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We have all experienced the sense of time slowing down when we are bored or
speeding up when we are focused, engaged, or excited about a task. In virtual
reality (VR), perception of time can be a key aspect related to flow, immersion,
engagement, and ultimately, to overall quality of experience. While several studies
have explored changes in time perception using questionnaires, limited studies
have attempted to characterize them objectively. In this paper, we propose the
use of a multimodal biosensor-embedded VR headset capable of measuring
electroencephalography (EEG), electrooculography (EOG), electrocardiography
(ECG), and head movement data while the user is immersed in a virtual
environment. Eight gamers were recruited to play a commercial action game
comprised of puzzle-solving tasks and first-person shooting and combat. After
gameplay, ratings were given across multiple dimensions, including (1) the
perception of time flowing di�erently than usual and (2) the gamers losing sense
of time. Several features were extracted from the biosignals, ranked based on
a two-step feature selection procedure, and then mapped to a predicted time
perception rating using a Gaussian process regressor. Top features were found
to come from the four signal modalities and the two regressors, one for each time
perception scale, were shown to achieve results significantly better than chance.
An in-depth analysis of the top features is presentedwith the hope that the insights
can be used to inform the design ofmore engaging and immersive VR experiences.

KEYWORDS

physiological signals, virtual reality, features selection, remote experiment, machine

learning

1. Introduction

The use of virtual reality (VR) has increased significantly in recent years due to its
numerous applications in various fields such as gaming, education, training, and therapy
(Xie et al., 2021; Ding and Li, 2022). VR provides immersive and interactive environments
that can simulate different scenarios and offer the user a unique experience. As new VR
technologies emerge, the measurement of the quality of immersive experiences has become
crucial (Perkis et al., 2020). For example, researchers and developers have become interested
in understanding the psychological and physiological factors that influence the users’
immersive quality of experiences, such as the sense of presence, immersion, engagement,
and perception of time (Moinnereau et al., 2022a). While substantial work has been reported
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on presence, immersion, and engagement (e.g., Berkman and Akan,
2019; Muñoz et al., 2020; Rogers et al., 2020), very little work
has been presented to date on characterizing the user’s perception
of time and the role it has on overall immersive media quality
of experience.

Time perception is a complex cognitive process that allows
individuals to estimate the duration and timing of events. It
plays a crucial role in several aspects of human life, such as
decision-making, memory, and attention (Wittmann and Paulus,
2008; Block and Gruber, 2014). Measuring a user’s sense of
perception of time in VR can be challenging due to potential
confounds with sense of presence and flow (Mullen andDavidenko,
2021). Existing methods of measuring time perception in VR
commonly rely on self-reports and questionnaires, such as the
Metacognitive Questionnaire on Time (Lamotte et al., 2014).
While these methods have provided valuable insights into the
mechanisms of time perception, they have several limitations. For
instance, they are prone to response biases and are influenced
by various cognitive and contextual factors, such as attention
and arousal (Askim and Knardahl, 2021). Furthermore, these
methods may not capture the dynamic nature of time perception
as they depend on the individual’s ability to accurately perceive
and report time. Moreover, questionnaires are often presented
post-experiment, thus providing little insight for in-experiment
environment adaptation to maximize the user experience.

Recently, there has been a push to use wearables and biosignals
to measure, in real-time, cognitive and affective states of users
while immersed in VR experiences (Moinnereau et al., 2022b,c,d).
For example, electroencephalography (EEG) signals have been used
to study engagement correlates within virtual reality experiences
(Muñoz et al., 2020; Rogers et al., 2020). Electrocardiograms
(ECG) have been used to uncover the relationship between
valence and heart rate variability (HRV) (Maia and Furtado, 2019;
Abril et al., 2020), while the research by Lopes et al. (2022)
has established connections between relaxation, heart rate, and
breathing patterns while the user is immersed in a virtual forest.
Electrodermal activity (EDA), in turn, has been investigated to gain
insights into the user’s sense of presence and relaxation in virtual
environments (Terkildsen and Makransky, 2019; Salgado et al.,
2022). Furthermore, other studies have explored head movements
to better comprehend users’ reported levels of valence and arousal,
as well as emotional states (Li et al., 2017; Xue et al., 2021).
Eye movement has also been examined to assess factors such as
immersion, concentration levels, and cybersickness in VR settings
(Ju et al., 2019; Chang et al., 2021). The work by Moinnereau et al.
(2022d) explored several neuro-psychological features as correlates
of different user emotional states, engagement levels, and arousal-
valence dimensions.

Despite all of these advances, limited research exists on the
use of biosignals to monitor correlates of time perception while
the user is immersed in VR. This is precisely the gap that the
current study aims to address. In particular, two research questions
are addressed: (1) what modalities and features provide the most
important cues for time perception modeling and (2) how well
can we objectively measure time perception. To achieve this goal,
we build on the work from Moinnereau et al. (2022d) and show
the importance of different modalities, including features extracted

from EEG, eye gaze patterns derived from electro-oculography
(EOG) signals, heart rate measures computed from ECG, and
head movement information extracted from tri-axis accelerometer
signals from the headset, for time perception monitoring. It is
important to emphasize that given the exploratory nature of this
study and the limited number of participants, our findings should
be considered preliminary and indicative of the feasibility for
objective time perception monitoring. Despite these limitations,
this study contributes to the development of new methods to
monitor time perception from biosignals, thus opening the door
for future adaptive systems that maximize user experience on a
per-user basis.

