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This systematic literature review presents an update on developments in 3D visualization

techniques and analysis tools for eye movement data in 3D environments. With the

introduction of affordable and non-intrusive eye-tracking solutions to the mass market,

access to users’ gaze is now increasingly possible. As a result, the adoption of

eye-tracking in virtual environments using head-mounted displays is expected to increase

since the trend is to incorporate gaze tracking as part of new technical solutions. The

systematic literature review presented in this paper was conducted using the Scopus

database (using the period 2017 to 17th of May 2022), which after analysis, resulted

in the inclusion of 15 recent publications with relevance in eye-tracking visualization

techniques for 3D virtual scenes. First, this paper briefly describes the foundations of

eye-tracking and traditional 2D visualization techniques. As background, we also list

earlier 3D eye-tracking visualization techniques identified in a previous review. Next,

the systematic literature review presents the method used to acquire the included

papers and a description of these in terms of eye-tracking technology, observed stimuli,

application context, and type of 3D gaze visualization techniques. We then discuss the

overall findings, including opportunities, challenges, trends, and present ideas for future

directions. Overall the results show that eye-tracking in immersive virtual environments

is on the rise and that more research and developments are needed to create novel and

improved technical solutions for 3D gaze analysis.

Keywords: 3D visualization, eye tracking, gaze, visual attention, virtual environments, systematic literature review

1. INTRODUCTION

Eye-tracking technology provides the recording of eye movements of a user to determine the gaze
direction and capture where he or she is looking during an interval of time. In recent years, there
has been an increase in using portable eye-tracking solutions, such as glasses, for gathering gaze data
from people observing their environment. Over the years, it has been common to use eye-tracking
to analyze eye movements on traditional screens using 2D stimuli. Eye-movement data can also
be used to analyze human behavior in 3D virtual environments (VEs) while using immersive
head-mounted displays (HMDs). The eye movements from an observer indicate where overt visual
attention is focused (Carrasco, 2011). Eye-tracking information can also be used in real-time to
create gaze-controlled interfaces.
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Screen-based eye-tracking for analyzing stimuli such as
images, video, and VEs has commonly been used in the last
decades. It is only recently that eye-tracking has started to appear
in virtual reality (VR) or mixed reality (MR) to a larger extent.
Several HMDs that incorporated eye-tracking, such as HTC Vive
Pro Eye, FOVE 0, and Varjo VR-3, are available on the market
and have beenmass-produced. There are also solutions that allow
adding binocular eye-tracking to existing headsets, for example,
a binocular add-on by Pupil Labs. Eye-tracking has increasingly
started to be used in real-time visual applications, including
games (Sundstedt, 2012), simulators (Groner and Kasneci, 2021),
and visual analytics (Burch, 2021). These applications generate
more data than ever, and this trend is likely to continue. Eye-
tracking and visual attention focus have also been exploited in
HMDs to render some areas where the observer is looking in
higher quality. This selective rendering process is also referred
to as foveated rendering (Patney et al., 2016).

Game analytics (Nasr et al., 2013) is also a field that has
grown significantly over the past decade. Game developers and
designers have initially used game analytics to improve game
design, evaluate performance, or study player behaviors. Players
have adopted it to analyze matches of their own and others in
novel ways. Recent video games generate a large amount of data
to be analyzed, and with emerging technologies, such as VR
games exploiting eye-tracking in HMDs, further data related to
face, head, and body movement are gathered. Also, the area of
eSports is growing rapidly, and here eye-tracking can be used
to explore cognitive load and performance (Dahl et al., 2021).
Another example is to explore observers’ visual attention in
relation to eSport advertisements (Seo et al., 2018). There is also
an increased potential for HMD devices, which incorporate eye-
tracking, to further be used collaboratively in games and VEs by
playing or working together.

The increased use of eye-tracking in VEs and VR opens many
opportunities for exploring complex multidimensional data sets.
The combination of VR technology with eye-tracking, gesture,
or body tracking will call for novel visualization techniques.
However, there is a challenge in effectively visualizing eye-
tracking data from one or many viewers in immersive VR
environments. Here, novel ideas and techniques are needed from
the visualization community to gain new insights and enhance
understanding of the data. Effective solutions also need to be
incorporated in future accessible and easy-to-use visualization
and analysis tools. Only then can the visualizations be used
by people not only in a research setting. As described earlier,
the area of eSports could be such an application to enhance
further. Developments with novel approaches in the immersive
technologies industry could also feed back into data visualization.

Increased usage provides more opportunities for novel
visualization techniques to surface, and reporting and classifying
them is crucial to understanding how the field can develop.
There is an earlier survey from 2017 (Blascheck et al., 2017)
summarizing 2D/3D eye-tracking visualization techniques up
the point of 2017 in a taxonomy. The rationale for this state-
of-the-art systematic literature review is to describe established
and emerging 3D eye-tracking visualization techniques for
researchers and developers interested in understanding visual

attention focus in VEs. The period for the search carried out in
this paper corresponds to the last 5 years, starting from 2017 until
the 17th of May 2022. The objective of the systematic review is
to contribute to the knowledge of 3D visualization techniques of
eye-tracking data in 3D scenes.

The remainder of the paper is organized as follows: Section 2
introduces eye-tracking foundations and some common 2D
gaze visualization techniques. Section 3 briefly summarizes
relevant previous work reviewing 3D eye-tracking visualization
techniques in particular and highlighting seminal work. Next,
Section 4 describes the systematic literature review method. This
is followed by Section 5 which highlights the main results and
recent research and developments in the area of 3D visualization
techniques for eye-tracking data. The results are further discussed
in Section 6, with a focus on possibilities, challenges, and future
trends of visualization techniques for 3D VEs. Finally, Section 7
concludes the work and highlights directions of future research
that are being unveiled by new technological developments.

2. FOUNDATIONS OF EYE-TRACKING AND
2D VISUALIZATION TECHNIQUES

Eye-tracking devices capture the gaze direction, also referred to
as the Line of Sight (LOS) in 3D or the Point of Regard (POR) in
2D as a point on a plane (Sundstedt, 2012). The Point of Fixation
(POF) is also used as a term when describing the gaze target in
3D space (Lappi, 2015).

Several eye-tracking techniques have been developed and
the most commonly used in the last decade is called video-
based eye-tracking (Duchowski, 2017). Video-based eye-tracking
relies on video images of one or both eyes and an infra-red
light emitter pointed at the user’s eyes to compute the eye’s
orientation in space, hence the gaze direction of the user. To
measure the POR, two features are extracted: the center of the
pupil and the reflection of the infra-red light on the cornea. The
corneal reflections are also referred to as Purkinje images (Crane,
1994; Duchowski, 2017). The positions of the corneal reflections
relative to the pupil’s center indicates where the user is looking at.
Three types of hardware setups are currently available for video-
based eye-tracking: eye-trackers that can bemounted on a screen,
e.g., Tobii Pro X2-30, eye-trackers integrated into HMDs, e.g.,
Tobii Pro VR Integration1, or mobile headset eye-tracking (like
glasses), e.g., Pupil Invisible2.

