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Responsible (use of) AI

Joseph B. Lyons*†, Kerianne Hobbs†, Steve Rogers and

Scott H. Clouse

Air Force Research Laboratory, Dayton, OH, United States

Although there is a rich history of philosophical definitions of ethics when applied

to human behavior, applying the same concepts and principles to AI may be

fraught with problems. Anthropomorphizing AI to have characteristics such as

“ethics” may promote a dangerous, unrealistic expectation that AI can be trained

to have inherent, guaranteed ethical behavior. The authors instead advocate for

increased research into the ethical use of AI from initial ideation and design

through operational use and sustainment. The authors advocate for five key

research areas: (1) education in ethics and core AI concepts for AI developers,

leaders, and users, (2) development and use of model cards or datasheets for

datasets to provide transparency into the strengths, limits, and potential biases of

a trained model, (3) employing human-centered design that seeks to understand

human value structureswithin a task context and enable e�ective human-machine

interaction through intuitive and transparent interfaces, (4) targeted use of run time

assurance that monitors and modifies the inputs or outputs of a trained model

when necessary to enforce ethical principles such as safety or limiting bias, and (5)

developing best practices for the use of a joint human-AI co-creation and training

experience to enable a shared mental model and higher performance through

potential emergent behavior.
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Background

Understanding the drivers of human behavior is complex. At a macro level, one

dominant influence on human behavior is ethics. Ethics can be defined as a set of reflected

norms, rules, precepts, and principles that guide and influence the behavior and attitudes

of individuals or groups (Dubljević et al., 2018). Theories of ethics from a normative

approach tend to adopt one (or some combination) of three approaches: (1) understanding

the characteristics and features of ethical agents (i.e., virtue ethics), (2) understanding the

nature of behaviors as either positive or negative in nature (i.e., deontological ethics), and (3)

characterizing the outcomes of the behavior as positive or negative (i.e., consequentialism;

Dubljević et al., 2018). As rational, feeling, and thinking beings, ethics are used as one means

from which to anticipate and understand human behavior. If humans can understand the

norms and values of other humans, they can begin to predict behavior at a macro level.

However, with the rise of artificial intelligence (AI), considerable attention has been given

toward the application of ethical theories to AI (Dignum, 2019).

AI technologies are a growing part of our society. Research in autonomous cars has seen

movement toward ethical considerations of the AI behind the wheel as these technologies

are placed in moral dilemmas that stress the often life or death behavioral options that need

to be evaluated and pursued (Awad et al., 2018), yet few studies have expanded beyond the

Trolley Problem to examine realistic ethical dilemmas. One notable exception is the work by

Laakasuo et al. (2022) wherein they examined robotic nurses in ethical dilemmas. An ethical

dilemma is a situation where an actor must select between two or more courses of action,
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wherein none of the options is able to satisfy the needs of the

situation (Schulzke, 2013). In such situations, there may be no

“good” option, but rather an actor must select between multiple

options none of which are “morally-flawless” (Misselhorn, 2022).

It is important to use the term “select” over terms such as “think”

to avoid anthropomorphizing of AI—because regardless of one’s

views regarding the feasibility of creating a “conscious” machine

in the long-term (see Dignum, 2017; Laakasuo et al., 2021), it is

hard to challenge the fact that machines will be placed in situations

where they must ingest data and act. Human understanding and

acceptance of ethical behavior will shape how well AI is adopted

in society, “. . . for the wider public to accept the proliferation of

artificial intelligence-driven vehicles on their roads, both groups

will need to understand the origins of the ethical principles that

are programmed into these vehicles” (Awad et al., 2018, p. 64).

However, it is the primary supposition of this manuscript that

ethical theories should be directed toward human-AI systems to

augment existing approaches in machine ethics and move closer

to Responsible Use of AI. Additionally, this manuscript offers

guidance to the creators of AI to modify how AI is developed,

fielded, and sustained in order to enable the ethical use of AI.

Given the vast literature on AI and AI ethics, it is important

to provide definitions and to bound our discussion. AI can

be defined as computational approaches to simulate human

capacities (Misselhorn, 2022). The concept of AI often invokes

the perception of human-like features and capabilities. Due to the

increased capabilities of AI, agents are increasingly expected to

behave as moral agents with reasoning similar to that of humans

(Dignum, 2019); however this creates a dangerous expectation

that computational agents possess moral capacity where it may

not exist. AI systems may possess a higher or lower capability to

recognize, process, and act on morally-relevant information in the

environment (Dignum, 2017; Misselhorn, 2022). Dignum (2017)

discusses three levels of moral behavior for AI: (1) Operational—

wherein the AI possess no social awareness and it inherits the

values of the maker, (2) Functional—which includes systems

that are sensitive to value-based features of the environment

encoded as rules and these systems are capable of adapting to

human norms, and (3) Artificial Moral Agents which are self-

reflective contextually aware. Given the low technical maturity

of the latter two examples, the current manuscript is focused on

operational level AI often consisting of Machine Learning (ML)

technologies. Additionally, this manuscript is focused primarily on

military applications of AI. Hence the recommendations outlined

later in the manuscript may have limited applicability to broad

AI applications.

