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The recent shift from predominantly hardware-based systems in complex settings to

systems that heavily leverage non-deterministic artificial intelligence (AI) reasoning

means that typical systems engineering processes must also adapt, especially when

humans are direct or indirect users. Systems with embedded AI rely on probabilistic

reasoning, which can fail in unexpectedways, and any overestimation of AI capabilities

can result in systems with latent functionality gaps. This is especially true when

humans oversee such systems, and such oversight has the potential to be deadly,

but there is little-to-no consensus on how such system should be tested to ensure

they can gracefully fail. To this end, this work outlines a roadmap for emerging

research areas for complex human-centric systems with embedded AI. Fourteen

new functional and tasks requirement considerations are proposed that highlight the

interconnectedness between uncertainty and AI, as well as the role humans might

need to play in the supervision and secure operation of such systems. In addition,

11 new and modified non-functional requirements, i.e., “ilities,” are provided and two

new “ilities,” auditability and passive vulnerability, are also introduced. Ten problem

areas with AI test, evaluation, verification and validation are noted, along with the

need to determine reasonable risk estimates and acceptable thresholds for system

performance. Lastly, multidisciplinary teams are needed for the design of e�ective

and safe systems with embedded AI, and a new AI maintenance workforce should be

developed for quality assurance of both underlying data and models.

KEYWORDS

human, autonomy, artificial intelligence, system engineering, requirements, testing,

workforce development

1. Introduction

Complex systems, often with safety-critical implications like those in military and

transportation systems, increasingly leverage artificial intelligence (AI) to enhance system

performance. When faced with insufficient data, incomplete information and uncertain

conditions, AI often cannot provide the necessary decision and/or action support and cannot

rely on theory-based predictions to fill any reasoning gaps (Bishop, 2021), which could have

catastrophic outcomes like the death of a pedestrian in the Uber self-driving accident in AZ in

2018 (Laris, 2018).

In comparison to other articles about machine learning, there has been relatively little

discussion of how the inclusion of embedded AI could or should change how systems should

be conceived, designed and testing, aka, the system engineering process. It is generally agreed

that systems engineering approaches should consider how people and organizations, conceive,

develop and manage complex systems, also known as human systems engineering (Weck et al.,

2011). However, because of the increasing use of embedded AI across many facets of society,

human systems engineering practitioners need to adapt to this new technology, which will

require new touchpoints in the design and deployment of such systems.
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With the increasing use of software across complex systems, agile

software development practices have become the defacto standard

(Crowder and Friess, 2013).While in theory the agile process involves

users earlier in the lifecycle design process, in recent years, this

approach has focused on speed and “good enough” software releases.

Such a focus leads to potentially missing critical considerations

unique to systems with embedded AI. Without adapting human

systems engineering processes to account for the unique issues that

AI introduce, especially in human-algorithm interactions, systems

that leverage embedded AI are at a greater risk for significant

problems, especially those that operate in safety-critical settings.

Moreover, because of the unique roles humans play in safety-

critical systems, either as designers, supervisors or teammates, it is

especially important for Human Factors professionals, including user

experience specialists, to be involved across the entire lifecycle.

The following sections will discuss how the requirements

development and “ilities” processes will need to change, as well

as current test, evaluation verification and validation approaches

inherent in any systems engineering approach (National Academies

of Sciences, 2022).

2. Requirements for AI development

Requirements development includes specifying high-level

goals and functions for a desired system, including assigning

responsibilities to various agents (humans or computer-based

agents) (MITRE, 2014). A significant problem occurs in the

requirements development process when engineers assume one

system is more capable than it really is, which leads to a latent

functionality gap.

AI can be powered by neural networks that work well in very

narrow applications, but if such a system is presented with data that

does not closely approximate the data with which it was originally

trained, these algorithms can struggle to make sense of data with even

slightly different presentations (Cummings, 2021). If requirements

are developed that overestimate the capabilities of embedded AI and

do not adequately consider the context and role of a human teammate

(Tomsett et al., 2018), then system failure can occur.