The human visual system utilizes different types of eye
movements that can be divided into two main categories:
stabilizing movements and saccadic movements (Lukander,
2003). Stabilizing movements consist of smooth pursuits,
vestibular ocular reflex movements, optokinetic reflex
movements, and fixations; they are used to keep an image
still on the retina. Saccades and vergence movements are part of
the second category, and they are responsible for repositioning
the fovea, the area at the center of the retina having the highest
visual acuity (Lukander, 2003; Sundstedt, 2012).

1https://www.tobiipro.com/product-listing/vr-integration/
2https://pupil-labs.com/products/invisible/
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FIGURE 1 | Examples of 2D gaze data visualization techniques. (A) Top-left: scanpaths of two participants (P1 in magenta and P2 in cyan) visualized with Tobii Studio

software. (B) Top-right: heat map of the two participants showing the aggregated fixations duration, visualized with Tobii Studio software. (C) Bottom-left: definition of

three areas of interest (AOIs). (D) Bottom-right: Schematic representation of a scarfplot visualization for the three pre-defined AOIs.

During a recording session, the eye-tracker collects a large
amount of raw eye movement data at a high frequency, e.g.,
the Tobii Pro Fusion screen-based eye-tracker can reach a
data sampling frequency of up to 250. Hz3 These raw data
are processed to extract for example fixations and saccadic
movements between fixations (Salvucci and Goldberg, 2000).
To analyze the data, different visualization techniques are used.
Blascheck et al. (2017) categorize them in two main classes:
point-based, such as scanpaths or heat maps, and based on
areas of interest.

2.1. Scanpath or Gaze Plots
A scanpath, also called gaze plot, represents fixation points as
circles on the top of the stimuli. The circle radius is proportional
to the duration of the corresponding fixation. Two sequential
fixation circles are connected by a line representing the saccadic
movement going from the first fixation to the second one. In
doing so, it is possible to create a full path of fixations. In
each circle, a number can be shown describing the order of
the fixations. This temporal information is useful, for example,

3https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/tobii-pro-fusion-

user-manual.pdf/?v=2.4

to visualize which area of the stimulus has been focused first
during a session. A scanpath represents the eye movement data
of a specific user, and in an eye-tracking session with more
than one user, all scanpaths are superimposed on the stimuli.
In the case of several participants, this type of visualization
could be confusing due to too many superimposed plots. A
slightly different visualization can be used instead, called bee
swarm, showing where all the participants were looking at the
same time (Sundstedt, 2012). An example of scanpaths of two
participants is shown in Figure 1A.

2.2. Heat Maps or Attentional Maps
A heat map, also called attentional map, represents an
aggregation over time of gaze data, e.g., the number of fixations
or the duration of the fixations of a user, usually using
a color-based scale (e.g., green-yellow-red). This color-coded
information is superimposed on the original stimulus and can
be accumulated from all the participants. In order to avoid a
scattered visualization and have a smooth map, a Gaussian filter
is applied to the fixation areas (Duchowski, 2017). An example of
heat map representing fixation duration is shown in Figure 1B.
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2.3. Areas of Interest
The definition of areas of interest (AOIs) in the stimulus
supports the analysis of specific regions that can be defined either
manually by the analyst, for example, by selecting a rectangular
or polygonal area of the stimulus (Figure 1C), or automatically.
The automatic definition of AOIs can be done at the gaze data
level, e.g., by performing clustering of the fixation locations, or
by processing the stimulus, for example, by processing semantic
segmentation of the stimulus. The most common visualizations
based on AOIs show the variation of attention during the
time between different AOIs, e.g., scarf plots (Richardson and
Dale, 2005), or the relationship between them, e.g., transition
matrix (Goldberg and Kotval, 1999). A schematic representation
of the scarfplot visualization is shown in Figure 1D.

3. PREVIOUS WORK ON 3D
EYE-TRACKING VISUALIZATION
TECHNIQUES

This section briefly presents the previous state-of-the-art in
3D visualization techniques of eye-tracking data and connects
these with the described foundations. An extensive earlier
survey (Blascheck et al., 2017) summarizes 2D and 3D eye-
tracking visualization techniques up to 2017 and proposes a
taxonomy of previous works according to categories based on the
type of gaze data, the type of visualizations, and the nature of the
stimulus. The authors identify four different aspects with which
they classify the type of visualizations; (1) animated vs. static, (2)
2D vs. 3D, (3) interactive vs. non-interactive, and (4) in context
vs. not in-context, i.e., methods including or not including
the stimuli into the visualization. The survey reports 11 works
focusing on 3D stimuli, seven of which present visualizations in
context with the stimuli.

For point-based visualizations, representing the spatial and
temporal distribution of eye movements (Blascheck et al., 2017),
several works presented a 3D version of scanpaths rendered in
the 3D environment of the stimuli. For example, Duchowski
et al. (2002) present a method for analysis of gaze data from
binocular eye-tracking systems in VR. To visualize the fixations
and saccadic movements within the 3D scene, they render yellow
spheres connected by yellow lines, where the spheres represent
the fixations with a radius proportional to the fixation duration.
Similar approaches have been used by Stellmach et al. (2010)
and Pfeiffer (2012). In Pfeiffer (2012) the fixations are represented
by blue spheres with radius indicating the high acuity visual
angle around the optical axis, and cylinders represent saccades.
Stellmach et al. (2010) propose two variants of 3D scanpath, one
similar to the previously cited works using spheres representing
fixation points, and a second one using conical representation
encoding a larger amount of information compared to the
spherical shapes: the apex of the cone representing the gaze
position, the fixation duration can be encoded by the size of
the base of the cone, the direction of the main axis of the cone
represents the viewing direction of the observer, while their
distance can be encoded by the height of the cone. Ramloll et al.
(2004) propose a design of an integrated scanpath visualization

for a particular subset of 3D stimuli: 3D objects with a simple
geometry that can easily be flattened, e.g., a 3D model of a car.
The main idea is to map the fixations on the surface of the
object at the polygon level, and after the mapping, the stimuli is
flattened in a 2D representation so that both 3D stimuli and the
superimposed scanpath can be analyzed in 2D at a glance, having
no occlusions.

Another natural integration of the gaze data in the 3D space
of the stimuli is the projection of heat maps (or attentional maps)
on the 3D stimuli. Stellmach et al. (2010) propose three types of
heat maps: projected, object-based, and surface-based, with the
last two being 3D representations fully combined with the 3D
stimuli. The surface-based 3D heat map projects the gaze data
directly on the surface of the 3D model; it is distributed over
the surface using a gaussian filter, and its polygons are colored
according to a colormap. Maurus et al. (2014) analyze a more
complex 3D scene as stimuli, not only single 3D objects, and
proposed a more accurate projection of the fixation data over
the 3D geometry taking into consideration also the occlusions
that each 3D element of the scene produces from the point
of view of the observer. In Paletta et al. (2013), fixation hits
with the 3D geometry are projected onto a 3D model with
colormap with increasing values going through white, yellow,
and red. Attentional maps have been proposed not only in
terms of surfaces but also volumes. Pfeiffer (2012) presents a 3D
attention volume in which each fixation point in 3D, instead of
being illustrated by a sphere, is represented by a 3D Gaussian
distribution on the 3D space of the stimuli centered on the 3D
points of regard and encoded with a green-yellow-red colormap.