There are many instances wherein AI has been delegated

bounded authority to act on behalf of humans. AI supports

vehicle autonomy (Awad et al., 2018), healthcare (Rau et al.,

2009; Laakasuo et al., 2022), decision-making for organizational

elements such as promotions, hiring, and recidivism prediction—

albeit not without controversy (Dressel and Farid, 2018; Eubanks,

2018). However, AI is also being used and developed for use

in physically-dangerous domains. The U.S. Army is developing

technologies to support robotic combat vehicles (RCVs; Brewer

et al., 2022). Naturally, safety and reliability are primary drivers

of operators’ acceptance of such technologies (Brewer et al.,

2022). The Defense Advanced Research and Development Agency

(DARPA) is developing AI for augmenting dogfighting for the

Combat Air Force (CAF; DARPA, 2020). In a recent test event, AI

controlled flight operations for a tactical fighter test aircraft, the

Lockheed Martin X-62A Variable Stability In-Flight Simulator Test

Aircraft (VISTA) during advanced fighter techniques (Finnerty,

2023). San Francisco proposed the use of lethal robots for extreme

policing events to reduce risk to police officers (Rodriquez, 2023),

however the proposal was pulled due to emergent concerns

regarding ethicality.

In other cases, the use of intelligent technology is already

having a positive impact. AI has been successfully applied as an

aid to detection illness such as breast cancer (Broussard et al.,

2000; Mitchell et al., 2001; Brem et al., 2005). In 2014, the U.S.

Air Force implemented an automatic ground collision avoidance

system (Auto-GCAS) which is an automated safety system fielded

on the F-16 platform that assumes control of the aircraft when an

unsafe aircraft state (position, orientation, and velocity relative to

terrain) is detected by performing a roll-to-wings-level and a 5-G

pull up to get the pilot and the aircraft away from danger (Lyons

et al., 2016a). Since its fielding, Auto-GCAS has saved a combined

13 pilots and 12 F-16 aircraft to date.

Yet, despite the real and envisioned benefits of intelligent

technologies, the use of AI remains somewhat controversial. Many

in the research community believe that AI research is headed in the

wrong direction, given flawed assumptions of full autonomy, the

impractical goal of seeking to achieve a capability that is superior to

humans, and the centralization (i.e., the fact that few developers are

making decisions that could impact broader society) that is often

present in the AI community (Siddarth et al., 2021). In contrast,

researchers have called for discussions regarding “Actually Existing

AI (AEAI)” which moves away from Generalized AI and toward

more realistic views of AI. Others have referred to narrow vs.

generalized AI to refer to machine learning algorithms. A focus on

generalized AImay be too grandiose and can result inmiscalibrated

expectations from developers, users, and leaders of organizations.

In particular, AI technologies have been shown to perpetuate

biases toward certain groups (Buolamwini andGebru, 2018; Dastin,

2018; Eubanks, 2018; Munn, 2022). Numerous instances of the

potentially negative consequences of AI have been discussed in the

literature but exploring the gamut of potential dangers of AI herein

is beyond the scope of the current manuscript. Thus, it is important

to consider the potential consequences of using AI in society, and

this is particularly true within military domains. Researchers have

called for increased emphasis of AI ethics research in the context

of human-machine teams (Pflanzer et al., 2023), and the term

responsible AI has emerged in the literature (Dignum, 2019; DoD

RAI Strategy Implementation Pathway, 2022; Voeneky et al., 2022).

The movement toward Responsible AI can be characterized as,

“RAI is a journey to trust. It is an approach to design, development,

deployment, and use that ensures the safety of our systems and

their ethical employment. RAI manifests itself in ethical guidelines,

testing standards, accountability checks, employment guidance,

human-systems integration, and safety considerations” (DoD RAI

Strategy Implementation Pathway, 2022, p. 6). RAI emphasizes that

systems be developed in a good way for a good cause and considers

the implications of morally relevant decisions and behaviors by
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machines (Dignum, 2017, 2019). These definitions of RAI are, at the

core, focused on ethical development, use, and testing of AI. This

is a fruitful approach from which to address the overall challenges

associated with AI ethics. However, the problem with the terms such

as responsible AI (and AI ethics more generally) is that such terms

(if misused) can promote an expectation that the onus for ethical

behavior rests with the AI, which may create unrealistic expectations

for AI technologies as they exist today. Ethical considerations often

require knowledge about the context such as the types of situations,

the individuals involved, the cultural and social values that exist

in that context, and how those norms and values may fluctuate

based on contextual factors (Dignum, 2017). Given that AI is

not well-suited for understanding contextual factors at present, it

may be more appropriate for the community writ-large to discuss

responsible use of AI wherein the onus for ethical behavior is more

on the human-AI system and less on the AI. This is consistent with

the definition of RAI offered by the DoD as noted above.

Treating AI as “ethical” or expecting that AI will be capable

of ethical reasoning is fraught with potential dangers. To be

clear, the authors are not suggesting that the research community

avoid studying machine ethics. In contrast, the authors view the

exploration of “ethical use of AI” as paramount to societal and

military interests. However, it is the position of this manuscript

that the research community invest in understanding the ethical

use of AI—which as defined above involves considerations for

development, testing, and use of AI in ethically-relevant scenarios.

