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Exercise performance (EP) is affected by a combination of factors including physical,

physiological, and psychological factors. This includes factors such as peripheral, central,

and mental fatigue, external peripheral factors such as pain and temperature, and

psychological factors such as motivation and self-confidence. During the last century,

numerous studies from different fields of research were carried out to improve EP

by modifying these factors. During the last two decades, the focus of research has

been mainly moved toward the brain as a dynamic ever-changing organ and the ways

changes in this organ may lead to improvements in physical performance. Development

of centrally-acting performance modifiers such as level of motivation or sleep deprivation

and the emergence of novel non-invasive brain stimulation (NIBS) techniques such as

transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)

are the key motives behind this move. This article includes three sections. Section

Introduction provides an overview of the mechanisms behind the reduction of EP. The

main focus of the Effects of tDCS on EP section is to provide a brief description of the

effects of tDCS on maximal and submaximal types of exercise and finally, the section

Mechanisms Behind the Effects of tDCS on EP provides description of the mechanisms

behind the effects of tDCS on EP.

Keywords: exercise performance, transcranial direct current stimulation (tDCS), central fatigue, mental fatigue,

peripheral fatigue, endurance exercise, strength exercise

INTRODUCTION

Enhancing exercise performance (EP) portrays the everyday goal for many healthy young persons.
In the context of sports, athletes are forced to push their bodily limits to run or swim quicker,
lift heavier weights, perform some tasks better or jump higher or further. Therefore, competitors
from all different athletic events are encouraged to use innovative approaches to increase their
performance. EP is affected by a combination of factors including physical, physiological, and
psychological factors. During the last century, numerous researches from different fields of studies
were carried out to increase physical performance by modifying these factors (Schubert and
Astorino, 2013). Therefore, much of the modern-day literature has ignored the significance of the
brain in the regulation of physical performance.
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Introduction and development of new non-invasive
techniques such as neuroimaging techniques and non-invasive
brain stimulation techniques, shed light on the role of the central
nervous system on human performance during exercise. As the
first step, neuroimaging techniques such as functional magnetic
resonance imaging (fMRI) shed light on the role of specific brain
areas during simple tasks involving a group of muscles in a single
joint or multiple groups of muscles during a more complex task
involving multiple parts of the body.

Furthermore, non-invasive brain stimulation techniques
(NIBS) such as transcranial direct current stimulation (tDCS)
or the centrally-acting performance modifiers, i.e. level of
motivation or sleep deprivation are used to modulate these brain
areas. incidentally, emerging literature indicates the possibility
of influencing performance outcomes following stimulation of
specific brain areas. Therefore, during the last two decades, the
focus of research has been mainly moved toward the brain as a
dynamic ever-changing organ and the ways changes in this organ
may lead to improvements in EP.

Altogether, research studies on the use of tDCS provide
remarkable understandings about the possible mechanisms
behind the effects of tDCS on cortical neurons which finally led
to enhancement of EP in healthy individuals. TDCS generates
low intensity electric field within the brain (Datta et al., 2009;
Edwards et al., 2013; Stagg et al., 2018; Truong and Bikson, 2018).
There are two related mechanisms of tDCS that support its use
for improvement of EP. The first mechanism is modulation of
neuronal excitability and the second one is plasticity (Jackson
et al., 2016). Traditionally, it has been established in animal
and human studies that application of tDCS can induce
polarity-specific changes in neuronal excitability. According to
these studies “anodal” tDCS depolarizes neurons and increases
neuronal firing frequency and “cathodal” tDCS hyperpolarizes
neurons and decreases their firing rates (Creutzfeldt et al.,
1962) (Figure 2). It should be noted that, this notion is
an oversimplification. The whole neuron does not uniformly
depolarize or hyperpolarize in response to the polarity of
the applied current. Instead, every neuron has a number of
compartments which some of them are depolarizing and others
are simultaneously hyperpolarized during application of direct
currents (Radman et al., 2009; Rahman et al., 2013). Indeed,
the compartments nearer the cathode hyperpolarizing and the
ones nearer the anode depolarizing. The polarization in these
compartments will be reverses by changes in the polarity of the
stimulation. Evidence also supports the non-linear dose-response
relationships between tDCS application and the induced changes
in corticospinal excitability. A number of recent studies indicate
that anodal tDCS may also reduce or cathodal tDCS may also
increase the corticospinal excitability (Batsikadze et al., 2013;
Monte-Silva et al., 2013; Lopez-Alonso et al., 2014; Tremblay
et al., 2016).