The remainder of this paper is organized as follows: Section 2
provides a review of the relevant literature in the field. Section 3
delves into the experimental procedures and details the bio-signal
feature extraction pipelines utilized in this study. Section 4 presents
the experimental results and contextualizes them within existing
works. Finally, Section 5 offers concluding remarks.

2. Time perception research:
background

Previous studies have investigated the connection between the
brain and time perception, revealing that the frontal and parietal
cortices, basal ganglia, cerebellum, and hippocampus are critical
brain regions involved in the perception of time (Fontes et al.,
2016). Specifically, the dorsolateral prefrontal right cortex has been
identified as a significant region involved in time perception. EEG
has been a common method used to study the neural correlates
of temporal processing. EEG is a non-invasive technique that
measures the electrical activity of the brain. It is important to
note that time perception involves various psychological constructs,
including attention, engagement, arousal, and even the influence
of emotional stimuli. Each of these factors can modulate our
perception of time in different ways, making time perception a
multifaceted and dynamic process (Buhusi and Meck, 2005; Zakay,
2014). This complexity is reflected in the diverse range of methods
and measures used to study time perception, as we will discuss in
the following sections.

The work of Johari et al. (2023) examined semantic processing
of time using EEG and found that the right parietal electrodes
showed an event-related potential (ERP) response specific to
the perception of event duration, with stronger alpha/beta
band desynchronization. The work of Vallet et al. (2019)
investigated the mechanisms involved in time perception related
to emotional stimuli with equal valence and arousal levels using
electrophysiological data. The results show that the ability to
estimate time is influenced by various cognitive and emotional
factors. Specifically, valence and arousal can modulate time
perception, thus altering perceived duration. This highlights
the importance of considering these factors when studying
time perception, and the need for measures that can capture
these dynamics.

In the work of Silva et al. (2022), in turn, the effects of oral
bromazepam (a drug used for short-term treatment of anxiety
by generating calming effects) on time perception were explored.
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The study monitored the EEG alpha asymmetry in electrodes
associated with the frontal and motor cortex. The study found that
bromazepammodulated the EEG alpha asymmetry in cortical areas
during time judgment, with greater left hemispheric dominance
during a time perception task. Moreover, the study of Ghaderi et al.
(2018) explored the use of EEG absolute power and coherence as
neural correlates of time perception. They found that participants
who overestimated time exhibited lower activity in the beta band
(18–30 Hz) at several electrode sites. The study suggested that
although beta amplitude in central regions is important for timing
mechanisms, its role may be more complex than previously
thought. Lastly, the work by Kononowicz and van Rijn (2015)
investigated correlates of time perception and reported on the
importance of beta and theta frequency subbands.

Moreover, eye movements have become a valuable tool to
investigate temporal processing and its relation to attention and eye
gaze dynamics. Recent studies, for example, have highlighted the
close link between eye movement and time perception, revealing
that time compression could be due to the lack of catch-up
saccades (Huang et al., 2022). Other works have linked saccade and
microsaccade misperceptions (Yu et al., 2017), as well as their role
in visual attention and, consequently, on time perception (Cheng
and Penney, 2015). Finally, it has been reported that when short
intervals between two successive perisaccadic visual stimuli are
underestimated, a compression of time is perceived (Morrone et al.,
2005). These findings emphasize the importance of eye movements
in understanding temporal processing, its connection to visual
perception, and how our perception of time is influenced not only
by our cognitive and emotional state but also by our visual attention
and gaze dynamics.

Physiological measures, such as heart rate variability (HRV)
and skin conductance, have also been used to explore the
mechanisms underlying time perception. A study found that low-
frequency components of HRV were associated with less accurate
time perception, suggesting that the autonomic nervous system
function may play a crucial role in temporal processing (Fung
et al., 2017). Another study showed that increased HRV was linked
to higher temporal accuracy (Cellini et al., 2015). Additionally,
changes in the sympathetic nervous system (SNS) activity have
been found to affect time perception, with research showing
that increased SNS activity, indicated by elevated heart rate and
frequency of phasic skin conductance response, was linked to the
perception of time-passingmore quickly (Ogden et al., 2022). These
findings highlight the importance of physiological measures in
understanding the complex interaction between the body and time
perception.

As can be seen, while numerous studies exist exploring the
use of psychophysiological measures to characterize the perception
of time, their measurement in virtual reality has remained a
relatively unexplored area of research. Perception of time in VR has
relied mostly on participant-provided ratings of judgement of time,
usually provided post-experiment (Volante et al., 2018). Being able
to track time perception objectively in real time could be extremely
useful for immersive experiences.While time compression has been
linked with high levels of engagement and attentional resources
(Read et al., 2022), time elongation could also be linked to boredom
(Igarzábal et al., 2021). As such, time perception monitoring

could be extremely useful for user experience assessment. In the
next section, the materials and method used to achieve this goal
are described.

3. Materials and methods

In this section, we detail the experimental protocol followed,
including the dataset used, signal pre-processing, feature extraction
and selection methods, and the regression method used.