Munn (2022) discusses the potential limitations associated with

AI ethics (i.e., ethical responsibility pushed onto the AI vs.

humans). First, there are many taxonomies of AI ethical principles,

yet they are sometimes difficult to translate into action and

the mere presence of these principles does not ensure that the

AI technologies in question will perpetuate behaviors that are

deemed ethically-acceptable. Munn states that the principles are

often highly abstract and not directly actionable. The Department

of Defense has publicized 5 ethical principles of: responsible,

equitable, traceable, reliable, and governable (DoD, 2020), and

while these are useful goals for AI technologies, they are challenging

to apply to a specific technology. Munn’s second point is that the

industries making AI often perpetuate unethical behavior in their

work practices internally andmay bemore motivated by profit than

by promoting ethical good for the world. From this view, unethical

companies are more likely to propagate unethical practices and

behaviors. Third, ethics are not frequently taught or reinforced

within the organizations. Munn’s point is that there needs to be

both incentives to develop and use AI ethically and policies that

enforce (and potentially punish) negative ethical behaviors. For AI

ethics to be effective, there needs to be accountability from the

designers, testers, and leadership of the organizers selling and using

the AI technologies. This accountability may need to be enforced

through external regulators. Finally, Munn states that ethics are

often counter to the bottom-line motivation that operates within

most organizations.

Challenges of applying human ethics to AI

There are a number of challenges associated with the

application of human ethical theories to AI. Many of these

challenges are outlined by Pflanzer et al. (2023) and include

factors such as: human preferences, challenges with applying

ethical theories to machines, attribution of blame and severity

of consequence, and trust repair challenges. Some researchers

have called for AI to include state awareness functions that

resemble human consciousness as a means to promote more ethical

machines (Chella et al., 2019). From this perspective, AI that

possesses state-level awareness and “experience” might be better

suited for ethical reasoning. This is similar to the notion of an

Artificial Moral Agent (Dignum, 2017).

However, many (such as Bigman and Gray, 2018) have

expressed concern regarding such approaches, noting that human

acceptance of such capabilities (even if technically-feasible—which

is a position that is still unclear) would be quite low. Humans

tend to prefer other humans as the decision maker when the

decisions are moral in nature. Specifically, humans are preferred

over machines in situations involving driving, medical decisions,

and military situations. The rationale for this preference is the

notion that humans have greater experience and agency to navigate

moral complexities. Interestingly, humans can favor other humans

over AI even when the AI has demonstrated the ability to

outperform other humans in a process referred to as algorithm

aversion (Dietvorst et al., 2015). Hence, human preferences for

other humans over AI as moral decision makers is one challenge

in applying human ethics to AI.

Secondly, it is challenging to apply virtue ethics, utilitarianism,

or consequentialism to machines because expectations for ethical

behavior of machines are higher and more difficult to achieve than

expectations of ethical behavior of humans. When considering the

ethicality of humans, it is quite common for one to evaluate the

features and characteristics of the human and determine if those

features are good or bad. Competence is a core consideration

for trustworthiness of machines (Hancock et al., 2011). However,

humans and machines do not start at the same level when

considering competence. Due to human individual differences such

as the Perfect Automation Schema (see Dzindolet et al., 2002),

humans have higher starting levels of perceived capability with

machines relative to humans. These differences between initial trust

in humans compared to machines has been further elaborated

by Madhavan and Wiegmann (2007) who state that humans

tend to: (1) have higher expectations of technology relative to

humans, (2) view technology as invariant and humans as variant,

(3) tend to be less forgiving of machine-based errors relative to

humans, and (4) tend to view machines in performance terms

and humans in relational terms. Research has indeed confirmed

that machines tend to pay a higher cost for errors relative to

humans. A series of studies by Sundvall et al. (2023) found that

a robot was blamed more harshly than humans when it applied

utilitarian logic to a situation that invoked more folk-ethics (such

as saving two boaters who caused an accident rather than saving

the innocent victim). Research by Laakasuo et al. (2022) found

that robotic nurses were evaluated more negatively (compared

to humans) in an ethical dilemma wherein they forcibly applied

medication to a patent. Shariff et al. (2017) conducted a large

survey of drivers and found that even though autonomous cars may

result in fewer accidents than humans, human drivers attributed

greater severity to accidents that involved autonomous vehicles

relative to accidents caused by humans. Thus, the application of
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virtue ethics, utilitarianism, and consequentialism to AI comes

with limitations.

Third, the issue of intentionality is harder to decipher when the

referent is an AI. Perceived benevolence, the beliefs that another

agent has one’s best interests in mind when making a decision

and acting, is a core trustworthiness attribute (Mayer et al., 1995).

People are more prone to trust others when they believe that

those other agents have their best interests at heart. There are two

challenges related to the attribution of intentionality toward AI

to include the issue of agency, and the issue of transparency. It

is highly probable that future AI systems deployed in a military

context will need to evaluate multiple goals and select actions in

accordance with those goals. There may be times when goals are

somewhat competing—in the case of competing time demands vs.

resource utilization, for instance. Yet unlike humans, wherein the

notion of agency is understood and fully assumed, AI may vary in

the degree to which they have been delegated bounded authority

for a given situation. Thus, even if machines communicate goal

alignment with a particular human partner, machines may not

possess the delegated authority to act on behalf of that intent.