When the length of tDCS application increases and passes
several minutes, both animal (Bindman et al., 1964; Reato et al.,
2015) and human studies using TMS (Nitsche and Paulus, 2000)
have confirmed changes in neuronal excitability that remains
for minutes or hours after termination of stimulation. Animal
models have further linked long lasting variations in excitability

of the cortical/brain areas with synaptic plasticity. Long-term
potentiation (LTP) and depression (LTD) are examples of these
changes (Gartside, 1968; Kronberg et al., 2017; Yu et al.,
2019). LTP is a process by which synaptic connections between
neurons become stronger with frequent activation (Bliss and
Cooke, 2011). On the other hand, LTD is a process by
which synaptic connections between neurons become weaker
with frequent activation (Bliss and Cooke, 2011). The changes
in brain excitability, measured during or immediately after
tDCS, and plasticity based on indicators of LTP or LTD
are related.

The main objectives of this review are: to provide an overview
of different models of fatigue as the underlying mechanisms
behind the reduction of EP, a brief description of the effects
of tDCS on maximal and submaximal types of exercise, and
finally a description of the mechanisms behind the effects of
tDCS on EP.

THE MECHANISMS BEHIND THE
REDUCTION OF EP

Fatigue could be considered as factor for reduction of EP.
Traditionally, different discipline of sport science provided
different definition for fatigue. These definitions are developed
to best suit the individual disciplines. For example, an expert
in biomechanics may define fatigue as a reduction in the force
output generated by a muscle (Allman and Rice, 2002; Millet
et al., 2003) and an expert in psychology may define fatigue as
a “sensation” of tiredness (Kayser, 2003) on the other hand an
expert in physiology may describe fatigue as the malfunction of a
specific physiological system (Green, 1997).

Our ambiguity about the understanding of fatigue is may be
related to the viewpoint that fatigue is an unfortunate event which
due to some involuntary peripheral physiological or biochemical

factors reduces EP (Damasio et al., 2000; Noakes and St Clair
Gibson, 2004; St Clair Gibson and Noakes, 2004; Lambert et al.,
2005; Datta et al., 2009; Dantzer et al., 2014). It may also relate
to the use of a reductionist or cause-and-effect approach by
the experts from different disciplines of sport which tried to

shed light on different underlying mechanisms behind fatigue
(St Clair Gibson and Noakes, 2004). Consequently, several direct

cause-and-effect models have been introduced to describe fatigue
(Noakes, 2000). These models include:

Cardiovascular/Anaerobic Model
In this model, cardiovascular system failure in delivery of oxygen

and removal of waste products to and from the active muscles is
considered as the main reason behind the fatigue (Noakes, 2000;
Noakes et al., 2001).

Energy Supply/Energy Depletion Model
In this model, failure to supply sufficient ATP via different

metabolic pathways to the active muscles (Noakes, 2000; Allman
and Rice, 2002) is considered as the main reason behind
the fatigue.
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Neuromuscular Model
In this model, the factors affecting muscle excitation, recruitment

and contraction are considered as the main factors behind the
fatigue (Noakes, 2000; Millet et al., 2002).

Muscle Trauma Model
This model suggests that muscle damage due to prolonged
muscle activity may led to a reduction in capacity of the active
muscles to produce power (Gollhofer et al., 1987; del Aguila et al.,
1999).

Biomechanical Model
This model suggests that efficiency of movement patterns during
muscle activity is main reason behind the fatigue. Amore efficient
movement pattern will lead to: drop the required VO2 (Gissane
et al., 1991), to reduce energy storage (Hahn and Gore, 2001), to
hinder the build-up of the metabolites and finally reduces the rise
of core body temperature.

Thermoregulatory Model
This model suggests that a critical core body temperature is a
main reason behind the reduction or termination of the exercise
Coyle and Montain, 1992; Kay et al., 1999).

Psychological/Motivational Model
In this model a lack of enthusiasm or interest in EP is considered
as the main factor for reduction or termination of muscle
performance (Hargreaves and Febbraio, 1998; Nybo and Nielsen,
2001). This model is usually merged with the neuromuscular
model of fatigue.

Central Governor Model
In this model, the main assumption is that the attenuation
or termination of EP is controlled by a constant feedback
system (Noakes et al., 2001). This system includes a central
controller which receive afferent somatosensory pathways and
send information on force, displacement, time and muscular
metabolism toward the active muscles.

Complex System Model
This model is an extension of the central governor model
(Figure 1) and postulated that skeletal muscle fatigue is not
influenced by any one of the aforementioned single linear
models. According to this model, EP is continuously controlled
by the interaction of multiple physiological systems checked
by continuous feed-forward and feedback mechanisms (St Clair
Gibson and Noakes, 2004; Lambert et al., 2005).

The idea of the central nervous system as contributing
factor in the development of fatigue is back to the early
work by Mosso (1904) which concluded a decreased
capacity to perform repeated muscle contractions after a
prolonged period of demanding cognitive activity, lead to
the development of a psychobiological state which is called
psychological or mental model of fatigue (Figure 2). It has
implications for many activities of daily living including
physical performance.