3.1. Experimental procedure and time
perception ratings

The experimental protocol followed in this study was designed
to ensure the collection of high-quality data while minimizing
experimenter intervention. The dataset used in this study has been
described in detail by Moinnereau et al. (2022d). Here, we provide
a comprehensive summary of the data and the experimental
procedure and the interested reader is referred to Moinnereau et al.
(2022d) for more details. An instrumented headset was created
following advice by Cassani et al. (2020); Figure 1 (left) shows
the instrumented HTC VIVE Pro Eye headset equipped with 16
ExG sensors. All data were recorded using the OpenBCI system
(OpenBCI, United States) with a sampling rate of 125 Hz, ensuring
synchronization across all signals. Data was collected during the
COVID-19 lockdown. The instrumented headset along with the
necessary accessories (e.g., laptops, controllers) was dropped off
at participants’ homes and later picked up and sanitized following
protocols approved by the authors’ institution. Eight participants
(five male and three female, 28.9 ± 2.9 years of age), all of whom
were students at the authors’ institution, consented to participate
in the experiment, which involved playing the VR game Half-
Life Alyx, as shown in Figure 1 (right). The game is a first-person
shooter game combining elements of exploration, puzzle-solving,
combat, and story. During the action parts, players need to get
supplies, use interfaces, throw objects, and engage in combat.

Participants were given instructions remotely (via
videoconference) on how to place the headset and minimal
experimenter intervention was needed. The experimenter would
show participants how to assess signal quality utilizing in-
house developed software. When signal quality was deemed
acceptable, participants could play the game at their own pace
and the videoconference call was terminated. In the experiment,
participants engaged in two distinct tasks, referred to as “baseline”
and “fighting/shooting.” The “baseline” task corresponds to the
initial two chapters of the game (∼30 min of gameplay), during
which the player becomes familiar with the game storyline, learns
navigation techniques, and practices manipulating in-game objects.
The “fighting/shooting” task, which follows the “baseline” task,
involves more complex gameplay, including puzzle-solving and
combat challenges (∼1 h of gameplay). Participants played on
average a total of 1.5 h, resulting in close to 10 h of physiological
data recordings. At the end of each condition, participants
responded to the unified experience questionnaire that combines
items compiled from 10 different scales, including sense of
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FIGURE 1

(Left) 16 ExG biosensor-instrumented VR headset used to collect data; (Right) Participant’s view of a scene played in the VR game Half-Life: Alyx.

presence, engagement, immersion, flow, usability, skill, emotion,
cybersickness, judgement, and technology adoption, all using
a 10-point Likert scale (Tcha-Tokey et al., 2016). The work by
Moinnereau et al. (2022d) compared the changes reported by the
participants between the baseline and the fighting/shooting tasks.
Here, we combine both tasks and explore the use of the biosignals
in monitoring the two ratings provided to two questions related to
time perception: Q1—“Time seemed to flow differently than usual”

and Q2—“I lost the sense of time”.

3.2. Feature extraction

To answer our first research question, we extracted several
features from the EEG, EOG, ECG, and accelerometer data. These
features were selected based on their potential relevance to time
perception and cognitive processing in VR. For a comprehensive
understanding of our methodology, including feature extraction
and subsequent steps, please refer to the processing pipeline
illustrated in Figure 2. In the following sections, we provide a
detailed description of the different features we used and how they
were extracted from the physiological signals. All of these features
are summarized in Table 1.

3.2.1. EEG features
In this study, the total 1.5 h of data collected per subject was

divided into 5-min window. To prepare the EEG signals for feature
extraction, we first applied a finite impulse response band-pass filter
with a range of 0.5–45 Hz using the EEGLab toolbox in Matlab.
Next, we utilized the artifact subspace reconstruction (ASR)
algorithm, from the EEGLAB plugin with default parameters, to
enhance the signal quality and remove motion artifacts (Mullen
et al., 2015). These parameters were shown in our previous work
(Moinnereau et al., 2022d) to accurately remove artifacts from the
EEG signals. This pre-processing step ensured that the EEG signals
were of high quality and suitable for feature extraction. Before the

beginning of each game session, it is important to note that the
initial loading time of the game was utilized as a reference point
for calibrating the ASR algorithm for each participant. Lastly, each
5-min window was further segmented into 2-s epochs with a 50%
overlap for features extraction.

3.2.1.1. Power spectral features, ratios and metrics

Next, the power distribution of the five EEG frequency bands
was computed: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12
Hz), beta (12–30 Hz), and gamma (30–45 Hz) using the Welch
method. For each frequency band, the average power was calculated
across all EEG channels, and four ratios were computed for
each of the average power of each frequency band, resulting in
20 features. Indeed, previous research has shown that certain
EEG band ratios, such as delta-beta coupled oscillations, play a
crucial role in temporal processing (Arnal et al., 2014). These
features provided valuable information on the power distribution
of different frequency bands in the EEG signals, which are known
to be associated with various cognitive and emotional states.

In addition to the EEG band ratio features, we extracted
four indexes to further explore the participants’ mental states
during the task, namely engagement, arousal, valence, and frontal
alpha asymmetry. These measures have been shown to be related
to cognitive and emotional processes that are involved in time
perception, such as attention, motivation, and affective valence
(Yoo and Lee, 2015; Polti et al., 2018; Read et al., 2021).
The engagement score (ES), for instance, is a measure of the
participant’s attention and involvement in the task, which can
directly influence their perception of time. Similarly, arousal and
valence indexes (AI and VI respectively) provide insights into
the participant’s emotional state during the task, which has been
shown to affect time perception. The frontal alpha asymmetry index
(FAA), on the other hand, is a measure of the balance of power
between the left and right frontal cortex, which has been linked
to emotional valence and motivation, both of which can influence
time perception.

To calculate ES, we first computed the relative powers by
summing the absolute power across the delta, theta, and alpha
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FIGURE 2

Processing pipeline to predict time perception ratings from biosignals.

bands, dividing each individual band’s absolute power by the total
power, and expressing it as a percentage in the Fp1 channel. AI and
VI were calculated using the F3 and F4 channels. Finally, FAA was
calculated by subtracting the log-power of the alpha EEG band in
electrode F4 from the log-power of the alpha band from electrode
F3. The electrode locations are illustrated in Figure 3. Additionally,
the skewness and kurtosis of each of these four indexes were
also calculated, resulting in a total of 12 additional features for
EEG modality. More details about these features can be found in
Moinnereau et al. (2022d).