Without agency to act on behalf of communicated intent, a human

partner may not believe and attribute positive attitudes toward a

machine agent.

Research by Lyons et al. (2022) confirm this effect. Their

research demonstrates that the benefits of benevolently-framed

intent are highest when a robot also possesses the highest degree

of decision latitude to act on that intent. So for a future AI to

convey benevolence the AI needs to actually be able to act on

behalf of that intent. Imagine, for example, an AI-based rescue

robot identifies a victim and communicates an interest to help

the victim. However, the victim watches the robot pass her/him

by because it was following a pre-programmed route and did

not possess the delegated authority to deviate from that route.

It is highly likely that conveying an interest to help would be

met with negative responses if the AI could not actually provide

help due to prior programming. This subtle, but critical issue is

not one that humans are accustomed to dealing with in other

humans, but it is an issue for AI systems that will need to

be addressed.

AI systems suffer another limitation in that, even if they

are delegated bounded authority for a given task, intent in

relation to a human may be opaque. Lyons (2013) talks about

the importance of transparency of intent within human-robot

interactions. To date, it is unclear whether behaviors from an

AI will be attributed to benevolent intentions or simply to the

programming guiding the technology. For an AI to be perceived

as helping and supportive of one’s goals it must be clear that

the AI is working toward goals that benefit the human, this will

require design features that make such attributions clear. Research

has shown that framing a robot’s behavior in self-sacrificial terms

can increase trust and trustworthiness of a robot (Lyons et al.,

2021). However, great care must be taken to ensure that if goal

alignment is conveyed to the human that the AI is actually

working in support of said goals, lest the human perceive that

the AI is trying to exploit the human. Thus, when trying to apply

virtues such as competence and benevolence of an AI, one must

consider the issues of opacity, dispositional biases, and design

for transparency.

Some researchers have called for moral competence in

technologies such as social robotics (Malle and Scheutz, 2014).

There is certainly value in designing physically-embodied

technologies with capabilities to better communicate and interact

with humans. Due to limitations in contextual awareness and

adaptability, which would preclude broad applications of moral

competence in robots, this could be envisioned to occur on a

limited scale for tasks. Specifically, the social norms and value-

oriented language to communicate on behalf of those norms

could be structured to be executable in task-specific ways. This

would be consistent with Dignum (2017) Functional level of

moral competence. Such methods might include the ability to

communicate in relation to norms and to engage in trust repair

and explanation when behaviors violate norms (Malle and Scheutz,

2014; Lyons et al., 2023). A recent study by Lyons et al. (2023)

examined human reactions to a situation where a robot violated

a behavioral expectation for a robot to follow a plan issued by

a human operator. They found that trust and trustworthiness

decreased following the behavioral violation. However, explanation

strategies geared toward providing the rationale for a behavioral

deviation (in this case by offering an observational rationale) were

effective in thwarting the decreases in trust and trustworthiness.

Notably, participants evidenced no decrease at all in ability

perceptions when this (observational rationale) explanation

was provided.

In the above sense, like the moral competence discussed by

Malle and Scheutz (2014), the robot is simply recognizing a norm

violation and responding accordingly. This could be useful in

narrow contexts, but less feasible in broad contexts. However,

recent research has found that trust repair strategies are typically

ineffective for repairing trust violations by AI for ethical violations

(Schelble et al., 2023). Schelble et al. (2023) exposed participants to

an unethical AI (in this case a violation of virtue ethics wherein the

AI team was told to avoid collateral damage in an air-to-ground

strike, but the AI engaged in a strike that resulted in significant

collateral damage) and tested two trust repair strategies (apology

and denial) and found that neither repaired trust for an unethical

AI. Thus, traditional strategies for repairing trust may be ineffective

for trust repair associated with ethical violations from AI systems.

In summary, there are a number of challenges with using

human-centric ethical models for evaluating AI systems. Humans

have preferences for non-AI agents in moral decision-making. It is

difficult to attribute virtue to amachine and to ascribe intentionality

to its actions, it is hard to know who to blame when AI systems

make an error and how severe that error really is, and repair

trust of AI systems when they eventually do make an error (as all

agents do—human or AI-based) is difficult when the violation is

ethical in nature. For all of these reasons, one might move away

from attributions of AI ethicality and toward responsible use of the

AI—which pulls in the broader human-AI systems perspective.

Moving toward responsible use of AI

Despite the aforementioned challenges noted above, the present

manuscript adopts the position endorsed by the DoD RAI Strategy

and the broader literature on Responsible AI (Dignum, 2019;

Voeneky et al., 2022) that the community needs to advance
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methods to support development, test, and use of AI—which

places the focus of attention on humans interacting with AI at the

various stages of development and use. This perspective suggests

that AI should be considered as one element of a human-machine

system. Considering both the AI and the human working together

in a task context should broaden the focus of AI ethics toward

considerations related to ethical USE [emphasis added] of AI. This

is particularly true for contemporary AI systems that are machine

learning-centric and often devoid of contextual awareness. Humans

have contextual awareness and are better poised to adjudicate

value alignment and norm assessment across contexts. Thus, we

as a research community should move responsibility for ethical

behavior toward the human-machine systems using the AI. In this

regard, acceptability and appropriateness of the human-AI joint

system become the paramount concerns. The current manuscript

suggests five pathways toward advancing responsible use of AI:

education and ability to interpret AI documentation such as model

cards (Mitchell et al., 2019), considering and documenting training

data as learning affordances, human-centered design principles

inclusive of development of effective human-machine interfaces,

run time assurance, and joint human-AI training.