Psychological or mental model of fatigue is related to lack
of energy, motivation, and alertness increased fatigability, and

feelings of tiredness (Dantzer et al., 2014), and a reason behind
the increased risk of error in the workplace (McCormick
et al., 2012). From a neurophysiological viewpoint, mental
fatigue inhibits athletes’ performance by enhancing perceived
exertion (Ishii et al., 2014) and also by deactivation of the
mechanisms responsible for neurofacilitation that normally
encourages athletes toward action (Hallett, 2007). It decreases
physical performance even during long-duration exercise which
seems less dependent on cognitive functioning (Marcora et al.,
2009; Elferink-Gemser and Hettinga, 2017; Van Cutsem et al.,
2017). Unlike endurance exercise, mental fatigue seems not to
affect athletes’ maximal strength, explosive power, and anaerobic
work (Boksem et al., 2006; Dantzer et al., 2014;Martin et al., 2015;
Van Cutsem et al., 2017).

Different fatigue mechanisms and adaptation of power
outputs in long and short duration tasks is the reason behind this
difference (Gandevia, 2001). Short duration, anaerobic types of
exercises are mainly affected by peripheral fatigue (Coggan and
Coyle, 1991), while long duration, aerobic (endurance) types of
exercises, are affected by a decline in central motor drive and
central fatigue (Amann, 2011). Hence, while during endurance
exercise, the brain decides when to stop, during short-term
exercise, the muscles are the main decision-makers (Gandevia,
2001). In this regard, Mental fatigue may disrupt the decision-
making process involved in choosing an optimal pacing strategy
(Martin et al., 2018).

THE EFFECTS OF TDCS ON EP

The literature on EP provides exciting understandings on
the effects of tDCS on EP in healthy individuals (Figure 3).
In these studies, the effects of tDCS were investigated on
maximal (explosive) and submaximal (endurance) performances.
This is important because these different exercise intensities
require completely different metabolic, cardiorespiratory, and
psychological demands, and therefore affect the brain activity
differently (Sidhu et al., 2013).

How tDCS of M1 Affects Maximal Force
Capacities
Despite the methodological differences in study design,
experimental tasks, tDCS parameters, and montages in different
studies, the literature indicates that a single session of unilateral
tDCS over the dominant M1 failed to improve anaerobic
maximal types of exercise (Cogiamanian et al., 2007; Kan et al.,
2013; Williams et al., 2013; Angius et al., 2015, 2016a,b; Baldari
and Buzzachera, 2018; Romero-Arenas et al., 2021). da Silva
Machado et al. (2021), in a single session tDCS study compared
the effects of conventional tDCS of M1 (2mA, 20min) with high
definition tDCS (2.4mA, 20min) on exercise performance (time
to exhaustion at 80% peak power) on a cycle simulator. They
concluded, a single session of neither HD-tDCS nor conventional
tDCS changed exercise performance and psychophysiological
responses in athletes.

The reason behind this failure may lie in the fact that
under maximal force conditions, muscles are already functioning
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FIGURE 1 | Complex systems model of fatigue. Interaction of developed fatigue models. In this complex systems model of fatigue peripheral feedback originating

from numerous linear models of fatigue are integrated by the brain, along with centrally located senses.

maximally and all motor units within the involved muscles are
already recruited and therefore the ceiling effects do not allow
tDCS to show any further effects.

However, unlike the findings in these studies, recently, Lattari
et al. (2020) concluded that 2mA, 20min bilateral tDCS of M1
significantly increases power during power-related tasks such as
the vertical jumping ability. Codella et al. (2021), is also showed
that bilateral tDCs of M1, enhance power in lower limb muscles.

How tDCS of M1 Affects Submaximal
Force Capacities
Having said that, the same literature (listed in the previous
section) indicates positive effects of a single session of tDCS
on submaximal intensity tasks in the majority of the studies
(Cogiamanian et al., 2007; Williams et al., 2013; Angius et al.,
2015, 2016a,b, 2018; Vitor-Costa Okuno et al., 2015; Abdelmoula
et al., 2016; Lattari et al., 2018; Huang et al., 2019; Codella et al.,
2021).

How tDCS of DLPFC or TC Affects EP
The number of tDCS studies on other cortical sites of the brain
such as dorsolateral prefrontal cortex (DLPFC) or temporal
cortex (TC) is very low.