The death of a pedestrian by the Uber self-driving car supervised

by an inattentive safety driver (Laris, 2018) highlights such a

disconnect. The designers of the system elected not to alert the safety

driver when the underlying computer vision system struggled to

correctly identify a potential threat. The system was also not designed

to detect a distracted safety driver and these two design decisions,

which were not identified as important requirements, directly led to

the death of a pedestrian.

Identifying the points of AI brittleness is critical in the

requirements stage because it means humans may need to adjust

their cognitive work and unexpectedly take on new functions as a

result of limitations in the underlying AI. Thus, an overreliance on AI

capabilities will lead to a latent functionality gap, where humans may

unexpectedly need to intervene for degraded AI but may not have

the resources or time to do so. To this end, when considering how

requirements development could or should change in the presence of

AI, the following areas need dedicated focus1:

1 This is an extension of previous work (Ferreira and Monteiro, 2020).

• Determine when, where and how AI-enabled technology

is brittle.

• Determine what new functions and tasks are likely to

be introduced as a result of incorporating brittle AI into

complex systems.

• Determine those real-world constraints that could lead to

AI brittleness.

• Reconcile the risk of AI brittleness and risk of human decision

biases in determining appropriate functions, and whether

exclusive roles or teaming between humans and autonomy best

supports the overall mission, while providing safety buffers

against inherent limitations.

• Investigate to what degree the risk of AI brittleness could

affect human trust and how can appropriate trust be repaired,

recalibrated, and maintained.

• Consider the influence of time pressure on human decision

making for systems that leverage different kinds of AI.

• Determine the role of context in the various expected

operational domains.

• Determine whether and how AI should be

explainable/interpretable for actual users, especially those

in time-critical settings and across different levels of training.

• Determine when the reasoning processes, decisions and

limitations of embedded AI should be transparent, as well as the

costs and benefits of making such information transparent.

• Delineate the circumstances and designs that humans can

augment AI to mitigate inherent brittleness.

• Determine if acceptable levels of uncertainty should be

characterized in the requirements process.

• Investigate whether systems should be designed so that humans

andAI form complementary teams and determine any necessary

redundancies for critical decisions.

• Determine if and how humans could aid in detecting adversarial

attacks and whether such a function can cause workload to

exceed acceptable limits.

• Map and communicate competency boundaries of both humans

and AI-enabled systems so that degraded and potentially

dangerous phases of operational systems can be avoided.

3. “ilities” of Embedded-AI systems

The next important step in any systems engineering effort is

understanding the “ilities” relevant to a particular system. The

“ilities” are non-functional developmental, operational and support

requirements for a technology (MITRE, 2014). Common “ilities”

include usability, reliability, suitability, maintainability, accessibility

and sustainability.

To better understand how new ilities are emerging in the

presence of AI, it is important to first understand the nature of

bias in AI systems. There are multiple sources of bias that humans

introduce into the design of AI systems, which include: (1) Bias from

inappropriate data curation, (2) Bias in the design of algorithms, and

(3) Bias in the interpretation of resulting algorithms (Cummings and

Li, 2021).

In terms of data curation, it is well-established that bias can be

inadvertently introduced into an AI system due to underlying data

sample selection bias (e.g., Samimi et al., 2010; Gianfrancesco et al.,

2018). However, there is substantially less research on how the actual
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curation of the data set affects outcomes. Even more problematic are

errors made in actual data labeling, either by humans or machine-

based labeling systems. One study looking at 10 major datasets

cited over 100,000 times found a 3.4% average error rate across all

datasets (Northcutt et al., 2021). These errors affect overall algorithm

performance outcomes, and are pervasive in commercial language

models and computer vision systems.

In addition to data curation, significant bias can be introduced

into an AI system when the practitioner subjectively selects an

AI algorithm and the associated parameters for an application.

One recent study illustrated that there were at least 10 significant

subjective decisions made by designers of machine-learning

algorithms that could impact the overall quality of such models

(Cummings and Li, 2021). There are currently no standards or

accepted practices for how such points of bias and subjectivity could

or should be evaluated or mitigated.