3.2.1.2. Phase and magnitude spectral coherence

To measure the connectivity between cortical regions, we
used the Phase and Magnitude Spectral Coherence (PMSC)
features, represented in Table 1 by phc-band and msc-band for
phase coherence and magnitude spectral coherence respectively.
These features measure the co-variance of the phase and
magnitude between two signals. The motivation for the inclusion
of connectivity measures as possible features is based on
the hypothesis that the level of connectivity could potentially
indicate changes in time perception within the immersive virtual
environment (Lewis and Miall, 2003). In our case, with 15
electrodes, we computed PMSC for all possible pairs of electrodes
for each of the five sub-bands (δ, θ , α, β , γ ). Given that there are
55 unique electrode pairs and 5 sub-bands, this results in a total
of 550 PMSC features. For the computation of PMSC, including
the complex coherency function and cross-spectral densities, we
followed the method detailed in Aoki et al. (1999). By using
PMSC, we were able to examine the functional connectivity
between different brain regions, which could provide insights
into how individuals perceive time in virtual environments. This
could potentially help identify the neural mechanisms underlying
accurate time perception in immersive virtual experiences.

3.2.1.3. Phase and magnitude spectral coherence of

amplitude modulation features

Moreover, we utilized the Phase and Magnitude Spectral
Coherence of Amplitude Modulation (PMSC-AM) features, which

extend the capacity of PMSC features to amplitude modulations
and provide information about the rate-of-change of specific
frequency sub-bands. These interactions are represented by the
notation band_mband and reveal interactions between different
brain processes and long-range communication. These features
have proven to be useful in predicting arousal and valence by
Clerico et al. (2018). Given the established relationship between
arousal and valence and time perception (Yoo and Lee, 2015; Jeong-
Won et al., 2021), here we explore the potential use of these features
as correlates of time perception. The PMSC-AM features were
calculated based on the modulated signals of each band, resulting
in a total of fifteen signals per channel. The magnitude spectral
coherence and phase coherence were then computed for all channel
pairs, resulting in a total of 1,540 features. More details about
the PMSC and PMSC-AM features can be found in Clerico et al.
(2018).

3.2.2. EOG features
The EOG signal has a frequency range of 0.1–50 Hz and

amplitude between 100 and 3,500 µV (López et al., 2017). In
this study, we extracted eye blink and saccades measures from
the 5-min windows using the EOG event recognizer toolbox in
Matlab (Toivanen et al., 2015), providing information on blink
duration, blink count, saccade duration, and saccade count. These
metrics have been shown to have a correlation with time perception
(Morrone et al., 2005; Huang et al., 2022).

Next, we extracted time-domain and frequency-domain
features from the EOG signals using the signal processing toolbox
in MATLAB. These features were extracted from 2-s epochs
of the EOG signals, with a 50% overlap between consecutive
intervals. The time-domain features include measures such as
mean, standard deviation, skewness, and kurtosis, while the
frequency-domain measures include mean frequency, median
frequency, peak amplitude, and frequency location of the peak
amplitude. These features provide information on the distribution
of power across different frequency bands in the EOG signals
and can reveal patterns related to eye movement. We also
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TABLE 1 Computed features to predict time perception.

Modality Features group Features

EEG Frequency band and ratios (computed on electrodes average) delta, theta, alpha, beta, gamma

delta/theta, delta/alpha, delta/beta, delta/gamma

theta/delta, theta/alpha, theta/beta, theta/gamma

alpha/delta, alpha/theta, alpha/beta, alpha/gamma,

beta/delta, beta/theta, beta/alpha, beta/gamma,

gamma/delta, gamma/theta, gamma/alpha, gamma/beta

Metrics (skewness and kurtosis computed for each metric) ES

AI

VI

FAA

Magnitude square coherence (computed for each of the 55 pairs) msc-delta

msc_theta

msc_alpha

msc_beta

msc_gamma

Phase coherence (computed for each of the 55 pairs) phc-delta

phc-theta

phc-alpha

phc-beta

phc-gamma

Amplitude modulation rate-of-change (computed for each of the 55 pairs) delta-mdelta

theta-mdelta

theta-mtheta

alpha-mdelta

alpha-mtheta

beta-mdelta

beta-mtheta

beta-malpha

beta-mbeta

gamma-mdelta

gamma-mtheta

gamma-malpha

gamma-mbeta

gamma-mgamma

EOG Eye blink and saccades blink duration, blink count, saccades duration, saccades count

Time-domain mean, standard deviation, peak value

Frequency-domain mean frequency, median frequency

Statistical interquartile range, variance, energy

Eye movement total number of up-down and left-right shifts

ECG Time-domain HR, IBI mean, SDNN, RMSSD, NN50, pNN50

Frequency-domain LF, HF, ULF, VLF

Nonlinear-domain SD1, SD2

ACC Statistics along x, y, and z axes (computed for acceleration, velocity and
displacement)

mean, standard deviation, skewness, kurtosis, energy
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FIGURE 3

Headplots showcasing the positioning of the 16-ExG electrodes on the HTC VIVE Pro Eye VR headset. (Left) The 7-channel EOG montage, with LO1
and LO2 for horizontal EOG (left and right cantus respectively), and Fp1, Fpz, Fp2 (above superior orbit), IO1, and IO2 (below inferior orbit) for vertical
EOG. (Right) The 11-channel EEG montage, with electrodes placed in the prefrontal, frontal, central, and occipital areas. A1 and A2 serve as
references. An additional sensor is placed on the left collarbone for ECG recording.

calculated statistical features such as interquartile range, variance,
and energy. In total, we extracted 31 features from the EOG
signals, providing valuable information on eye movements
during gameplay.