Education

Awareness begins with education regarding the ethical use of

AI within the communities of AI researchers, designers, regulators,

insurers, acquirers, leaders of team developing or using AI, and end

users of AI technology. “Therefore, Responsible AI also requires

informal participation of all stakeholders, which means that

education plays an important role, . . . ” (Dignum, 2019, p. 48). It is

a known problem that many computer science curriculums do not

have much of an emphasis on AI ethics (Reidy, 2017). The current

manuscript advocates that AI developers and robotics engineers

get exposure to ethics during their training. This education could

include, at a minimum, (1) courses to introduce ethics, (2) courses

to discuss examples of prior AI ethics issues, and (3) courses to

discuss methods that promote responsible use of AI. Education is

also needed beyond just the AI developers. Leaders in organizations

need to be educated on the realistic capabilities and potential ethical

issues surrounding the use of AI in their organizations. Generally,

this could help to promote appropriate expectations of AI within

the organization’s strategy and vision. Additionally, it could help to

anticipate and address potential ethical shortcomings regarding the

use of AI in the military and across society more broadly. Finally,

it is imperative to cultivate an AI-literate general workforce. As

organizations develop, test, and field AI systems, it is important for

the general population of workers to understand the basics of AI in

order to be responsible users of AI.

One way to measure this understanding may be to evaluate

whether they can interpret the contents of a model card (Mitchell

et al., 2019) or datasheets for datasets (Gebru et al., 2021)

sufficiently to appropriately bound their use of the AI model in

question. While there are currently no standards for documenting

ML datasets, the model cards and datasheets for datasets ideas

suggest that AI developers use a structure to document a trained

model or the data used to train it. Model cards are envisioned to

be brief documents accompanying a trained ML model, sometimes

referred to as a “nutrition label” for AI models, that provide

the context where models are intended to be used, expected

performance, and a description of what information the model was

trained on. For example, in big data contexts such as supervised

learning on populations of humans, a model card might describe

how well the model performs across race, geographic locations,

age, sex, cultures, or skin types. For another example, a model

trained using reinforcement learning might describe the fidelity

of the simulation or physical environment it was trained on, the

sets of conditions it has been trained and evaluated on, conditions

where behavior may not be reliable, and failure rates. Datasheets for

datasets are envisioned to include the motivation for the AI tool,

the intended purpose of the tool (including who created it, who

funded its creation, and whether there was a specific application

in mind), the composition of the dataset (what is in it, how large

it is, are there subpopulations, how it is maintained), the collection

process associated with the dataset (how was the dataset created,

who was involved, how recent is it, has it been updated, if there is

data related to people did the people know about the dataset, were

they informed about possible uses?), and the recommended uses of

the dataset (Gebru et al., 2021).

Training data

Medical doctors and fighter pilots have very specialized training

to meet highly regulated standards that allows a person to make

some assumptions about expertise. Even with unfamiliar doctors or

fighter pilots, one can make inferences about the referent due to

the training and experience that those individuals possess and have

demonstrated through standardized evaluations. However, one will

likely not have the same confidence that a medical doctor can repair

a motor vehicle. Likewise, narrow AI systems that are based on

ML algorithms are completely limited by the training data used to

create them. This means that the training data itself can be used

as a means to better calibrate one’s understanding and expectations

regarding an AI tool. The World Economic Forum suggested that

all developers of ML datasets document the provenance, creation,

and intended use of datasets to avoid bias in the application of ML

models (World Economic Forum, 2018). Lyons et al. (2018) talk

about this in terms of using the training datasets as a means to

understand and communicate the learning affordances from which

the algorithms have been trained. Learning affordances associated

with datasets could involve the types of data (i.e., size, creation,

intended use), types of content (specific attributes related to the

content of this dataset), environmental constraints (i.e., what types

of uncertainty has this training dataset been exposed to?), and

stability (i.e., has the dataset been updated, what is the battle rhythm

for updates and who provides updates?). Understanding these

features of a dataset could help to inform whether one’s intended

use of an AI matches the tool’s original intended purpose and

whether or the dataset used to train the AI algorithm is appropriate

for that targeted use.

Similarly, Gebru et al. (2021) discuss the concept of

datasheets for datasets, and Mitchell et al. (2019) have

proposed documentation of trained models using model cards.

Acknowledging that training datasets are the key driver of ML

models, datasheets for datasets would help to create meta-data
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that would allow a user of AI to understand how well that AI tool

(and its associated training data) matches the intended use of the

AI. Obviously, if the targeted context does not match the intended

target context, one might think twice before using that AI for the

task. This methodology could also help to reduce bias associated

with the use of AI by preventing the use of restricted datasets

for applications to populations not well-represented within the

dataset. Through labeling the generalizability of a dataset, users of

AI can better understand who (i.e., what groups) AI tools might

be most effective for—and potentially what groups to avoid using

the AI tool for. Herein, the overall objective of providing this type

of information about the dataset is to calibrate users’ expectations

with regard to the appropriateness for a particular AI tool for a

given desired use.