AOI-based visualizations (Blascheck et al., 2017) have also
been proposed for 3D stimuli. In Stellmach et al. (2010), the AOI
is defined as a specific 3D object of the scene, and the object-
based attentional maps proposed in this work assign a unique
color to the whole surface of the 3D object, encoding with a single
value the saliency of the whole 3D object with respect to the
other objects in the scene. The chosen colormap is the same as
the surface-based attentional map (green-yellow-red colormap).
Hence the object that results to be more salient is visualized in
red while the one with the lowest visual attention is in green.
In Baldauf et al. (2010), a mobile eye-tracker device acquires
both gaze data and video stream of a urban scene. To analyze
the gaze data in context with the stimuli, a digital replica of the
scene is available, and the gaze visualization consists of a gaze ray
starting from the observer’s location to the target model hit by
the gaze. When the gaze ray points at a specific object, it changes
its appearance by having a different color. A similar approach is
shown in Pfeiffer et al. (2016), where the object hit by the 3D
gaze ray is highlighted in green. One example of a 3D surface-
based attentional map is shown in Figure 2, using a technique
presented in Garro and Sundstedt (2020).

4. METHODS

Figure 3 shows the PRISMA 2020 flow diagram for the
systematic review and the applied eligibility criteria. The
proposed systematic literature review has been performed
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FIGURE 2 | Example of a 3D surface-based attentional map (or heat map).

The centaur mesh is part of the TOSCA high-resolution dataset (Bronstein

et al., 2008).

using the information source Scopus, one of the largest
databases of peer-reviewed literature, such as scientific journals,
books, and conference proceedings. Scopus contains example
publishers such as Elsevier, Springer, Association for Computing
Machinery, and Eurographics. Scopus has also previously been
reported to provide high-quality indexing of computer science
publications (Cavacini, 2014).

We have focused on the publications published after the
survey done by Blascheck et al. (2017) to cover the most recent
work done on the topic. Hence, the range of publication years
taken into consideration for the analysis was set to 2017–2022
(accessed 17th of May 2022). The search was done using the
title, abstract, and keywords. This has the potential limitation
of restricting the number of records found, however, if the full
text had been used, the total number of retrieved publications
had been too large (3654). The first search string used can
be seen below:

• TITLE-ABS-KEY ((“eye tracking” OR “gaze”) AND
(“visualization” OR “visualisation”) AND “3D”) AND
(PUBYEAR > 2016))

This resulted in 140 publications, as shown in Figure 3. The
search was then refined to have the language set to English and
the document types limited to conferences and articles. This
resulted in the final search string below:

• TITLE-ABS-KEY ((“eye tracking” OR “gaze”) AND
(“visualization” OR “visualisation”) AND “3D”) AND
(PUBYEAR > 2016) AND (LIMIT-TO (DOCTYPE, “ar”)
OR LIMIT-TO (DOCTYPE, “cp”)) AND (LIMIT-TO
(LANGUAGE, “English”))

The final literature search strategy resulted in 92 papers. The key
to inclusion in the analysis was that the paper should have some
3D gaze data visualization technique, representing eye-tracking
data in context with the 3D stimuli or a 3D representation

of the stimuli. Two papers were excluded from the analysis
due to not being accessible, as shown in Figure 3. One author
initially screened all the 92 records. Some of these records were
further discussed between both authors after the initial screening
process to clarify their content and relevance. Papers focusing
on purely traditional 2D eye-tracking visualization techniques,
such as scanpaths or gaze plots, heat maps or attentional maps,
or AOIs, were excluded from the review. Papers that presented
a visualization of eye-tracking data not in-context with the
stimuli were also excluded since they did not show fixation data
directly in 3D scenes. These two groups together corresponded
to 34 papers.

The remaining 41 excluded papers were deemed out of scope
by not clearly visualizing gaze data. For example, some of these
dealt with gaze interaction. They are still relevant in the context of
eye-tracking interaction in VR, but that was beyond the scope of
this review. As shown in Figure 3, the selection process resulted
in 15 papers being included in the review. These were divided
to be assessed by both authors independently and then discussed
together. In the data collection process, both authors summarized
the main research of the paper, including particular eye-tracking
technology, observed stimuli, application context, type of 3D gaze
visualization techniques, and opportunities and challenges.

5. RESULTS

This section reports on the outcomes of the recent developments
in the area of 3D eye-tracking visualization techniques, filling
the gap between 2017 and 2022 (17th of May). Table 1 lists the
identified included papers resulting from the literature search,
categorized based on the eye-tracking technology, the type of
stimuli observed, and the context of the proposed application.

Analyzing the type of stimuli observed in the retrieved papers,
we can identify two main categories: real stimuli and digital
stimuli. The real environment stimuli can be either single objects
or more complex scenes (indoor or outdoor) captured by eye-
tracking glasses or headsets. The digital stimuli are complex
virtual environments, single 3D objects, and volumetrical
medical images. While 3D objects and medical images have
been shown via traditional screens, virtual environments have
also been observed in VR using HMDs. However, some papers
have also compared 2D techniques to 3D solutions in VEs
being displayed on a traditional screen or in an HMD. Stimuli,
including images or videos shown on a traditional computer
screen, are referred to as 2D in Table 1. If a VE is being displayed
on a traditional screen, this is referred to as 3D VE (screen) in
Table 1. Finally, 3D stimuli being experienced in an immersive
HMD are named 3D VE (VR).

Examples of eye-trackers used with traditional screens were
the Tobii 4C, SR Research EyeLink 1000 Plus, SMI RED 250
device, EyeTribe eye-tracker, and Tobii X60 eye. Eye-tracking
glasses include Pupil Invisible Eye-Tracker from Pupil Labs,
Tobii Pro Glass 2 from Tobii Pro, and the SMI ETG 2 eye-
tracker. The Pupil Eye-Tracker is mobile and head-worn, similar
to a pair of glasses. Eye-tracker examples incorporated in HMDs
include the HTC Vive Pro Eye and the Fove HMD. The HMD
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FIGURE 3 | PRISMA 2020 flow diagram for systematic reviews (Page et al., 2021).

category also includes separate custom-made lenses for eye-
tracking, which can be incorporated into a common VR headset,
such as the HTC Vive, e.g., the 7invensum infrared lenses, also
called A-Glass.

Regarding application contexts used for 3D gaze visualization
analysis, it varies as shown in Table 1. Several of the papers have
explored room scene inspections in general, whereas some have
studied specific user behavior. Examples here include indoor
evacuation, indoor building inspection or interior architecture
exploration, gaze analysis during a job interview simulator, an
educational experience, or for character movement in sports.
Some work has also looked at outdoor scene exploration, terrain
data (GIS) analysis, or real object inspection. Finally, a couple
of papers were set in the medical domain, using eye-tracking in
volumetric image analysis.

5.1. Gaze in 3D
Based on the analysis carried out identifying what 3D
visualization techniques have been used in the papers, the
outcome is clustered into three main categories: (1) gaze in real
environments, (2) gaze in virtual environments, and (3) gaze
on volumetric datasets. In the continuation of this subsection,

we will describe the retrieved papers clustered by these types
of stimuli.

