACDT held these parameters as

constants or changed accordingly. Firstly, a negative performance

trajectory would suggest vigilance decrement and hence satisfy the

first requirement in demonstrating the WACDT’s validity of the

WACDT. In contrast, a positive performance trajectory would not

suggest that the WACDT is a valid vigilance task (Parasuraman,

1979, 1985). The second requirement of validating the WACDT

would be satisfied by the observation of relative differences in the

performance trajectories derived from static and dynamic trials, as

this would suggest sustained attention to the task is sensitive to

cognitive load, event rate, signal salience, and workload transitions

(Parasuraman, 1979, 1985; Guidetti et al., 2023).

Averaged results

Total task vigilance performance
The Durbin-Watson analysis undertaken at the total task

level of the average correct detection percentage data suggested

statistically significant autocorrelation under dynamic (D =

0.516 < du = 1.489) and static (D = 1.178 < du = 1.489)

conditions (Table 2, Figure 8). Mann-Kendall Sen’s Slope estimates

of WACDT vigilance performance trajectories at the total task level

demonstrated statistically significant improvement and decrement

during static (S= 0.440, p < 0.001) and dynamic (S=−0.948, p <

0.001) WACDT conditions respectively. Moreover, Mann-Kendall

Sen’s Slope estimates of total task vigilance performance visually
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aligned with the positive and negative trajectories respectively

observed in the total vigilance performance plots under static and

dynamic conditions (Figure 8).

Left screen subtask vigilance performance

Autocorrelation in the left subtask level of the averaged

correct detection percentage vigilance performance was statistically

non-significant during dynamic (D = 1.533 > du = 1.489)

conditions and significant during static (D = 1.053 < du = 1.489)

WACDT conditions (Table 2, Figure 9). Mann-Kendall Sen’s Slope

estimates of vigilance performance on the left screen subtask

respectively demonstrated statistically significant improvements

and decrements with time on task, during static (S = 0.233,

p < 0.001) and dynamic (S = −0.792, p < 0.001) WACDT

conditions (Table 2, Figure 9). Each follow-up visual analysis of

vigilance performance on the left screen subtask during static and

dynamic WACDT conditions, respectively, demonstrated positive

and negative trajectories, which affirmedMann-Kendall Sen’s Slope

trend estimate (Figure 9).

Center screen subtask vigilance
performance

Durbin-Watson analyses of the vigilance performance on the

WACDT’s center subtask demonstrated statistically significant

autocorrelation under static (D = 0.917 < du = 1.489) conditions

(Table 2, Figure 10). In contrast, the Durbin-Watson analysis of

vigilance performance data recorded during dynamic WACDT

conditions demonstrated non-significant autocorrelation (D =

1.507 > du = 1.489). Statistically significant improvements and

decrements were then demonstrated by Mann-Kendall Sen’s Slope

estimates of vigilance performance trajectory on the center subtask

measured during static (S = 0.512, p = 0.001) and dynamic (S =

−1.770, p = 0.002) WACDT conditions. Downward trends were

observed from each center screen performance plot, which was

corroborated by the trends estimated by Mann-Kendall Sen’s Slope

analyses (Figure 10).

Right screen subtask vigilance performance

Durbin-Watson analyses demonstrated statistically significant

autocorrelation within the right screen subtask vigilance

performance data, recorded during dynamic (D = 1.108 <

du = 1.489), but not static (D = 1.805 > du = 1.489) WACDT

conditions (Table 2, Figure 11). Furthermore, Mann-Kendall Sen’s

Slope estimates of the vigilance performance trajectory during

the right screen subtask respectively demonstrated statistically

significant improvements during both static (S = 0.211, p <

0.001) and dynamic (S = 0.284, p = 0.043) conditions of the

WACDT. Moreover, each trend estimated by Mann-Kendall

Sen’s Slope analyses, undertaken over the right screen subtask

vigilance performance data, aligned with the positive trajectories

visually observed in graphs of both static and dynamic conditions T
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FIGURE 8

Graph displaying the average detection percentage recorded at the total task level for all the static (red) and dynamic (black) WACDT trials, with

horizontal and vertical error bars indicating the standard deviation.