Human-centered design principles

Human-centered approaches have emerged as an influential

approach in human-machine interaction. Human-centered AI

(HCAI) is an approach pioneered by Shneiderman (2020) which

encourages privacy, security, environmental protections, social

justice and human rights. This is consistent with value sensitive

design wherein the design method considers human values as a

key feature of the design process (Friedman et al., 2006). The

key element in the human-centered approach is to augment

humans rather than focus on replacing them. To do so, one must

first understand the tasks being performed, the value structures

that exist within these task contexts, the human actors that

are present, and any contextual constraints that influence what

is deemed acceptable (by humans) in these task situations. In

addition to understanding human value structures and their

contextual nuances, AI must be designed to augment humans and

to maximize human control over the AI (Shneiderman, 2020).

Designing with maximal human control does not mean that

machines should avoid higher levels of automation. In contrast,

HCAI approaches emphasize that both high human control and

high machine control is possible simultaneously (Shneiderman

et al., 2016). HCAI principles can support more effective human-

AI systems and should be used when developing novel AI systems

(Xu et al., 2023). Human-centered design helped to inform the

design of a novel supervisory control system within the U.S. Air

Force Research Laboratory. Driven by a thorough understanding

of operator needs and preferences, an intuitive interface design

was created to maximize operator directability and to facilitate

a flexible full spectrum-of-control wherein the gamut of manual

control, playcalling approaches, and fully autonomous responses

were shown to augment operations (Calhoun et al., 2021).

Parallel to the HCAI movement, has been the emergence of

agent transparency research. Transparency is one of three pillars

for responsible AI along with fairness and accountability (Dignum,

2019). Agent transparency can be referred to as the agent’s ability

to communicate information to the human operator in a clear and

efficient manner, which allows the operator to develop an accurate

mental model of the system and its behavior (Chen et al., 2020).

Research on transparency has increased in recent years keeping

pace with emergent AI systems that are often opaque (e.g., ML

systems). There are two dominant models within the transparency

literature: the Situation Awareness-based Agent Transparency

(SAT) model and the Lyons transparency model for human-robot

interaction (Bhaskara et al., 2020).

The SAT model leverages Endsley (1995) Situation Awareness

model to create methods for perception (level I), awareness (level

II), and projection (level III) of agent rationale and behavior

(Chen et al., 2018). Research has shown that interfaces that invoke

level III transparency can improve performance and increase

trust compared to lower levels of transparency (Mercado et al.,

2016). Interestingly, these benefits did not come at the cost of

higher workload—which is consistent with the HCAI principles

noted above. The Lyons model of HRI transparency emphasizes

robot-to-human (r-TO-h) transparency which promotes signaling

information about the robot’s purpose, task understanding and

status, analytic methods, and environmental understanding (Lyons,

2013). Additionally, this model discusses the need for robot-

of-human (r-OF-h) transparency which emphasizes information

about the team roles and division of labor between the human

and robot, as well as bidirectional information about the robot’s

understanding of the human state (e.g., cognitive workload; Lyons,

2013). The SAT model has been applied to autonomous squad

member technologies, RoboLeader applications, and command

and control (C2) applications (see Chen et al., 2018). The Lyons

model has been applied to robotic scenarios (Lyons et al., 2021)

and commercial aviation automation (see Lyons et al., 2016b).

While many transparency approaches have focused on the human-

machine interface part of the human-AI system, transparency

related information can be acquired across the lifecycle of the

human-AI interaction to include design, test, use, and debriefing

opportunities (Miller, 2021).

Run time assurance

Run time assurance (RTA) is the process of augmenting a

complex system, such as a trained neural network, to ensure that its

output meets some desired properties (safety, ethics, performance,

etc.). RTA theory is sourced from the control theory community,

where it is often implemented as a wrapper that monitors the

output of a complex controller (e.g., neural network control

system) and modifies its output when necessary to assure safety

(Hobbs et al., 2023). An example RTA system is the Auto-GCAS

systemmentioned earlier. This systemmonitors the state (position,

velocity, orientation, etc.) of the aircraft relative to surrounding

terrain for imminent collisions and intervenes by switching from

the complex control system (in this case a human pilot) to a

backup controller (roll-to-wings-level and 5-G pull up maneuver)

to avoid the collision, as depicted in Figure 1. While control theory

definitions of RTA focus on the safe output of a control system,

the authors generalize the definition here to be applicable to the

acceptable outputs of a neural network.