Lastly, the third major source of bias is the interpretation of

complex statistics generated by AI, which is a well-documented

point of weakness, even for experts (Tversky and Kahneman,

1974). Research efforts have recently attempted to make outputs

more explainable (Chandler, 2020; Ferreira and Monteiro, 2020) or

interpretable (Fernández-Loría et al., 2020). However, most of these

efforts attempt to improve interpretability for experts and very little

effort is aimed at helping users of AI-embedded systems.

The importance of this explainability gap cannot be understated,

especially for users of time-pressured systems like those in

transportation and military systems. Users likely have no idea

that there are potentially many deeply-flawed assumptions and

biases that could call into question any AI-generated results.

This gap is also noteworthy because it impacts certification

efforts, i.e., if external system evaluators who are not the AI

creators cannot understand system outcomes, then they cannot

develop appropriate confidence that such systems can meet the

specified requirements.

Given these sources of bias, Table 1 outlines both how some

traditional “ilities” will need to be adapted as well as new “ilities” that

need to be considered. In addition to traditional usability concerns,

there will need to be additional focus on making the limits of AI

very transparent to users. The likely biggest change in the suitability

category will be the need to address the notion of “concept drift,” also

known as “model drift.” This occurs when the relationship between

input and output data changes over time (Widmer and Kubat, 1996),

making the predictions of such system irrelevant at best, or at

worst, potentially dangerous. For example, if an embedded AI system

analyzes images for real-time decisions and relies on an older training

set of data to make a classification, this could lead to serious problems

like incorrectly labeling a building as a weapons facility when it is

actually a school. This drift represents a possible source of dynamic

uncertainty that should be considered in determining whether and

when a system meets its specified requirements.

The notion of concept drift also affects the sustainability category,

since the best way to prevent drift is to ensure the underlying data in

any AI model adequately represents the current operation domain.

To this end, there is a need to develop an AI maintenance community

whose jobs would entail data base curation, data and model quality

assurance, data applicability assessments, and working with testing

personnel to determine downstream effects of problems. There have

been recent efforts to crowd source such reports (e.g., Responsible AI

Collaborative, 2022), but more formalized efforts are needed in the

form of a dedicated AI maintenance workforce, which is an entirely

new area of workforce development.

There is also a need to explicitly consider a new “ility” of

auditability, which is the need to document and assess the data

and models used in developing an AI-embedded system, in order

to reveal possible biases and concept drift. While there have been

recent research efforts in developing processes to better contextualize

the appropriateness of datasets (Gebru et al., 2018), as well as

model performance with a given data set (Mitchell et al., 2019),

there are no known organized auditing efforts across companies or

agencies. Safety-critical systems likely require a much higher level

of auditability than pure software-based systems, and auditability

would likely fall under the purview of the aforementioned AI

maintenance workforce.

The last new “ility” category in Table 1 is called passive

vulnerability. There is increasing evidence that AI systems trained

on large data sets are especially vulnerable to forms of passive

hacking, where the environment is modified in small ways to leverage

vulnerabilities in the underlying machine learning algorithms. For

example, adversarial machine learning was used to trick a Tesla into

going 85 vs. 35 mph with a small amount of tape on a speed limit

sign (O’Neill, 2020), and such scenarios also occur in natural language

processing (Morris et al., 2020). Cybersecurity practices will need to

revamped in the future to account for this new threat vector, which is

unique to AI and the potential effect on safety is still an unknown.

4. Testing, evaluation, verification, and
validation (TEVV) of AI systems

While requirements and -ilities generation provides designers of

AI-embedded systems with the parameters of a system’s architecture,

equally important in the systems engineering process is the testing,

evaluation, validation, and verification (TEVV) stage of technology

development. TEVV ensures that the requirements are adequately

met, along with highlighting where inevitable designs trades may

have introduced unacceptable risk. Unfortunately, there is no

industry or government consensus on what constitutes acceptable

TEVV practices for embedded-AI systems. One recent report has

highlighted military TEVV inadequacies for AI-embedded systems

(Flournoy et al., 2020), and the National Transportation Safety Board

has called for more rigorous oversight of testing and certification of

autonomous vehicles (NTSB, 2019).