In addition to the previously mentioned EOG features, we also
extracted eye movement features related to the number of times
eye movements shifted from the upper to the lower quadrant, as
well as from the left to the right quadrant in the field of view
of the VR headset. To this end, we employed a Support Vector
Machine (SVM) classifier, as proposed by Moinnereau et al. (2020).
This classifier was trained on a separate dataset where eye direction
was tracked across 36 distinct points within the visual field, each
separated by an angle of 10 degrees. For each 500ms windowwithin
the seven EOG signals recorded by the instrumented headset from
electrode locations Fp1, Fpz, Fp2, horizontal EOG right, horizontal
EOG left, vertical EOG right, and vertical EOG left (namely, the
sensors placed on the faceplate of the headset, as shown in Figure 1),
we calculated the signal slope and input it into the SVM classifiers.
These classifiers were designed to discern between up-down and
left-right eye movements. The output of the classifier provided
the eye’s direction, and we subsequently calculated the number of
gaze shifts between the quadrants of interest. These shifts were
then incorporated as two additional features within our EOG
feature set.

3.2.3. ECG features
Both heart rate (HR) and HRV have been linked to time

perception, with studies suggesting that fluctuations in these
physiological markers can influence the experience of time
(Meissner and Wittmann, 2011; Pollatos et al., 2014). Therefore,
we extracted ECG features from the 5-min windows using an
open-source MATLAB toolbox to gather 15 features that relate

to HR and HRV.1 The analysis of HRV can be categorized into
three methods: time-domain, frequency-domain, and nonlinear
methods. The time-domain features measured the variation in time
between two successive heartbeats, or interbeat intervals (IBI). We
extracted the average IBI, the standard deviation of NN intervals
(SDNN), the root mean square of successive RR interval differences
(RMSSD), the number of pairs of successive RR intervals that differ
by more than 50 ms, and the percentage of this difference (NN50
and pNN50, respectively). Frequency-domain analysis focuses on
the power spectral density of the RR time series. We obtained
the relative power of the low-frequency (LF) band (0.04–0.15 Hz)
and high-frequency (HF) band (0.15–0.4 Hz), as well as their
percentages. We also calculated the ratio of LF to HF and the total
power, which is the sum of the four spectral bands, LF, HF, the
absolute power of the ultra-low-frequency (ULF) band (≤0.0003
Hz), and the absolute power of the very-low-frequency (VLF)
band (0.0033–0.04 Hz). Finally, nonlinear measurements were used
to assess the unpredictability of a time series. We extracted the
Pointcare plot standard deviation perpendicular to the line of
identity (SD1) and along the line of identity (SD2). These features
provide valuable insights into the variability of HR andHRV during
the VR gameplay session.

3.2.4. Accelerometer features
The OpenBCI bioamplifier includes an accelerometer, which

was placed toward the back of the VR headset. This allows
for the analysis of head motion and orientation, which is
crucial as head movements have been associated with influencing
temporal perception and varying based on arousal and valence

1 https://www.mathworks.com/matlabcentral/fileexchange/84692-ecg-

class-for-heart-rate-variability-analysis
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states (Behnke et al., 2021). In fact, the speed and nature of head
movements can affect the perception of simultaneity between
sensory events (Sachgau et al., 2018; Allingham et al., 2020) and
can lead to recalibration of time perception in a virtual reality
context (Bansal et al., 2019). To capture these dynamics, we
extracted features from the x, y, and z signals of the accelerometer
data, segmented into 2-s epochs with a 50% overlap. Specifically,
we extracted statistical measures (i.e., mean, standard deviation,
skewness, kurtosis, and energy) for acceleration, velocity, and
displacement along the x, y, and z axes. This resulted in a total of
117 features that provide valuable information about the user’s head
movements during the VR experience.

3.3. Feature selection

Feature selection is an important step in classification tasks
that involves the removal of irrelevant or redundant features,
thus providing dimensionality reduction prior to classification. In
our study, given the relatively small amount of data collected,
feature selection is particularly important. We performed a two-
step process for feature selection using built-in functions inMatlab:
first, we applied the Spearman correlation coefficient to identify
features with a medium to high correlation with the ratings
from Q1 and Q2; second, we applied the minimum redundancy
maximum relevance (mRMR) algorithm to these selected features.
The Spearman correlation coefficient measures the strength and
direction of the relationship between the physiological features
extracted and the ratings of the two questions on time perception.
Specifically, we performed a Spearman correlation between all the
2,279 features extracted from each 5-min window of the entire
dataset, which includes all recordings from all participants, and the
ratings of the two questions Q1 and Q2. To align the number of
ratings with the number of 5-min window, we replicated the same
rating for each window within a single recording. This approach
allowed us to assess the relationship between each feature and
the time perception ratings across all 5-min windows and all
participants. Spearman correlation is a non-parametric measure
that assesses the monotonic relationship between two variables
(Schober et al., 2018); hence, does not assume linearity, making it
suitable for our analysis. Only features with a Spearman correlation
coefficient >0.3 or < −0.3 were retained, indicating a medium to
high correlation.