Direct modification of the output
Approaches to RTA generally focus on architectural solutions

that monitor the output of the complex system and modify it when
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FIGURE 1

The Automatic Ground Collision Avoidance System (Auto-GCAS) is an example of an Run Time Assurance (RTA) system that monitors the state of an

aircraft and when the predicted trajectory (red) would result in an imminent ground collision, Auto-GCAS switches to a predefined roll to wings level

and 5g pull maneuver (green) to avoid the terrain [Photo by Jet Fabara, afmc.af.mil].

necessary to assure properties such as safety. This architecture is

depicted in Figure 2. In this architecture, the output of a complex

system is either passed through to another system or the user if it

satisfies desired properties, or the RTA component modifies that

signal in some way. Two approaches tomonitoring the RTA include

implicit and explicit methods, while two approaches to intervention

include switching and optimization. Implicit monitoring methods

project a trajectory of the “other system” it is interacting with to

predict future violations of safety properties. For example, Auto-

GCAS uses an implicit monitoring strategy in which it projects the

trajectory of the aircraft if it were to take a roll-to-wings-level and

a 5-G pull up maneuver and compares that trajectory to a digital

representation of the terrain elevation in the path of the aircraft

to determine whether there is sufficient time available to recover

the aircraft before a collision. Explicit monitoring approaches use

a mathematical formula and set theory to define the separation

between safe and unsafe states of the system, factoring in the

maximum possible action that could be taken to stay in the safe

set. This generally can only be done by a machine. This would

be akin to measuring the distance and rate of closure between

the driver’s own vehicle and the vehicle in front of them, the

maximum rate of deceleration of the vehicle ahead as well as the

maximum deceleration of the driver’s own vehicle, and computing

the minimum distance required between vehicles to ensure that no

matter what the vehicle ahead does, the driver will be able to detect

it and respond in time to avoid a collision. In some cases, monitors

may only consider the input, and not the output of the complex

system. In the driving example, a monitor may only consider the

distance and speed of the car ahead and not the current steering

wheel and pedal inputs from the driver.

These monitoring strategies can be coupled with different

types of interventions. Switching interventions, often employed in

a “simplex architecture” RTA design (Phan et al., 2017), change the

satisfactory output from the complex control output to the output

of a backup controller inside the RTA component when themonitor

indicates action is required. For example, Auto-GCAS switches

from the pilot’s stick and rudder-commanded outputs to the backup

roll-to-wings-level and a 5-G pull up controller output, when the

monitor indicates an imminent safety violation (Griffin et al., 2012).

Additionally, the backup controllers generally do not consider

output of the primary controller in their response. Auto-GCAS

generally substitutes the pilot’s commands entirely with the backup

control commands (note that if the pilot pulls back on the stick to

command more than 5-Gs and provide a larger separation from

the terrain, that input will be followed by the backup controller;

additionally, the pilot may turn off the backup controller as a

safety mechanism for possible false alarm detections). By the

definitions here, Auto-GCAS is an implicit, switching RTA. This is

akin to a driver that may employ a “slam on the brakes” backup

maneuver to avoid a collision with the car ahead. One benefit

of switching is that backups are generally simple to understand

can be easily verified offline to assure safety. However, there may

not be a single satisfactory response to every single situation.

In the driving example, switching lanes when it is an option

may be preferable to slamming on the brakes. This alternative

assures the safety property (don’t crash) as well as the performance

property (get to the desired destination), while maximum braking

is less optimal for performance (and passenger comfort), although

it may meet the safety property. Optimal interventions modify

the output of the complex function in a manner that satisfies

an optimal cost function subject to constraints (such as safety).

Coming back to the driving example, an optimal intervention may

try to minimize deviation from the desired path, while assuring

minimum separation distances from the edges of the road and

other vehicles. Similar to explicit monitoring techniques, optimal

interventions rely on mathematical expression of properties as well

as set theory.

While monitors and intervention approaches for RTA can

be developed for well-designed scenarios like Auto-GCAS, it

can be difficult to precisely encode virtue, deontological, or
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FIGURE 2

A generalization of a Run Time Assurance (RTA) architecture in which a black-box complex function, such as a trained neural network, produces an

output based on an input from another gray-box system or user, a white-box RTA system that may modify the output based on its observation of the

input to produce a satisfactory output (if the original complex system output satisfies desired properties, it will be passed through as the satisfactory

output with no modification). Here, a black-box system can only be viewed in terms of inputs and outputs while the internal mechanisms are

opaque, white-box system inner workings are fully known, and gray-boxes internal mechanisms are partially known. Note that while the weights,

biases, activation functions, connections, and other features of neural networks can be known, it is generally argued that their combination and

interactions are so complex as to e�ectively be a black box to a human user.

consequentialism ethics to solve some version of the proverbial

Trolley Problem (Thomson, 1985). Is it okay for the RTA to

cause the car to speed up and cut off another driver to avoid a

collision with the car ahead of it? Is it okay for the RTA to use the

shoulder as an extra lane to try to optimize getting to the desired

destination and avoiding collisions? The authors argue that RTA

may have a place to assure safety in narrow applications of AI.

However, it should not be treated as a panacea for employing AI

designs. Just as users should have a fundamental understanding

of the trained AI models before employing them, they should

similarly have an understanding of the RTA mechanism bounding

the model’s output.

Indirect modification of the output
In addition to methods that directly modify the output of a

complex system like a neural network, the output may be indirectly

modified by modifying the input signal. Like general RTA, this

concept is borrowed from control theory, and in particular the

concept of command or reference governors (Garone et al., 2017).