The primary reason that TEVV for AI systems is not well-

understood is a current lack of methods to determine how such

systems cope with known and unknown uncertainty. There are three

primary sources of uncertainty in any AI system, as illustrated in

Figure 1. Environmental uncertainty, like the impacts of weather,

is a known source of uncertainty for both deterministic and non-

deterministic systems. Similarly, human behavior for both actors in

and external to a system can carry significant uncertainty. What is

new in AI systems is the need to account for the variability, aka blind

spots, in the embedded AI in such systems, and how these blind spots

can lead to problems in human and AI performance in the actual

operation of the systems.

While it is generally recognized that both commercial and

government agencies need to adapt their testing practices to address

the AI blind spot issues, there has been little tangible progress.

Typical systems engineering approaches to testing generally include
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TABLE 1 Adapting “ilities” for systems with embedded AI.

“ility” Needs

Traditional

Usability • AI operational limitations and competency boundaries should be made transparent to users.

• In appropriate settings, user should be able to conduct sensitivity analyses to explore a decision space, as well as the limitations.

• Routine feedback about usability should be elicited from users, including post-software updates.

Suitability • A process should be implemented that maps any operational dependencies created in the implementation of AI systems in order

to determine what downstream processes could be negatively affected if an AI system is degraded or fails.

Sustainability • A process for identifying changes in operations or environmental conditions that affect model outcomes should be implemented,

including when retraining should occur for connectionist AI systems.

• An incident repository should be created and routinely analyzed for all AI systems where users and supervisors can document

erroneous, unusual and unexpected system behaviors.

• A process for tracking software changes and possible unintended impact on either operations or human activity should be

developed.

• A process for tracking and documenting issues with concept drift as well as operator disuse, misuse or abuse of AI should

be implemented.

New

Auditability • Data and resulting models should be periodically audited to uncover issues with suitability and sustainability, as well as possible

issues with bias.

• Automated tools will be needed to support humans conducting auditing tasks.

Passive vulnerabilities • Adversarial machine learning vulnerabilities need to be identified and mitigated.

FIGURE 1

Sources of uncertainty in AI systems.

developmental tests at earlier stages of a technology’s development,

and then operational testing as a systemmatures.While this approach

is reasonable for deterministic systems, it is simply not going to be

sustainable for systems with embedded AI, as noted by others (Raz

et al., 2021; Wojton et al., 2021).

One major issue is the constant updating of software code

that is a necessary byproduct of agile software development. In

such design approaches, software can change in seemingly small

ways, but then lead to unexpected outcomes. Without principled

testing, particularly for software than can have a derivative effect

on human performance, the stage will be set for potential latent

systems failures. Moreover, because software is typically continuously

updated throughout the lifecycle of a system, it is not clear how

testing should be adapted to catch the emergence of a problem in a

system with embedded AI.

This staged approach to testing does not explicitly account for the

need to test AI blind spots. Understanding that there are new sources

of uncertainty that require rethinking of TEVV, especially as these

sources of uncertainty relate to human work, new testbeds will be

needed that allow for investigation of such uncertainties.

One of the core issues at the heart of AI experimentation is

the role of simulation vs. real-world testing. Companies prefer to

conduct the bulk of system experimentation in simulation for costs

and scheduling reasons. Because uncertainty is a potential unknown

unknown, which can come from the design of AI systems, the

environment, and humans, much greater emphasis is needed in

studying howmuch testing should be in simulation vs. the real world.

Given the changes that AI is and will continue to bring in both the

design of systems as well as their use, there are several areas of inquiry

that deserve more attention in terms of TEVV, which include:

• How should AI performance be measured, including

individual behaviors as well as patterns of behaviors and

emergent behaviors.

• How can known bias in the development of AI systems be

measured and tested?

• How can unknown sources of bias be discovered?

• What methods could be developed to potentially reveal

unknown sources of bias?

• The need for routine post-deployment testing, including person-

in-the-loop evaluations, when meaningful software changes are

made or environment conditions change. Additional work is

needed to define “meaningful software changes.”

• How do human decision biases affect data curation, how can this

be tested and what can be done to mitigate such biases?

• How could or should test cases be developed so that edge

and corner cases are identified, particularly where humans are

operating or could be affected by brittle AI?