5.1.1. Gaze in Real Environment

Recent advancements in mobile head-mounted solutions for
eye-tracking have opened the possibility of acquiring gaze
data on egocentric camera video streams for analyzing the
visual behavior of a user in a real environment carrying
on everyday activities. Moreover, computer vision research
on 3D reconstruction techniques from images or videos
such as Structure from Motion (SfM) photogrammetry
(e.g., Schönberger and Frahm, 2016), and Simultaneous
Localization and Mapping (SLAM) (e.g., Mur-Artal et al., 2015)
have developed and strengthen in the latest decades providing
accurate and reliable digital reconstructions of real environments
in terms of 3D point clouds or 3D meshes. The combination
of 3D reconstruction techniques and mobile eye-tracking
output seems a natural step for advancements in 3D gaze data
analysis. In fact, several works have been recently presented
proposing solutions for 3D mapping of egocentric gaze data
over a 3D environment reconstructed from real indoor or
outdoor scenes.
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TABLE 1 | Description of papers chronologically ordered, based on eye-tracking technology, types of stimuli, and application context.

References Eye-tracking technology Observed stimuli Application context

Ugwitz et al. (2022) HTC Vive Pro Eye (HMD) 3D VE (VR) Indoor evacuation behavior

analysis

Jogeshwar and Pelz

(2021)

Pupil Invisible (glasses) Real environment Room scene inspection

Breen et al. (2021) Tobii 4C (screen-based)

FOVE (HMD)

3D VE (screen)

3D VR

Gaze analysis during job

interview simulator

Jogeshwar (2020) Pupil Invisible (glasses) Real environment Room scene inspection

Shi et al. (2020) Tobii 4C (screen-based)

Oculus Rift CV1 + emb. eye-tracker

(HMD)

2D map and 3D VE (screen)

3D VE (VR)

Indoor building inspection

Li et al. (2020) Tobii Pro Glasses 2 (glasses) Real environment Room scene inspection

Rahman et al. (2020) HTC Vive Pro Eye (HMD) 3D VE (VR) Gaze analysis during educational

experience

Bianconi et al. (2019) HTC Vive + aGlass lenses (glasses) 3D VE (VR) Interior architecture exploration

Singh et al. (2018) SMI ETG 2 (glasses) Real environment Outdoor scene exploration

Hagihara et al. (2018) Tobii Pro Glasses 2 (glasses) Real environment Room scene inspection

Naour and Bresciani

(2017)

SR Research EyeLink 1000 Plus

(screen-based)

2D video (screen)

3D VE (screen)

Real and virtual character

inspection in the sports domain

Herman et al. (2017) SMI RED250/Eye Tribe

(screen-based)

3D object (screen) Terrain data (GIS) analysis

Wang et al. (2017) Pupil Eye-Tracker (headset) Real object Real objects inspection

Ma et al. (2017) Eye Tribe (screen-based) 3D volumetric image

(screen)

Volumetric dataset analysis

Song et al. (2017) Tobii X60 (screen-based) 2D/3D volumetric image

(screen)

Medical imaging analysis

Hagihara et al. (2018) propose a system that processes gaze
data from eye-tracking glasses and performs the 3D mapping of
these data with respect to a 3D point cloud reconstruction of the
environment. During an offline preparation phase, the physical
scene is captured by a RGB-D camera and reconstructed using
Visual SFM (Wu et al., 2011), an open source SfM software.
Moreover, the system automatically segments 3D objects of
interest in the scene using the method proposed by Tateno
et al. (2015) that relies also on the depth info from the RGB-
D camera. During the visualization phase, the user looks at
the workspace with eye-tracking glasses which capture both the
first person video (FPV) and 2D gaze points. The eye-tracker
trajectory, hence the user position, is tracked in the reconstructed
3D scene, while the 2D gaze data is projected using a pinhole
camera model into the 3D environment creating a 3D gaze. The
proposed system has some similarities with Pfeiffer et al. (2016),
however Hagihara et al. (2018) present a markerless solution for
the user position tracking and uses an automatic segmentation
of the objects of interest. The visualization of the 3D gaze data
is integrated into the 3D scene, and a heat map is superimposed
on the 3D objects of interest encoding the collision frequency of
the 3D gaze ray with the specific object. The authors also adopt an
object-based heat map assigning a color to each object, indicating
its visual attention ranking.

A similar approach has been proposed by Singh et al. (2018)
but, in this case, applied to real large-scale outdoor environments.

The 3D reconstruction of the scene has been obtained with
photogrammetry software (Agisoft PhotoScan) using as input
the camera frames captured from the mobile eye-tracker (SMI
ETG 2) together with some additional high-resolution photos.
The output of the 3D reconstruction phase is a 3D mesh. To
visualize the 3D gaze data, a ray-tracing technique is adopted
using a spotlight model simulating the maximum visual acuity
value centered on the gaze point and which decreases following
a Gaussian distribution when moving peripherally. The authors
proposed the application of two alternative gaze directions. The
first one is based on the user’s head position, which assumes that
the user is always looking straight ahead, and the second one uses
the actual gaze data acquired by the eye-tracker. In this work,
different versions of 3D heat maps have been implemented to
visualize the gaze data, mapping visual attention values directly
onto the 3D mesh surface.

The approach proposed by Li et al. (2020) relies only on
the camera frames captured by the wearable eye-tracker to
reconstruct the real scene. The advantage of this solution is that
there is no need to acquire the real environment with additional
devices such as RGB-D cameras or 3D scanners, saving both
time and money. SfM software COLMAP (Schönberger and
Frahm, 2016) and OpenMVS4 multiview stereo reconstruction
library have been used to reconstruct an indoor environment by

4https://github.com/cdcseacave/openMVS
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obtaining a 3D mesh model and computing the camera position
and orientation of each frame. The 3D user’s line of sight is then
computed with respect to the 3Dmodel of the scene by estimating
the line starting from the camera center and passing through
the gaze location on the camera frame. Using image registration
methods, multiple users’ 3D gaze fixations can be visualized on
the same 3D model of the scene. Similar to the previous works,
the gaze data are visualized as 3D heat maps over the surface
of the 3D model scene by counting the number of intersections
between mesh triangles and the user’s lines of sight.

Jogeshwar and Pelz (2021) present a pipeline called
GazeEnViz4D to visualize gaze data in real indoor scenes
in four dimensions, i.e., three spatial dimensions and time. An
earlier work of this tool (Jogeshwar, 2020) is also included in
the list of the retrieved papers. As the first room environment
in Jogeshwar (2020), a rectangular room has been measured and
modeled in 3D, and images of the room have been projected
on the walls, called wall templates. The camera position and
orientation of each video frame acquired by the eye-tracker
(Pupil Invisible glasses) are computed via feature matching and
the Perspective-n-Points (PnP) algorithm, and their 3D locations
are displayed as points on the 3D model. The gaze points are
represented as circles projected over the wall templates. In the
extended version of the work (Jogeshwar and Pelz, 2021), the
real scene is reconstructed using COLMAP, obtaining a 3D point
cloud model. The geometry of the scene is not only limited to
the walls of the room, being able to include more complex 3D
objects. In Jogeshwar and Pelz (2021), the novel 4D gaze analyzer
included in the pipeline allows for interactive analysis over time,
as well as using arbitrary viewpoints that can be selected by the
analyst. This tool also allows the analyst to zoom in, play/pause,
speed up/slow down, and forward/reverse the eye-tracking data
in a 3D context over time like a video. The 3D gaze points
are computed by retrieving the 3D points in the point cloud
corresponding to the feature point nearest to the 2D gaze point.
This approach introduces limitations in the accuracy of the
gaze point since it is directly related to the density of features
extracted in each frame. The 3D gaze points are then visualized
with a color-coded heat map generated from the 3D gaze points
and overlaid to the neighbor 3D points following a Gaussian
kernel distribution.