FIGURE 9

Graph displaying the average detection percentage recorded at the left screen level for all the static (red) and dynamic (black) WACDT trials, with

horizontal and vertical error bars indicating the standard deviation.

(Figure 11). Each vigilance performance curve has been plotted

with standard error bars.

Vigilance performance compared between
the group average and individuals

Psychological phenomena cannot be assumed to manifest the

same way in individuals as in ensemble sample averages because

the human brain is a non-ergodic system (Speelman and McGann,

2020). Comparing the sample- with individual-level analyses of

vigilance performance on theWACDT, however, facilitated a check

of the ergodicity within the data (Speelman and McGann, 2020).

Vigilance performance on the dynamic WACDT was first

examined at the total-task level, T(t). Sample level analyses of the

dynamic WACDT’s data set, Davg, demonstrated a decrement in

vigilance performance with time on task. At the individual level,

24 out of 25 participants demonstrated decrements in vigilance
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FIGURE 10

Graph displaying the average detection percentage recorded at the center screen level for all the static (red) and dynamic (black) WACDT trials, with

horizontal and vertical error bars indicating the standard deviation.

FIGURE 11

Graph displaying the average detection percentage recorded at the right screen level for all the static (red) and dynamic (black) WACDT trials, with

horizontal and vertical error bars indicating the standard deviation.

performance with time on the dynamic WACDT. Only four

percent of participants deviated from the gradual decrement in

vigilance performance with time spent on the dynamic WACDT,

as demonstrated at the sample level. The remaining 96 percent

of participants demonstrated vigilance performance curves aligned

with the sample average, namely a gradual decrement over time.

In contrast, sample-level analyses of the static WACDT data set,

S, demonstrated an improvement in vigilance performance with

time on task that aligned with ninety-six percent of participants’

individual-level analyses. Only one participant demonstrated a

decrement in vigilance performance during the static WACDT.

Table 3 summarizes the conclusions drawn across all 26 data

sets analyzed by visual inspection of vigilance performance curves

and Sen’s Slope and Mann-Kendall Analyses.

A total of 52 comparisons were undertaken between vigilance

performance trajectories, including the group average data.
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TABLE 3 Comparison of conclusions derived by visual and analytic exploration of vigilance performance trajectories.

Comparison Trial Set count Prevalence

Analytically reported improvement aligns with visually observed
improvement

Static 25 96.15%

Dynamic 0 0.00%

Analytically reported decrement aligns with visually observed
decrement

Static 1 3.85%

Dynamic 22 84.62%

Analytically reported improvement misaligned with visually observed
decrement

Static 0 0.00%

Dynamic 1 3.85%

Analytically reported improvement misaligned with visually observed
improvement

Static 0 0.00%

Dynamic 3 11.54%

Only four out of twenty-five instances in which the vigilance

performance trajectory derived by the Sen’s Slope and Mann-

Kendall Analyses did not match the trends visually observed

in the data plots. Namely, this included participants 1, 12,

15, and 16 during their dynamic trials. However, the trends

visually observed in plots of the data aligned with the vigilance

performance trajectory derived by the Sen’s Slope and Mann-

Kendall Analyses for 96.15% of static trials where performance was

seen to improve, and 84.62% of dynamic trials where performance

declined over time.

Furthermore, vigilance performance improved in 96.15% of

static trials and declined in 84.62% of dynamic trials, which can

only be attributed to the different ways cognitive load, signal

salience, and event rate were operationalised between the two

conditions. This supports the notion that Parasuraman (1979,

1985) parameters are generalisable task performance factors that

influence vigilance performance in traditional as well as novel

modern paradigms (Grier et al., 2003; Oken et al., 2006; McIntire

et al., 2011, 2013; Knott et al., 2013; Neigel et al., 2020).