Next, we applied the minimum redundancy maximum
relevance (mRMR) algorithm (Peng et al., 2005) on the
physiological features that showed significant Spearman
correlations with the ratings from Q1 and Q2. The mRMR
method finds the most relevant features for the classification task
and removes features with high mutual information to minimize
redundancy. This approach helps to reduce the dimensionality
of the data, improves classification performance, and avoids
overfitting. This selection method has been show to be very
useful for biosignal data (Clerico et al., 2018; Jesus et al., 2021;
Rosanne et al., 2021). As our dataset is small, we used five-fold
cross-validation in our analysis. In this process, the dataset was
divided into five subsets. For each fold, 80% of the data was
used to calculate the mRMR, and the top features were recorded.

This process was repeated five times, each time with a different
subset held out. At the end, we compare the features that were
consistently present across the five folds and use these as candidate
features for time perception monitoring. With this analysis, a total
of 18 top-features were found to be present in at least two of the
five folds.

3.4. Regression, testing setup, and
figures-of-merit

With the top-18 ranked features found, we employed a
Gaussian process regressor (GPR) with a rational quadratic
kernel to predict the two time perception ratings (Williams and
Rasmussen, 1995) with the aim of answering our research question
#2. This process was implemented using the Regression Learner
toolbox in MATLAB. To find the optimal number of features to
use, top-ranked features were added one by one and three figures-
of-merit were used, namely root mean square error (RMSE), mean
absolute error (MAE), and the R-squared (R2). Both RMSE and
MAE provide insights into to overall error distribution of the
predictor, with RMSE providing greater emphasis to larger errors.
In both cases, lower values are better. The R-squared measure, in
turn, measures the goodness of fit of the data to the regression
model; higher values are desired. These three figures-of-merit are
widely used in regression to assess the performance of the model.

For the analysis, a bootstrap testing methodology was followed
where the data was randomly partitioned into 80% for training
and 20% for testing and this partitioning was repeated 100 times.
Lastly, to gauge if the obtained results were significantly better than
chance, a “random regressor” was used. With this regressor, the
same bootstrap testing setup was used, but instead of training the
regressor with the true ratings reported by the participants, random
ratings between 1 and 10 were assigned. To test for significance, a
Kruskal–Wallis test was used (Kruskal andWallis, 1952) for each of
the metrics (RMSE, MAE, and R2).

4. Experimental results

Figures 4A, B display the distribution of the Q1 and Q2 ratings,
respectively. For Q1, the ratings ranged from 2 to 10, with the
majority being in the range of 7–9. The mean rating for Q1 was 6.40
(SD = 2.78). Similar findings were seen for Q2, where an average
rating of 7.37 (SD = 2.27) was seen.

A total of 2,279 features were extracted from the EEG, EOG,
ECG, and accelerometer signals. After passing through the two
feature ranking steps mentioned in Section 3.3, 18 top features were
found for each of the two time perception ratings. Figures 5A, B
display the selected features for Q1 and Q2, respectively, arranged
in ascending order of importance given by the mRMR selection
algorithm. As can be seen, for both Q1 (“Time seemed to flow

differently than usual”) and Q2 (“I lost the sense of time”), head
movement and HRV-related measures corresponded to the top-
two most important features. The majority of the other top
features are related to EEGmeasures of coherence between different
electrode sites. For Q1, two EOG measures stood out, one of them
corresponding to a number of shifts from the top-bottom quadrants
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FIGURE 4

(A) Distribution of Q1 ratings across both testing conditions; (B) Distribution of Q2 ratings across both testing conditions.

FIGURE 5

(A) Top features ranked for Q1; (B) Top features ranked for Q2.

based on outputs from the EOG-based classifier described by
Moinnereau et al. (2020).

Table 2 reports the impact that including these top features
one-by-one has on regressor accuracy. The goal of this analysis
is to explore the optimal number of features for time perception
monitoring. As can be seen from the Table, there is an elbow
point for Q1 at seven features and at eight features for Q2. In
fact, for Q2, the accuracy achieved with just two features was

very close to that achieved with 8. For Q1, the top-seven features
included: IQR-acc-x, SDNN, median-acc-x, msc-beta-mbeta-Fpz-
Fp2, gamma-theta ratio, msc-beta-F1-F2, and UP-DOWN. For
Q2, the top eight features correspond to IQR-acc-x, SDNN,
pNN50, msc-beta-Fp1-Fpz, msc-alpha-Fp1-Fpz, msc-beta-mtheta-
Fp1-Fpz, msc-beta-mbeta-Fpz-Fp2, msc-beta-F1-F2.

Figures 6A, B display the scatterplots, including confidence
intervals, of predicted vs. true subjective ratings for Q1 and Q2,
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TABLE 2 Figures-of-merit as a function of number of features used to train the regressor for Q1 and Q2 ratings.

Q1 Q2

Nb of features RMSE MAE R2 RMSE MAE R2

1 1.82 1.36 0.60 1.39 0.97 0.64

2 1.55 1.19 0.71 1.13 0.77 0.76

3 1.56 1.22 0.71 1.45 1.02 0.60

4 1.43 1.11 0.75 1.45 0.92 0.60

5 1.33 1.01 0.79 1.40 0.95 0.63

6 1.07 0.85 0.86 1.30 0.93 0.68

7 0.95 0.76 0.89 1.37 0.92 0.64

8 1.09 0.86 0.86 1.13 0.76 0.76

9 1.12 0.88 0.85 1.14 0.78 0.75

10 1.03 0.80 0.87 1.15 0.80 0.75

11 1.20 0.95 0.82 1.52 0.92 0.56

12 1.30 1.02 0.80 1.50 0.89 0.57

13 1.33 1.04 0.79 1.51 0.89 0.57

14 1.42 1.10 0.75 1.53 0.91 0.55

15 1.65 1.22 0.67 1.61 1.03 0.51

16 1.57 1.20 0.70 1.60 1.01 0.51

17 1.53 1.16 0.72 1.63 1.01 0.50

18 1.56 1.18 0.71 1.68 1.04 0.46

FIGURE 6

(A) Scatterplot of predicted vs. true ratings for Q1 (number of features = 7); (B) Scatterplot of predicted vs. true ratings for Q2 (Number of
features = 8).