The works described up to this point deal with the
representation of gaze data in real complex environments
composed of different objects. On the other hand, the work
by Wang et al. (2017) focuses on the inspection of a single object.
Wang et al. (2017) present a system for accurate 3D gaze tracking
on single physical 3D stimuli (3D printed objects) using a head-
mounted monocular eye-tracker. The main idea is to relate the
gaze direction with the geometry of the physical environment,
which is known due to the presence of fiducial markers both on
the 3D printed object and the surrounding environment. The
paper includes an exploratory experiment to validate the accuracy
of the proposed method on a 3D printed Stanford bunny. The
task of the participants was to focus on each targetmarker applied
to the 3D stimulus. To visualize the gaze positions obtained
during the experiment, the authors choose a heat map on the
surface of the digital 3D stimulus, i.e., the Stanford bunny 3D

model. Since gaze visualization is not the main focus of this work,
no further details are presented. However, from the figures, one
could deduce that the chosen colormap is a linear “red to yellow”
colormap. It is worth mentioning that the visualization of gaze
direction using a heat map over the 3D stimuli has also been
used in several other works on visual attention on 3D shapes,
e.g., Wang et al., 2016, 2018; Lavoue et al., 2018; Alexiou et al.,
2019; Garro and Sundstedt, 2020.

5.1.2. Gaze in Virtual Environments

In Naour and Bresciani (2017), a visualization tool and two
experiments were presented that explored one or multiple
observers’ viewing behavior when watching character animation
movements. The chosen use cases were set in the sports domain
(gymnastics and penalty kick). Their tool was designed for
both non-experts and expert users and can visualize spatial
and temporal gaze data. The aim of this work was to better
understand human-body gestures. The material to be analyzed
could either be a 2D video or 3D VR stimuli. In the first case, the
user would manually annotate, and in the second case, motion
capture was used. The output of their visualization tool is a
colored mesh, which could be seen as a 3D heat map. Their
algorithm builds the heat map from previously defined character
joints and the concept of skinning.

Early work by Herman et al. (2017) proposed 3DgazeR, a
tool to analyze eye-tracking data of interactive single 3D objects,
mainly tested with terrain 3D models, i.e., digital elevation
models (DEM). The main functionality of the tool is converting
the 2D screen coordinates of the gaze data gathered from the
eye-tracker to the 3D coordinates of the model scene. Knowing
the position and orientation of the camera with respect to
the 3D scene, the tool performs a ray casting of the gaze 2D
coordinates to the 3D model. 3DgazeR provides several different
3D visualizations of the 3D gaze data: (1) 3D raw data as points
on the 3D surface, varying size, color, and transparency; 3D
scanpaths, and 3D projected attention maps (Stellmach et al.,
2010) as heat map projected on the 3D surface.

Bianconi et al. (2019) present a VR simulation exploring the
legibility of multiple spaces in an indoor architectural scenario.
The authors propose a case study in which an office building was
modeled in 3D and visualized in an immersive VR experience by
the participants through HTC Vive HMD with additional eye-
tracking aGlass lenses. A group of eight people had to perform
a series of wayfinding and orientation tasks in the VE without
having prior knowledge about the building. Wayfinding was
evaluated by exploring the user’s orientation and movements.
Based on the results from the task and eye-tracking data gathered,
the design of the building was modified, and the same users
performed the tests again. The gaze data were represented by heat
maps overlaid on detection planes placed in proximity of core
building elements such as walls, the floor, and points of interest.
A qualitative analysis of the heat maps showed what parts of
the office space the participants were looking at during the
experience or if they noticed specific elements (e.g., signposting).

Another work in the context of building inspection in VR
has been presented by Shi et al. (2020). In particular, the aim
of the authors was to explore the relationship between visual
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attention and the development of spatial memory using three
different display methods: a 2D drawing of the map of a real
building, an interactive 3D model of the building shown on a
screen, and a 3D model experience in immersive VR (Oculus
Rift CV1 with an embedded eye-tracker). The participants got
to inspect the building with one of the three display techniques
while memorizing details and layout. After the review phase,
they had to walk to the real building and explore it, trying
to find discrepancies introduced in the digital versions. They
did report on a strong positive relationship between visual
attention and spatial memory development and that this was
affected by the type of display techniques. The overall spatial
memory development was improved in the 3D and VR compared
to the 2D group. For the 3D model on screen and in VR,
the 3D gaze data have been computed via raycasting and
visualized as points in the VE together with a playback of the
gaze movements.

Rahman et al. (2020) explore gaze data supporting a VR-
based education scenario. Eye-tracking data can help provide
real-time information to see if students are confused or distracted
by looking at objects not relevant to the educational aim. In
this study, the students were immersed in an outdoor VE of a
solar field. Students’ gaze data are shown to the teacher using
six different visualization techniques. The proposed techniques
were: (1) gaze ring, (2) gaze disk, (3) gaze arrow, (4) gaze trail,
(5) gaze trail with arrows, and finally, (6) gaze heat map. The first
three techniques took the gaze point into account, whereas the
last three exploited gaze data over time. The presented techniques
were evaluated in a within-subject user study to explore which
one was the most effective in evaluating in real-time if students
were distracted. All techniques were reported to be able to be
used for single or multiple users, for example coloring the data
for each person individually. Their initial results showed that
gaze visualization techniques with the included time span, like
a trail, were promising. This was followed by the gaze ring and
gaze disk techniques. They also found that 3D heat maps for
visualization over time or gaze arrows were not as promising.
An interesting aspect of this work is that the visualization is
proposed to be for real-time analysis. In this way, it could
help teachers directly notice if students have a decrease in
visual focus.

Breen et al. (2021) implemented a virtual job interview
simulator gathering and visualizing different types of data, e.g.,
heart rate and electrodermal activity data, to detect stress levels
and eye tacking to explore visual attention patterns of autistic
individuals during simulated job interview scenarios. The VE
consists of an office room with an interviewer avatar sitting
at a desk. The main purpose of the simulator is to provide
information supporting personnel for a better understanding
of behavioral patterns of autistic individuals, for example, by
studying eye contact and identifying what is causing stress. The
VE of the simulated job interview can be experienced either by
looking at a screen or in immersive VR (FOVEHMD). In relation
to the eye-tracking data, the paper presents both 2D and 3D
visualizations of the gaze data. In particular, the 3D gaze data are
available for the VR experience and are computed via raycasting,
i.e., finding the collision point of the gaze ray with the objects

of the VE scene. The system offers four different variations of
point-based visualization of 3D gaze data.

A recent work by Ugwitz et al. (2022) presents a workflow
and software architecture for handling eye-tracking in complex
interactive VEs experienced in immersive VR. The proposed
workflow takes into account the whole pipeline, from the
setup of the VE, to how to collect, correct and aggregate
data, as well as the 3D data visualization. For the presented
case study, they have modeled a VE of a building for analysis
of indoor evacuation behavior. As some works mentioned
above, the basic computation of 3D gaze data is done by
raycasting the gaze ray into the geometry of the VE. Moreover,
they implemented an algorithm to manage transparent
objects or objects with see-through texture. The system uses
multilevel colliders around 3D meshes as a 3D equivalent of
2D AOI. The 3D gaze points are visualized in an aggregated
3D heatmap composed of spheres located at the 3D gaze
position and colored according to the number of other 3D gaze
points nearby.