The reliability, validity, and longevity of the
WACDT

The reliability of the WACDT was assessed under both static

and dynamic conditions. Two split-half reliability coefficients

were derived by first calculating the minute-by-minute detection

percentages for both static and dynamic WACDT trials. This

resulted in two distinct data sets, each containing 60 values. These

values represent the average detection percentages for each minute

under static and dynamic conditions, respectively. Next, each 60-

value set were sorted into two groups based on the timestamp: one

with odd-numbered timestamps and another with even-numbered

timestamps. The 30 odd-timestamped values were then correlated

with the 30 even-timestamped values within each condition; static

and dynamic. This process yielded the two split-half reliability

coefficients for the WACDT under both static and dynamic

conditions. The split half reliability coefficient for the dynamic

condition was r(60) = 0.959, p < 0.001 and r(60) = 0.848, p < 0.01

under static conditions. Both the dynamic and static trial split-half

coefficients were above the critical value of 0.75 that Portney and

Watkins (2015) suggested high reliability. The WACDT was thus

demonstrated to be a reliable cyber vigilance task.

Guidetti et al. (2023) review identified longevity as a limitation

of existent vigilance tasks vigilance presented by McIntire et al.

(2013), Mancuso et al. (2015), and Sawyer et al. (2016). For

example, as the tools, technologies andmethods that cyber vigilance

tasks aim to emulate evolve rapidly (Guidetti et al., 2023). This

begets the need to regularly update cyber vigilance tasks, so

that they continue to accurately emulate the demands associated

with network defense. This is not dissimilar to psychological

instruments like the Wechsler Adult Intelligence Scale, which also

require routine updates to maintain validity. For example, the

tasks McIntire et al. (2013), Mancuso et al. (2015), and Sawyer

et al. (2016) presented may have served the purposes of a cyber

vigilance task well at their inception. However, their validity by

today’s standards is unclear, as cyber defense has evolved beyond

tools of their level of complexity. Though it is difficult to predict

with any precision, when the WACDT’s longevity might come

into question, as that depends on the rate that technology changes

in network defense. Providing regular updates and improvements

to the WACDT therefore reflects an essential effort required to

maintain its longevity and validity and avoid rapid obsolescence.

As well as avoiding obsolescence, providing additional periodic

updates to the WACDT could enhance its ecological validity as a

cyber vigilance task. For example, a cognitive task analysis (CTA) of

SEIM consoles surveyed by industry members could be undertaken

every six to eight years and used to inform new features to include

in future iterations of the WACDT. This could include expanding

the number of screens to present the WACDT or adding more

subtasks developed in network command-and-control consoles.

Discussion

The primary aim of this study was to present the WACDT

as a new, novel, accessible and validated cyber vigilance task.

It was hypothesized that the trajectory of WACDT performance

would decline with time on task. Two versions of the WACDT
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were tested. Under dynamic conditions, each parameter increased

in difficulty with time on task. In contrast, each parameter was

set to the most challenging level of processing. Thus, it was also

hypothesized that differences in signal salience, event rate and

cognitive load implemented in the static and dynamic forms of

the WACDT would influence the trend component of WACDT

performance declines.

Sen’s Slope and Mann-Kendall Analyses were used to derive

trends for the total, T(t), WACDT vigilance performance observed

across each participant and the group average. These analytically

derived trends were then compared to trajectories derived by

visually observing plots for each data set. Across static and

dynamic trials of the WACDT, this comprises 52 sets of vigilance

performance data. That is, 25 data sets were recorded from

dynamic trials, 25 data sets from static trials, and an averaged

data set was computed for each, for a total of 52. In total

96.15% of static WACDT trends derived by visual inspection and

Sen’s Slope and Mann-Kendall Analyses demonstrated improved

vigilance performance.

In contrast, vigilance decrement was observed in 84.62%

of dynamic WACDT trends derived from visual inspection of

the data and Sen’s Slope and Mann-Kendall Analyses. Of the

52 comparisons of WACDT vigilance performance, only three

instances in which the trajectories calculated by Sen’s Slope and

Mann-Kendall Analyses did not match what was visually observed

in data plots. That is, vigilance performance improved inmost static

WACDT data sets. Likewise, vigilance performance declined in a

majority of dynamic WACDT data sets.