respectively, using the top-7 and top-8 features mentioned above
for one of the bootstrap runs. The reference, perfect-correlation
line is included for comparisons. For Q1, a significant correlation
of 0.95 can be seen between predicted and true ratings. For Q2,
in turn, a significant correlation of 0.90 is observed. To test if
these results are significantly better than chance, the prediction

task is repeated 100 times using a bootstrap method. Figures 7A, B
show the boxplots of the figures-of-merit achieved with the chance
regressor and the proposed regressors for 100 bootstrap runs. As
can be seen, the error based measures from the chance regressor
result in similar trends and are almost three times as higher as the
proposed method. Lastly, the Kruskal–Wallis test was performed
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FIGURE 7

(A) Performance comparison of 100 random bootstrap trials for the random (red) and proposed (blue) regressors for Q1; (B) Performance
comparison of 100 random bootstrap trials for the random (red) and proposed (blue) regressors for Q2.

over the entire 100 bootstrap trials and showed a significant
difference (p-value= 10−34) for all three figures-of-merit.

5. Discussion

5.1. Time perception ratings

Our findings suggest that the majority of the participants
experienced altered time perception during the experiment, with
the majority strongly agreeing that time seemed to flow differently
than usual for them and that they lost the sense of time while
in gameplay. This is consistent with previous research on time
perception in VR, which has demonstrated that the sense of
time passing can be significantly influenced by the level of
immersion and engagement with the virtual environment (Mullen
and Davidenko, 2021; Read et al., 2022). The VR environment
used in our study was a highly-rated videogame known for its
immersive qualities. This emphasizes the importance of examining
the relationship between immersion and time perception in VR
settings.

To empirically investigate this relationship, we conducted a
correlation analysis between the Q1 ratings and the ratings from
the seven items in the immersion scale. A significant correlation
of 0.81 was found between the Q1 ratings and the ratings from
the seven items in the immersion scale, particularly with the
item—“I felt physically fit in the virtual environment”. This strong
correlation suggests that themore participants felt physically fit and
comfortable in the virtual environment, the more they experienced
altered time perception. This provides empirical support for the

link between immersion and time perception, reinforcing the idea
that immersion can significantly influence how individuals perceive
time in VR. Interestingly, lower values were observed during the
puzzle-solving tasks, as shown in Figure 4, which were rated by the
participants as being less engaging than the shooting tasks. This
further corroborates the link between engagement, immersion, and
altered time perception in VR. The immersive qualities of the VR
environment, combined with the engaging nature of the tasks,
appear to have a significant impact on participants’ perception
of time.

5.2. Feature importance

The identified features provide valuable insights into the neural,
physiological, and behavioral correlates of time perception in VR.
The prominence of head movement and HRV-related measures
among the top features for both Q1 andQ2 underscores the integral
role of physical engagement and physiological responses in shaping
time perception in VR. The acceleration of head movements along
the x-axis may be indicative of embodiment while in gameplay, as
one often moves their head sideways to move away from shots fired
by the enemy. Indeed, levels of embodiment have been linked to
altered perceptions of time (Charbonneau et al., 2017; Unruh et al.,
2021, 2023). In a similar vein, the Up-Down shifts feature, present
in Q1, suggests that the players are continuously scanning the scene
and engaged. This is expected for fully immersed gamers, as players
need to get supplies, which could be on the ground, pick up objects
and throw them, and engage in combat with enemies appearing,
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for example, on floors below you, as shown in Figure 1. In contrast,
less immersive screen-based first-person shooter games have shown
eye gaze patterns to be mostly in the center of the screen, where the
aiming reticle is usually placed (Kenny et al., 2005; El-Nasr and Yan,
2006). SDNN, in turn, characterizes the heart rate variability of the
players and has been linked to emotional states (Shi et al., 2017),
stress (Wu and Lee, 2009; Pereira et al., 2017), andmental load (Hao
et al., 2022), which in turn, have also been shown to modulate the
perception of time. This suggests that physiological responses, as
indicated by HRV measures, could also significantly influence time
perception in VR.

For the top EEG measures, two out of three top measures
corresponded to coherence measures in the beta frequency band.
The electrodes showing the strongest involvement were located
over the pre-frontal cortex areas. The pre-frontal cortex has been
linked with temporal processing with activation in the right pre-
frontal cortex has been reported during time perception tasks
(Üstün et al., 2017). The inter-hemispheric PMSC measure msc-
beta-F1-F2 may be quantifying this activation. Moreover, beta-
band activation has also been linked with perception of time
across multiple studies (e.g., Ghaderi et al., 2018; Damsma et al.,
2021). The work by Li and Kim (2021) also showed that beta
band activity around the Fpz region could be linked to task
complexity, which in turn, was shown to also modulate time
perception. In a similar vein, the work by Wiener et al. (2018)
showed that transcranial alternating current stimulation over the
fronto-central cortex at beta frequency could shift the perception
of time to make stimuli seem longer in duration. Such properties
could be captured by the PMSC-AM feature msc-beta-mbeta-Fpz-
Fp2. Lastly, cortical gamma-theta coupling has been linked to
mental workload (Baldauf et al., 2009; Gu et al., 2022), whereas
theta-gamma coupling to working memory (Lisman and Jensen,
2013; Park et al., 2013), which itself has been shown to modulate
perception of time (Pan and Luo, 2011). As the puzzle-solving tasks
often require the use of short-term working memory, this feature is
likely quantifying this aspect.