5.1.3. Gaze on Volumetric Datasets

Volumetric datasets belong to the category of digital
stimuli; however, due to the specific nature of the data,
we describe in a separate subsection the papers that deal
with the visualization of gaze data examining this type of
stimuli. Volumetric images obtained, e.g., from computed
tomography (CT) or Magnetic Resonance Imaging (MRI)
scans, are three-dimensional scalar fields with a regular grid
structure that can be visualized either partially (e.g., slicing
in 2D images) or entirely (e.g., volume rendering) (Telea,
2014).

Ma et al. (2017) present a method to compute 3D salient
regions on volumetric images. The 3D saliency volume is
generated by processing multiple 2D saliency maps acquired
from different angles. The gaze data are collected at image space
while the user looks on a screen at a volumetric image that rotates
at a regular pace, e.g., 12 degrees every 4 s. The 3D saliency map
is created by back projecting the 2D saliency maps to the 3D
volume. The visualization of the saliency values at the voxel level
is encoded by color.

Song et al. (2017) propose GazeDx, a visual analytics
framework for gaze pattern comparison of multiple users
applied to volumetric medical images. Amongst several
different 2D visualizations of gaze data, e.g., 2D scatterplot
matrices, interactive temporal charts, GazeDx also includes a
3D visualization called spatial view in which the gaze points are
superimposed on the 3D volume rendering image. To compute
3D gaze points from the raw gaze data, the authors adopted the
gaze field approach presented by Song et al. (2014). The 3D gaze
density is represented by a scalar volumewith the same resolution
as the stimulus. The gaze field is rendered upon the volumetric
data by ray-casting encoding the voxel value with color and
opacity. A 2D version of the spatial view is also included showing
2D gaze data superimposed on 2D multiplanar reformation
images. The user can analyze and explore the 3D volumetric
image enhanced with the 3D gaze points rotating the 3D volume.
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TABLE 2 | 3D visualization techniques used in the analyzed papers. The papers are clustered per stimuli type: real environment (RE), virtual environment (VE), and

volumetric dataset (VD).

Stimuli References 3D Position-Based Techniques 3D Heat Maps Volumetric Heat Maps

RE Jogeshwar and Pelz, 2021 Gaze position (ring) Heat map (point cloud)

Gaze ray

Jogeshwar, 2020 Gaze position (ring on 2D walls)

Li et al., 2020 Surface heat map (mesh)

Singh et al., 2018 Surface heat map (mesh)

Hagihara et al., 2018 Surface heat map (mesh)

Object heat map

Wang et al., 2017 Surface heat map (mesh)

VE Ugwitz et al., 2022 Gaze position (sphere) Heat map (spheres)

Breen et al., 2021 Gaze position (flattened, sphere)

Shi et al., 2020 Gaze position (point, no detail)

Gaze movement

Rahman et al., 2020 Gaze position (ring, disk, arrow, trail, trail/arrow) Surface heat map (mesh)

Bianconi et al., 2019 Surface heat map (mesh)

Naour and Bresciani, 2017 Surface heat map (mesh)

Herman et al., 2017 Gaze position (spheres) Surface heat map (mesh)

Scanpaths Surface heat map (mesh)

VD Ma et al., 2017 3D saliency volume

Song et al., 2017 Gaze field

The framework also provides filtering operations based on the
segmentation of anatomical parts. The authors evaluated the
GazeDx framework with two case studies where radiologist
experts used the tool and performed a gaze analysis of seven
colleagues, each reading two patients’ computed tomography
(CT) images.

5.2. 3D Gaze Visualization Techniques
This section presents the 3D gaze visualization techniques shown
in the analyzed papers in more detail. We have identified
three main clusters: 3D position-based techniques, 3D heat
map techniques, and volumetric heat map techniques. The 3D
position-based category includes all visualizations representing
the specific gaze position in the 3D environment in different
ways, i.e., where the gaze ray hits the geometry of the
3D environment. 3D heat maps visualizations represent an
aggregation of 3D gaze data within the time from one or several
users. Finally, volumetric heat maps also display aggregated
gaze data adapted to volumetric datasets. Table 2 shows the
identified 3D gaze visualization techniques found in the
included papers.

In addition to visualizing gaze data in 3D, several papers
also combined this information with a trajectory showing
how the user moved through the environment. Ugwitz et al.
(2022) visualize user movement and interaction and make
their pathvisualizer code available on GitHub. Bianconi et al.
(2019) and Jogeshwar (2020) also visualize the path taken
in 3D by the user as an addition over gaze data using

lines and points, respectively. Shi et al. (2020) show user
walking trajectories using red lines. Finally, Jogeshwar and Pelz
(2021) visualize the observer’s location in the environment
using red dots.

5.2.1. 3D Position-Based Techniques

The analyzed papers present several different visualizations
representing the specific gaze position in the
3D environment.

5.2.1.1. Gaze Points/Spheres
In the 3DgazeR tool by Herman et al. (2017), several different
visualization methods were used. First, they plotted the raw
data using points on a 3D surface and varied the size, color,
and transparency. For example, they mapped female raw data
to the color red and male raw data to the color blue. Shi
et al. (2020) visualize the gaze point in red in the 3D scene,
but they provide no further specific details on its shape in
the text. Breen et al. (2021) use four different point-based
visualizations. One technique is a playback of a single green 3D
sphere representing the 3D gaze data (raycasting of gaze ray to
the VE geometry) moving over time. The other visualization
options are variations allowing the user to plot all fixations
after each other or at once. If the user wants to see the
current gaze point at the same time as the complete set,
it is shown in a contrasting color to the rest. Breen et al.
(2021) also use the scanpath terminology, but even though it
is possible to explore the gaze order in real-time, the points
have no connecting lines between them like in traditional
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scanpath visualizations for 2D. Ugwitz et al. (2022) visualize
gaze movement with a small white sphere object at the
fixation point.

5.2.1.2. Gaze Ring
A colored ring displayed at the gaze location, to visually
highlight the gaze point in the virtual environment,
is used by Rahman et al. (2020) who also introduced
the terminology gaze ring. Other works also apply this
visualization in 3D reconstructions of real environments
Jogeshwar (2020), Jogeshwar and Pelz (2021).

5.2.1.3. Gaze Disk
Rahman et al. (2020) also introduced the concept of a gaze disk
to visually indicate the gaze point in the 3D environment. They
argue that the disk would be smaller than their gaze ring and
therefore less intrusive.

5.2.1.4. Gaze Arrow
Rahman et al. (2020) also used 3D arrows to indicate the gaze
with the arrow tip at the gaze point. In their experiment, each
arrow was represented to be 3 m long, pointing to distance
objects (around 30 m) away from the observer. The arrows
were mapped to different solid colors, like red, green, blue,
yellow, and turquoise.