• Testbeds should be developed that allow for multidisciplinary

interactions and inquiry, and also that include enough real-

world data to investigate the role of uncertainty as it relates to

AI-blind spots.

• Given that changes occur on an almost continual basis in

AI systems for both software and environmental conditions,
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identifying, measuring and mitigating concept drift is still very

much an open question.

• How can humans certify probabilistic AI systems in real-

world scenarios?

• Determining the appropriate degree of trust for systems that

may not always behave in a repeatable fashion, like those with

embedded AI, is critical for both people who operate and certify

such systems.

• The development of a risk-based framework that balances

algorithm-focused, embedded system and operational testing

and what is the appropriate use of actual vs. simulation testing.

• A formulation for what constitutes unreasonable risks for

different AI applications and how to test to such formulations,

i.e., what may be considered an acceptable risk to a military self-

driving tank is very different from that of a personally-owned

self-driving car.

There are many groups in industry, government and academia

working to better understand these issues, and there has been

incremental progress (Freeman, 2020; DSTL, 2021; Tate, 2021).

Progress tends to be narrow and function specific, for example,

Waymo recently explained how it was testing its AI-enabled collision

avoidance systems on cars (Kusano et al., 2022). While laudable,

how to extend this approach more broadly to other systems or how

to make this an industry-wide standard are still open questions.

In addition, not only is more funding needed in the testing and

certification space, research agencies need to understand that testing,

safety and certification efforts are not simply peripheral activities that

necessarily accompany research, but that they are legitimate research

fields in and of themselves (Cummings et al., 2021).

5. Conclusion

The recent shift from predominantly hardware-based systems

in complex settings with some embedded deterministic software to

systems that heavily leverage probabilistic AI reasoning requires that

typical systems engineering processes adapt, especially functional

and non-functional requirements development and TEVV. While

there has been a substantial body of literature that addresses

how requirements should be developed for complex systems with

embedded software, as well as how to test such systems, the bulk

of this work assumes that the underlying software incorporates

deterministic algorithms that perform the same way for every use.

However, AI that relies on probabilistic reasoning is brittle, and

can fail in unexpected ways. The overestimation of AI capabilities

could result in requirements that lead to systems that require

human oversight in unexpected ways with little or no support.

Such misapplication could also introduce new functionalities that

result from an AI system reasoning in ways unanticipated by

their designers. Moreover, there is little-to-no consensus on how

such a system should be tested, how much simulation should play

into acceptable test protocols and what constitutes “good enough”

performance in safety-critical settings.

This work outlined 14 new considerations in the development

of functional and task requirements for complex systems

with embedded AI. These recommendations highlight the

interconnectedness between uncertainty and AI, as well as the

role one or more humans might need to play in the supervision and

secure operation of such systems. In addition, 11 new or modified

non-functional requirements, i.e., “ilities,” were also delineated

that focus on the broad categories of usability, sustainability, and

suitability while also introducing two new “ilities,” that of auditability

and passive vulnerability. These new ilities highlight the need for a

new workforce to specialize in AI maintenance.

In terms of TEVV, 10 areas of weakness were noted that need

significantlymore attention before developers can develop reasonable

risk estimates of AI system performance. Companies and government

agencies need to develop public-private partnerships to address AI

testing and certification issues, especially those in safety critical

settings. While government agencies have significant experience with

formal system testing, commercial entities have the cutting-edge

AI development experience, so combining their capabilities could

advance the field far faster than if everyone attempts to develop their

own testing and certification protocols.

Lastly, while AI may seem to predominantly belong in the

domain of computer science, there are critical facets that need the

expertise of people in the fields of human factors engineering, the

social, cognitive, and physiological sciences, systems engineering,

philosophy, public policy and law. If AI continues to be developed in

a stove-piped manner, it could potentially have a dramatic negative

impact in unexpected ways. While companies and government

agencies can form interdisciplinary teams for specific projects,

ultimately academia (and the associated funding agencies) needs

to ensure that interdisciplinarity in research and education is

both valued and rewarded so that students graduate with the

interdisciplinary skill sets badly needed in government and industry.
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