For Q2, four of the top eight features (i.e., IQR-acc-x, SDNN,
msc-beta-F1-F2, and msc-beta-mbeta-Fpz-Fp2) overlap with those
seen with Q1, suggesting their importance for time perception
monitoring and the need for a multimodal system to combine
information from EEG, ECG and head movements. The other
four provide alternate views of HRV and EEG modulations. For
example, pNN50 has been shown to be an HRV correlate of focus
(Won et al., 2018). High levels of focus and attention have been
shown to be a driving factor for losing sense of time in VR
(Winkler et al., 2020). In turn, inter-hemispheric differences in
alpha band have also been linked to time perception (Anliker, 1963;
Contreras et al., 1985). Lastly, several previous works have linked
the theta-beta ratio to attentional control (Putman et al., 2013;
Morillas-Romero et al., 2015; Angelidis et al., 2016, 2018). While
the ratio is usually computed using frequency bands computed
over a certain analysis window, the PMSC-AM feature msc-
beta-mtheta-Fp1-Fpz computes the temporal dynamics of this
ratio over the window, thus may capture temporal attention
changes more reliably. As with focus, high attention levels have
been linked to losing sense of time in VR (Winkler et al.,
2020).

5.3. Monitoring time perception

The high correlation coefficients observed between the
predicted and true subjective ratings for Q1 and Q2, as shown
in Figures 6A, B, are not only indicative of the accuracy of the
proposed feature selection but also highlight the potential of
using such features to effectively characterize time perception in
VR. The fact that the error-based measures from the chance
regressor were almost three times higher than those from the
proposed method underscores the importance of careful feature
selection and the use of machine learning techniques in predicting
time perception. The significant difference in figures-of-merit
between the chance regressor and the proposed regressors, as
revealed by the Kruskal–Wallis test, further emphasizes the
enhanced performance and effectiveness of the present study.
This finding is particularly encouraging as it suggests that the
proposed method could be used to enhance the design and
evaluation of VR experiences by providing a more nuanced
understanding of how users perceive time in VR. Moreover,
the overlap of top features between Q1 and Q2 suggests that
there are common underlying mechanisms in different aspects of
time perception in VR, reinforcing the need for a multimodal
system that combines information from EEG, EOG, ECG, and
head movements.

5.4. Recommendations, study limitations,
and future work

The experiments described herein have shown the importance
of a multimodal system to characterize time perception while
immersed in VR. To characterize aspects of time flowing
differently, features from four modalities—EEG, ECG, EOG, and
accelerometry—were shown to be crucial, thus signaling the
importance of an instrumented headset. The aspect of time flowing
differently also showed significant correlations with aspects related
to immersion, thus suggesting that the developed instrumented
headset could provide useful insights for overall monitoring of
immersive media quality of experience. If interested in monitoring
only aspects of the users losing sense of time while in VR, our
results suggest that head movement features and HRV measures
can achieve reliable results. Such findings could potentially be
achieved with accelerometer data already present in VR headsets
and with a heart rate monitor. Additionally, other performance
measures such as gameplay duration and score could also provide
additional support to the self-assessed ratings of time perception.

The instrumented headset, nonetheless, could provide neural
correlates of additional factors related to the overall experience
and other aspects of time perception. In fact, one modality that
was not explored here was EDA. Electrodermal activity has been
used in VR to measure the immersive experience (Egan et al.,
2016) as well as player arousal states (Klarkowski et al., 2016). As
arousal has been linked to attention and emotional resources, it
has also been linked to time perception (Angrilli et al., 1997; Mella
et al., 2011). As such, future studies could explore the use of EDA-
derived features. Recent innovations in VR headset development
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are already exploring the inclusion of such sensors directly on the
headset (Bernal et al., 2022).

While this study provides promising results, some limitations
should be acknowledged. First, as the study was conducted amidst
the first COVID-19 lockdown, it has a small number of participants,
thus limiting the generalizability of our findings. Moreover, the
presence of potential multicollinearity among the predictors in our
multiple regression model could affect the interpretability of our
findings. Despite these limitations, this study should be considered
a feasibility study, exploring the potential of a multimodal system to
characterize time perception while immersed in VR. Increasing the
sample size in future studies would improve the statistical power
and strengthen the validity of our results. Moreover, future studies
should consider using a wider range of stimuli to investigate better
the relationship between immersion, presence, and time perception
in VR, as well as their role in overall quality of experience.

6. Conclusions

In this study, we examined time perception in a highly
immersive VR environment using a combination of physiological
signals, including head movement, heart rate variability, EEG,
and EOG measured from sensors embedded directly into the VR
headset. Experimental results show that participants experienced
a high degree of time distortion when playing the game. Top
features were found and used to characterize the gamers’ sense of
time perception using a simple Gaussian process regressor. An in-
depth analysis of these top features were performed. Results showed
that the proposed models were able to characterize the gamers’
perception of time significantly better than chance. Ultimately, it
is hoped that the insights and models shown herein can be used
by the community to understand better the relationship between
immersion and time perception in virtual environments, thus
leading to improve immersive media experiences.
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