5.2.1.5. Gaze Trail
One technique introduced by Rahman et al. (2020) is what they
refer to as a gaze trail, which makes gaze analysis possible over
time and at the same time being able to see the most current
gaze point. The trail was created using a system with particle
emitters that moved along the gaze points. Each particle was
displayed for 3 s, and then newer particles were shown brighter
than older ones. This is a technique they refer to as being designed
for VR rather than desktop or mobile scenarios. Ugwitz et al.
(2022) also used a kind of trailing fade-out of the last few previous
eye-tracking coordinates.

5.2.1.6. Gaze Trail/Arrow
Rahman et al. (2020) also introduced a gaze trail with arrows as a
new technique for VR. This technique is reported to be similar
to the gaze trail, but it has static line segments instead of the
particle emitter system. They use a minimum length segment and
plots one arrow per three line segments. A smaller sphere is used
here to show the current gaze point, and the arrow indicates the
gaze movement direction. The movement history did not fade to
highlight the potential distractions in their studies with students’
attention focus. Hence, their technique shows both the current
gaze and past information simultaneously.

5.2.1.7. 3D Scanpaths
Similar to scanpaths in 2D, several previous works have
also adopted the concept in 3D, as mentioned in Section 3.
In the analyzed papers, only Herman et al. (2017) applies
this technique by displaying semi-transparent 3D spheres
proportional in size to the fixation duration. A transparency
attribute has been added to the spheres to deal with possible

occlusions. Saccadic eye movements were then shown as these
3D fixation points but with lines connecting the spheres.
They also used a value to control transparency to deal with
overlapping data.

5.2.2. 3D Heat Maps

There are multiple works that have used some form of solution
based on heat maps in 3D. From the included papers, we have
classified these into four categories: (1) 3D surface heat maps, (2)
point cloud heat maps, (3) spheres heat maps, and (4) object heat
maps. They all provide the aim to visualize aggregated gaze data,
which are mapped to different color schemes to show a lower or
higher concentration of visual focus.

5.2.2.1. 3D Surface Heat Maps
In Naour and Bresciani (2017), the eye gaze data is mapped to
character joints rather than the mesh directly. The joint weights
then influence the color of the mesh, similar to skinning, to create
a heat map on the 3D character where blue shows no attention
and red is mapped to the highest. Herman et al. (2017) use 3D
projected attention maps, similar to Stellmach et al. (2010). Here
the heat map is projected onto the 3D surface and encoded with a
custom colormap. Wang et al. (2017) also used a heat map on the
3D stimulus, the Stanford bunny model, in their experiment. The
gaze visualization was not the focus of the work, but their figures
show that the heat map was visualized using a linear color map
from red to yellow.

Hagihara et al. (2018) generated a heat map on top of the
observed 3D objects in the scene. They used as a basis a collision
frequency detection between a gaze ray and the object in the scene
to infer input to the heat map.

Singh et al. (2018) generated several different surface-based
3D heat maps. They also used ray-casting from the points of gaze
to the 3D model, sampling with a Gaussian drop-off in terms of
visual acuity. They used ray tracing to simulate a spotlight drop-
off and checked for hits with 3D mesh triangles. They visualize
gaze density on the 3Dmodels, comparing a head-centric or gaze-
centric approach. They also use colored heat maps on the 3D
models, as well as acuity-based heat maps or surface-based heat
maps, as in Stellmach et al. (2010).

Bianconi et al. (2019) used heat maps projected onto detection
planes in the proximity of walls, floors, and points of interest in
their modeled VE. The colors chosen in their heat map were quite
common, with red representing more visual focus and blue less.

Li et al. (2020) also checked gaze points for intersection with
the triangles on the 3D mesh. They then proposed to color
the triangles. As an example, more hits would be colored red.
However, they suggest that purely coloring could look discrete
and hence not ideal. Instead, they also propose that it is better to
visualize the results using a heatmap for an improved result. They
use a diffusion filter, which has a similar effect as a Gaussian filter,
to smooth the data. In their example, areas with more attention
will receive red colors, whereas less observed areas would be
colored green.

In addition to their 3D gaze visualization techniques
displaying historic gaze data, Rahman et al. (2020) developed
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a gaze heat map for VR with a cooling effect to show that the
attention was being reduced. The opacity and saturation vary
with the density of the nearby gaze and the age of the gaze
points. Here the gaze locations were rendered on the object
using a custom shader. With the cooling effect, they were able to
compare it with their techniques on gaze trail and gaze trail with
arrows described earlier. They also support multiple observers by
showing a color for each user.

5.2.2.2. Point Cloud Heat Maps
In Jogeshwar and Pelz (2021), 3D gaze points are estimated
from 2D gaze points by finding key points (generated
by the algorithm for each image used to create the
environmental model) nearest to the 2D gaze point in
the point cloud. A Gaussian kernel is then scaled to the
uncertainty in gaze estimation, which is overlaid on every
3D gaze point closest to the key feature to its respective
2D gaze point, generating a heat map. In this work, the
gaze ray is also visualized from the observer to points in
the environment.

5.2.2.3. Spheres Heat Maps
In the work by Ugwitz et al. (2022) the heatmapvisualizer, they
do not use a classical colored heat map, but rather color gaze
points represented as spheres using a gradient. In their example,
spheres in 3D which are focused on more will receive a red
color, whereas lower concentrations of fixations will result in
gray spheres.

5.2.2.4. Object Heat Maps
Similar to Stellmach et al. (2010), the work by Hagihara et al.
(2018) also include a visualization at the object-level of the
ranking of visual attention for the objects of interest segmented
from the 3Dmesh reconstruction of the real scenes. They colored
the objects in the scene in a complete color depending on the
number of hits they received. Red in their color selection relates
to a high number of hits and blue to a low number of hits.

5.2.3. Volumetric Heat Maps

Ma et al. (2017) generated a volumetric representation of the
saliency map superimposed on a 3D volumetric image and 3D
saliency volume. Here a colormap based on the red channel was
used, and for the 3D saliency volume, it was visualized using
DVR with a colormap. The colors chosen for the colormap
were low to high values mapped to blue, green, yellow, and red.
Another heat map technique in this category was introduced
by Song et al. (2017), which used a volumetric representation
of the 3D gaze density superimposed on the 3D volume
rendering image.

6. DISCUSSION

There are many aspects that lead to a large amount of data
being produced during eye-tracking sessions. In order to analyze

gaze behavior in 3D environments, one also needs to be able to

make sense of what the eye movements are being focused on.

For example, Ugwitz et al. (2022) mention that all interactivity
needs to be logged on its own and information about the motion
of objects or the user in the scene itself. This is particularly
important if one wants to make conclusions based on eye-
tracking related to the user interaction in the VE. The user task
also influences the complexity of the analysis. Shi et al. (2020)
point out, though, that too much information could lead to
cognitive overload.

An interesting trend is also to analyze complex data
from multiple users, perhaps even looking at the same scene
simultaneously or at different times. This further complicates the
eye-tracking analysis and leads to more cluttered scenes which
need to be visualized effectively. Ugwitz et al. (2022) also state
that processing all data is time-consuming. They propose to use
an interval subset of gaze data or process an area defined by
a spatial polygon to simplify the analysis. Several of the papers
also presented the benefits of being able to replay the gaze data
(Jogeshwar and Pelz, 2021) or show it in real-time (Rahman et al.,
2020).