An adaptation of reference governors to generalize the concept is

shown in Figure 3. While this can be argued to be a form of RTA, as

it also monitors input at run time andmakes modifications to guide

the system toward satisfactory output, it is slightly different.

Considering the driving example, perhaps the driver is trying to

drive their car into the car in front of them. An advanced governor

might modify that input to a safe steering wheel angle and gas or

brake pedal input. Arkin (2009) has previously discussed the notion

of governors on autonomous robots. Today, simple governors are

sometimes used in vehicles to limit the top speed they can drive.

In a big data context, modifications could be made to the input

to correct for aberrations or other bad information. In an image

processing sense, it may be a filter applied to the image before it

is input to a classifier. When it comes to generative AI, it could

(1) detect an inappropriate input and override the complex system

to supply a canned response (2) detect a situation in which the

input could result in an output that perpetuates unintentional

bias and modify the input. For example, consider a generative AI

tool such as a chatbot or image generator. In case (1) consider

that someone asks the Chatbot “What are you afraid of?” rather

than risk that the chatbot pulls any number of responses from

the internet, it may respond with a canned answer such as “As an

artificial intelligence language model, I don’t experience emotions

like fear or any other feelings” (OpenAI, 2023). In case (2) consider

that someone prompts an AI image generator to provide a picture

of the “ideal fighter pilot.” A model that creates something based

on the statistical sample of data available on the internet may return

only white male pilot images; however, appending a filter to detect it

is a career field and to modify the input to include a mix of genders,

races, and ages may return a set of more diverse pilot images.

Joint human-AI experience

The final element for moving toward responsible use of AI

is to design and implement robust joint human-AI training

opportunities. Development ofmental models of one’s collaborative

partners is vital to human-AI teaming success (Musick et al.,

2021). Shared mental models allow team members to adapt to

change and helps teams to interpret events in the environment

in similar ways—promoting common responses, strategies, and

expectations within teams (Salas et al., 2008). A key pathway toward

mental model development is through team cognition—which is

typically manifest through communication (Musick et al., 2021).

Traditionally, mental models refer to one’s awareness (and a team’s

shared awareness) of equipment used within the team, team tasks

(i.e., strategies, procedures, and contingencies for accomplishing

tasks), the team composition (i.e., skillsets, preferences, abilities,

knowledge within the team), and team interaction features (i.e.,

communication patterns, roles, dependencies) (Cannon-Bowers

et al., 1993). Robust mental models of AI systems can be developed

through education, considering the learning affordances of ML

training datasets, developing effective human-machine interfaces,

and by understanding the capabilities and limits of design features

such as run time assurance methods—as noted above. However,

one thing is still needed for the development of robust mental

models—rich experience with the AI across contexts.

Scenario-based training is one means to test and validate

that the AI is working as intended. Joint human-AI training is

a concept discussed in Lyons et al. (2017). “The scenarios used

during the human-machine training should test the envelope both

in terms of performance expectations but also uncertainty. Testers

will want scenarios that create morally contentious situations for

the autonomy to see how it will react to ambiguous stimuli”
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FIGURE 3

Generalization of the concept of command reference governors, which modify user input to a complex system to e�ect the output.

(Lyons et al., 2017, p. 44). As noted by Lyons et al. (2017),

instructional scaffolding could be used to progressively increase

the level of difficulty (or the level of AI uncertainty) for a human

to observe how the AI handles the additional complexity. The

key issues associated with joint human-AI training are to expose

the human to the AI across a gamut of contexts that vary in

complexity and uncertainty. The experience garnered from such

observations will facilitate rich mental models of the AI that can

be applied to future contexts. The end goal of joint human-AI

training is to enable predictability for how the AI handles tasks

in a variety of task contexts. The more challenging and wider

variety of contexts, the greater the benefit of the joint human-

AI training in terms of establishing the right expectations of

the AI.

Conclusions

“Ethical AI” may not be practically feasible given contemporary

methods and their limitations, and anthropomorphizing AI to have

qualities such a “ethics” may promote a dangerous, unrealistic

expectation that ethical behavior rests with the AI. Instead,

the authors argue that ethical “use” of AI which starts at the

ideation and design phase and continues throughout operations

is an alternative area for research. Granted, additional research

is needed to understand acceptability and appropriateness of

AI at a fundamental level. Responsible, or ethical use of AI

may be accomplished through at least five key areas. First, it

is important to educate AI developers, leaders, and users on

ethical use of AI and core concepts in the use of AI technology

to a level in which they can develop a shared understanding

of what was used to train the data and the limits and possible

biases for planned machine learning models. Development and

use of model cards and datasheets for datasets, like nutrition

labels on food, may provide a way for developers, leaders, and

users to have a shared representation of the strengths, limits,

and biases of any given model. Second, the authors advocate for

increased research in effective human-machine interaction and

human-centered design. Third, the authors discuss the importance

of transparency of the data used to train a specific machine-

learned model. Fourth, in some cases it may be possible to use

RTA to monitor the input or output of a model for ethical

concerns such as bias and safety, and modify either the input

or output to promote ethical use. Last, the authors emphasize

the importance of a joint human-AI training experience, wherein

adapting together gives the human and AI a shared mental model

of the team.
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