Vigilance performance on the static and dynamic WACDT

versions was explored at the level of total task performance T(t),

as well as within the left, L(t), center, C(t), and right R(t) screen

subtasks. The decline in vigilance performance observed during

the dynamic WACDT supported the first hypothesis. Namely,

if the WACDT is a valid vigilance task, then performance will

decline over time. Vigilance performance on the static form of the

WACDT improved, in contrast to the decline observed during the

dynamic version of the task (Table 2, Figure 8). This result was

also seen at the WACDT’s subtask level, L(t), C(t), and R(t), with

only one exception, namely, vigilance performance on the right

screen subtask, R(t), improved under both the dynamic and static

WACDT conditions (Figures 6–9).

The decrements in vigilance performance observed during the

dynamic WACDT and improvements observed during the static

version of the task demonstrated support for the second hypothesis.

Namely, if the WACDT is a valid vigilance task, then dynamically

increasing signal salience, event rate and cognitive load during

the dynamic WACDT should lead to greater performance deficits

than in the static version where each parameter was kept constant

(Parasuraman, 1979, 1985). Vigilance performance improved

across each static condition subtask, whereas a decrement was

observed on all subtasks bar the dynamic condition right screen

subtask, R(t). The improvement in vigilance performance observed

on the dynamic right screen subtask could be explained by the close

resemblance between this WACDT component and meta-data

anomaly detection, a job that network defense analysts perform

in real-world cyber security operations centers (Keyvanpour et al.,

2020). However, this could indicate that vigilance performance on

the WACDT was best captured at the total task level rather than

by any one subtask. The Western Australian Cyber Defense Task

was therefore supported as a valid vigilance task since vigilance

decrement was observed in the dynamic form of the WACDT,

whereas improvement was observed in the static version.

Relationship between current and prior
research

The United States Wright Patterson Airforce Research Lab

possesses the only existing cyber vigilance tasks with which the

WACDT could be compared (Guidetti et al., 2023). In contrast

to these existent tasks, the WACDT is a validated and accessible

cyber vigilance task that can be accessed by parties external to the

United States Wright Patterson Airforce Research Lab.

Implications

The WACDT can serve as an experimental testbed for human

factor cyber security research. Beyond research, however, the

WACDT holds implications for how cyber security command-and-

control consoles are built and maintained. On a practical level,

cyber security software engineers could use the psychophysical

boundaries of signal salience, event rate, and cognitive load in

the WACDT to tailor cyber command-and-control systems to

suit analysts’ neuro-cognitive capabilities. For example, suppose

a software engineer designs, develops, and deploys a commercial

SEIM within a cyber security operation center. The WACDT

could calibrate a neuro-ergonomic composition of signal salience,

event rate, and cognitive load that minimizes analysts’ vigilance

decrement performance. An analyst could first perform a version of

the WACDT calibrated to match the signal salience, event rate, and

cognitive load of the company’s command-and-control console.

The analyst could then perform a range of WACDT trials under a

range of signal salience, event rate, and cognitive load compositions

to identify one that optimizes their individual sustained attention

capacity. This procedure could also benchmark the sustained

attention capacity of new hire analysts without exposing candidates

to core details about a company’s command-and-control console.

Limitations and future research

Several factors limit the extent to which the WACDT might

be generalized beyond the laboratory to the wider population of

network defense analysts. These include sample size, the range

of dynamic WACDT parameters tested, and task duration. Given

that the sample of analysts who participated in this research

reasonably approximated the age and gender distribution and years

of operational experience of the wider Australian cyber security

analyst population, it may generalize well at the moment (ISC²,

2020). However, as the gender distribution within the wider cyber

security changes over time, the generalisability of this work may

decrease over time. Therefore, moving forward, an avenue of future
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research would be to test the WACDT on a larger, more diverse

sample of network defense analysts.

The population average age of cyber security professionals is

42 years old; however, the sample had an average age of Mage

= 35.68 years old with σage = 11.93 years (ISC², 2020). Given

that the sample average was younger than the population average,

the conclusions derived through this work may not generalize to

older members of the population of network security analysts. An

avenue of future research would also be to explore the impact of

age on cyber vigilance performance. For instance, age is associated

with increased vigilance decrement; however, Parasuraman and

Giambra (1991) also demonstrated that experience can moderate

this relationship.