In the process of mapping gaze positions to objects, it is
important to be able to identify objects or parts of them in
order to map fixations to meaningful data. This process can
be simpler for VE with predefined virtual objects that fixation
data can be mapped to Sundstedt et al. (2013). However, the
distance of the user from the object also plays a role in the
interpretation of the mapping, as reported by Ugwitz et al.
(2022), and it needs to be taken into account implementing
suitable AOI colliders. When eye-tracking real environments,
this information might not be known at all, even if there
are algorithms aiming to automatically classify objects in the
scene (Tateno et al., 2015). In 2D scenes, the distance to the
objects is known, and this makes easier the process of mapping
gaze positions to scene content. In 3D, points in the scene have
various depths, and techniques need to be adjusted to take this
into account. Traditional techniques need to accommodate this
as well as deal with temporal aspects in 3D scenes (Ugwitz
et al., 2022). Blascheck et al. (2014) also mentioned that it
could be problematic to map fixations back to 3D objects. The
computation of gaze ray intersecting objects in 3D cannot always
be used, e.g., in the visualization of a medical volumetric dataset,
transparent exterior structures can still be visualized by direct
volume rendering, but the user might be focusing on internal
structures (Ma et al., 2017).

Jogeshwar and Pelz (2021) mentioned that a downside of
traditional techniques and tools is that one is restricted to a single
viewpoint and that the analysis can also be time-consuming to
go through frame-by-frame. This problem could also exist in
3D if the camera is static. Allowing interactive viewpoints could
provide better opportunities to see occluded objects or mitigate
object distortions caused by being further away (Herman et al.,
2017).

Another issue is being able to deal with complex VEs, such
as those reconstructed from the real environment. The accuracy
of the 3D reconstruction of real environments is key since
it influences motion tracking and 3D gaze mapping, hence

Frontiers in Neuroergonomics | www.frontiersin.org 12 July 2022 | Volume 3 | Article 910019

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Sundstedt and Garro A Systematic Review of Visualization

the visualization analysis. This is valid in particular in the
case of 3D reconstruction of small objects being part of large
scenes (Hagihara et al., 2018). Moreover, when using camera
frames for the 3D reconstruction, issues related to motion blur
can affect the accuracy of the 3D reconstruction (Jogeshwar,
2020) as well as the presence of large featureless regions in the
scene (Li et al., 2020; Jogeshwar and Pelz, 2021).

However, they also point out benefits by stating that automatic
methods have advantages over manual methods and that it is
key that more complex scenarios and tasks can be explored.
Jogeshwar (2020) also points out that SFM algorithms rely on
the environment being static. The analysis of real scenes taking
into account also moving elements could possibly be tackled
by different types of algorithms specific for dynamic scene
reconstruction (Ingale and Divya, 2021).

Regarding 2D vs. 3D visualizations, Rahman et al. (2020)
state that traditional visualization techniques, such as line charts
and scatter plots, are not ideal for visualizing gaze data in VE.
They point out that 3D techniques are more suitable for VR.
Jogeshwar and Pelz (2021) also state that it is hard to show
gaze data for larger and more complex environments in 2D
and for the user to get a good understanding of the overall
scenario. In this regard, they argue that 3D has advantages
over 2D stimuli. Shi et al. (2020) compared different media,
from 2D drawings, 3D on screens, and 3D in VR HMD for
task performance in building discrepancies tasks between the
real environment and different visualization techniques. They
found 3D to give better spatial knowledge and be more realistic.
Bianconi et al. (2019) also reported the benefits of 3D by being
able to use immersive 3D gaze analysis to explore the impact of
various design choices, resulting in reduced virtual complexity.
However, Breen et al. (2021) also point out that it can be useful
to have both non-immersive 2D and VR for users that are
not as comfortable with 3D. Singh et al. (2018) mention that
there is a gap in what one can do in 2D and outdoor physical,
real-world environments.

As we can see from this systematic literature review, there
have been advancements in trying to fill this gap, but there
are still open research challenges to deal with the complexity
of the overall problem. Some of these problems are related
to the large amount of data that needs to be handled.
Another is related to the accuracy in reconstructions of real
scenes. One important area is also the automatic classification
of objects or AOIs in VEs. Finally, more work on the
evaluation of suitable 2D vs. 3D gaze visualization techniques in
immersive environments is needed, taking into account the scene
complexity and task.

Based on the carried out review, some areas warrant future
research and developments. One of these areas is to explore
how to better deal with single and multiple users, such as in
collaborative VEs using eye-tracking technology. Another area
of interest is future HMDs or combinations of eye-tracking
with additional sensors, like EEG, heart rate, and galvanic skin
response. With more data gathered from users in immersive VR,
more research on appropriate visualization techniques is also
needed. Due to all these aspects, future eye-tracking analysis tools
being incorporated into game engines or new immersive VR

visualization software have these challenges to deal with. Ugwitz
et al. (2022) also point out that visualization techniques might
need to be incorporated in 3D engines. It is also essential to
evaluate such tools and software with real users to aid in the
potential complexity.

There is a risk that is making all data available to users
simultaneously, even if possible, will result in more confusion.
Hence, guidelines and opportunities to filter data for analysis
seem crucial, which is also mentioned by Rahman et al. (2020),
for larger user groups and in Ugwitz et al. (2022). There
might also be different needs depending on whether the users
are novices or experts. Li et al. (2020) highlight that there is
considerable potential for applications related to evaluating user
attention in large and complex environments. Shi et al. (2020)
also propose personalized information systems adjusted to the
user. Breen et al. (2021) propose to integrate 3D visualization
in a web application directly and to provide critical insights and
data without showing too much to avoid an overabundance of
data. They say it is essential to balance raw data and clear insights
and that different user roles might need to see different things.
When working with eye-tracking data, it is also important to
consider privacy issues and data storage (Rahman et al., 2020), in
particular in health-related studies. The future solutions need to
take a human-centered approach, allowing machine intelligence
to help simplify the parts of the 3D visualization analysis in VEs
where possible.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented a systematic literature review in the area
of 3D visualization techniques and analysis tools for eye-tracking
in 3D environments. This includes both natural environments
being reconstructed for 3D analysis or VEs like simple 3D objects
or more complex virtual scenes to be experienced in VR. Eye
movement data can be a great asset to analyzing human behavior
in 3D HMD VEs or 2D video from eye-tracking glasses. The
huge potential for growth in VR applications such as games or
simulations is evident. Due to an increase in the use of VR and
mobile eye-tracking solutions, such as glasses, further 2D/3D
visualization techniques are needed for analyzing VEs and 2D
video content from eye-tracking glasses.

We argue that many important developments have happened
in the last few years, including the advent of new technologies,
an exponential increase in the volume of data being collected,
and the massive adoption of mobile devices worldwide. Eye-
tracking can also be combined with other sensors for multi-
sensory interaction, and research is needed to evaluate the
effectiveness of these combinations in VEs in the future. It is
only in the last few years that sensors, such as eye-tracking and
biofeedback, have started to appear in commercial video games
and VR applications. Novel VR technology headsets, including
more advanced eye-tracking solutions, for example, are also
going to become further available to the mass market in the
future, allowing us to develop timely and novel multi-sensory
interaction techniques. With this forthcoming growth in data
from VR applications, novel, effective visualization techniques
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are needed to gain new insights and enhance understanding of
data that would not otherwise have been possible.
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