Secondly, because the sample comprised operational network

defense analysts, their employment responsibilities limited the

amount of time they could reasonably dedicate to completing

WACDT trials. The static and dynamic versions of the WACDT

were designed to explore the sensitivity of vigilance performance

to changes in signal salience, event rate and cognitive load.

Each parameter was made to fluctuate simultaneously within the

dynamic task. However, there are multiple ways that sensitivity to

each parameter could have been explored. However, this would

have also increased the time commitment required from each

participant to complete the research from approximately 2 to 8 h

per participant. In the future, different compositions of dynamic

parameter variationmay inform features of network defense, which

differentially impact cyber vigilance performance. For example, an

alternative form of dynamic trial could have the event rate set

as fixed while signal salience and cognitive load vary. This form

of dynamic trial could facilitate an exploration of the interaction

between the cognitive load associated with processing a SEIM alert

and recognizing its threat level. What is the relationship between

the complexity of a cyber-attack and its obviousness as a problem

to an operator?

Related to the second limitation was the 60-min time limit

of each WACDT trial. Most laboratory vigilance tasks are run

for 40min to an hour (See et al., 1995; Helton et al., 1999;
Warm et al., 2008, 2009; See, 2014). However, Chappelle et al.

(2013) reported that network defense analysts often work up to
10.5 h per day, with minimal rest periods, for a total of 52.5 h

per week. The demands associated with 60min of the WACDT
cannot compare to the 10.5 h per day that Chappelle et al. (2013)

observed as the root cause of clinically significant burnout and
stress in network defense analysts (O’Connell, 2012; Mancuso et al.,

2015). Operational limitations on participants’ time prevented
testing WACDT performance for periods longer than an hour. The

WACDT’s external validity was limited by the hour-long constraint

imposed on task duration. Future studies, however, should explore

cyber vigilance performance over time periods that more closely

approximate what is required in the real world.

Under dynamic WACDT conditions, there was a decline in

vigilance performance for the left and center screen subtasks.

However, there was an improvement in vigilance performance

for the right screen subtasks. The reason for this divergent trend

remains unclear. One possibility is that participants were more

accustomed to anomaly detection tasks, like those simulated

on the right screen. Their prior experience in operational

SEIMs could have influenced their performance in the WACDT

environment. Further research is needed to fully understand the

underlying factors for this discrepancy in performance across the

different screens.

Conclusion

In closing, the WACDT is the most up-to-date cyber

vigilance task that civilian human factors researchers can

use to study declines in sustained attention during network

defense. Unlike existent cyber vigilance tasks, the WACDT

was designed with the ability to control each of the parameters

that Parasuraman (1979, 1985) suggested influenced declines

in sustained attention. Human factors researchers could

leverage the WACDT to study ways of managing the risk

associated with vigilance decrement in operational network

defense. For example, this could include understanding how

different compositions of signal salience, event rate, cognitive

load, and workload transitions influence the cyber defensive

capacity of network defense analysts working with cyber

command-and-control consoles.

Author’s note

In following with our recently published article, “A Review

of Cyber Vigilance Tasks for Network Defense” we now wish to

submit another original research article, entitled “The Western

Australian Cyber Defense Task” for publication consideration. We

confirm that this work is original and has not been published

elsewhere, nor is it currently under consideration for publication

elsewhere. In this paper, we present a new vigilance task for cyber

security, that overcomes the challenges outlined in our previous

work and which can be used to assess the capacity of network

defense analysts to sustain attention to virtual threats presented

in modern Security Event Information Management software. This

is significant because we overcome the challenges associated with

developing a modern and updated cyber vigilance task outlined

in our previous publication. We believe the aims and scope of

Frontiers in Neuroergonomics is ideal for our manuscript which

address a range of interdisciplinary challenges that limit the study

of symbiotic human computer interactions in the cyber security

domain. Moreover our task fills an important gap in the literature,

namely a tool that researchers can use to study the impact of

neuroergonomic features of cyber security command and control

console software.
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