To investigate the effect of a single session tDCS of DLPFC
(2mA for 15min) on the force-velocity relationship, strength
training volume, movement velocity, and PRE in healthy non-
professional participants, Alix-Fages et al. (2020), showed an
increase in training volume, preservation of higher movement
velocities, and reduction of ratings of perceived exertion (RPE)
values. Lattari et al. (2018) applied tDCS over the left DLPFC
(2 mA for 20 min) before a time to exhaustion (TTE) test (100%

of peak power) in 11 moderately active women and found longer
TTE compared to sham. Angius et al. (2019), used a similar

protocol, and applied a single session of tDCS over the left
DLPFC (2 mA) but with a longer duration (30 min) in 12 trained

participants before a TTE test (70% of peak power). Participants

were able to cycle for longer durations after tDCS, with lower HR

and RPE compared to sham.
It is important to note that despite the positive results

previously reported, some studies, however, have found no

improvement using relatively similar protocols to the previous

studies. Holgado et al. (2019) (n = 36), investigated the effects of
tDCS of DLPFC (2mA for 20min) on power output, heart rate,
RPE, and electroencephalography at baseline and during a 20-

min time-trial self-paced exercise. They concluded neither power
output, heart rate, RPE nor electroencephalography activity were
affected by tDCS.

Similarly, the two studies on the effects of tDCS of TC

on EP, are also concluded opposite conflicting findings on EP.
Evidence shows that a single session tDCS (20min, 2mA) of

TC, targeting the left insular cortex (IC), enhanced cycling
performance in professional cyclists. They also showed that tDCS
of TC decreases heart rate and increased delay in parasympathetic

vagal withdrawal and RPE in submaximal exercise intensities
(Okano et al., 2015). Unlike the positive findings in the above
study, Okano et al. (2017) evaluated the effects of a single

session tDCS of left TC targeting the left IC (20min, 2mA),
on physiological and psychological responses during 30min of

vigorous exercise with a constant load (80% heart rate). The
findings of this study suggest that tCDS of TC does not modulate
either heart rate at rest or heart rate, RPE, and affective responses
during exercise.
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FIGURE 2 | Psychological/mental model of fatigue. Central drive is reduced

due to lower motivation, interest and/or enthusiasm and lack of cognitive

resources for the EP. The reduced enthusiasm may or may not be related to

afferent sensory feedback.

How Direct Current Stimulation (DCS) of
the Spinal Cord Affect EP
Sasada et al. (2017), investigated the effects of a single session
of direct current stimulation (DCS) of the spinal cord (2mA for
20min) using the Halo Sport device on physical fitness indicators
of healthy, physically active, men (n = 17). All participants
underwent either stimulation or sham, before a vertical jump,
sit & reach, and endurance running tests. The results suggest
that DCS of spinal cord using a Halo Sport system can enhance
the output in these three physical fitness measures in physically
active participants.

How Bilateral tDCS of M1 Using a Halo
Sport Device Affect EP
The Halo Sport device is a commercial brain stimulation device
that contains a headset like a usual headphone. This device uses
weak direct currents below 2–3mA (tDCS) which can be applied
bilaterally over the scalp through surface electrodes. The main
objective of this application is the induction of changes in motor
cortex in both sides of the brain.

Huang et al. (2019), investigated the effects of a single session
bilateral tDCS of M1 (2mA for 20min) using the Halo Sport
device on repeated sprint cycling ability (n = 9). Peak and mean
power output weremeasured for 5× 6-s sprints interspersed with
24 s of active recovery on a cycle ergometer. The results suggest

that tDCS with the Halo Sport system can enhance mean power
output in physically active participants. In another study, Codella
et al. (2021), investigated the effects of a single session bilateral
tDCS of M1 (2mA for 20min) using the Halo Sport device
on physical fitness indicators of healthy, physically active, men
(n= 17). All participants underwent either stimulation or sham,
before a vertical jump, sit and reach, and endurance running tests.
The results suggest that tDCS with the Halo Sport system can
enhance the output in these three physical fitness measures in
physically active participants.

MECHANISMS BEHIND THE EFFECTS OF
TDCS ON EP

The underlying mechanisms behind the positive effects of tDCS
of M1 on EP are not fully understood yet. Literature indicates
the following mechanisms behind the effects of a-tDCS on the
enhancement of EP:

Facilitation of M1 and Enhancement of
Corticospinal Excitability
TDCS depends on the parameters used, may facilitate the M1,
and therefore enhancing corticospinal excitability during exercise
(Cogiamanian et al., 2007; Williams et al., 2013). This hypothesis
is challenged by Abdelmoula et al. (2016) which concluded
lack of relationship between the improvement in corticospinal
excitability and EP. It should be noted that the M1 is not the
only active brain site during exercise, therefore well-designed
double-blinded studies to establish the relationship between the
cortical/corticospinal changes and EP is necessary.

Reduction of the Fatigue Through Affecting
the Central Governor/Controller
TDCS of M1 may also lead to a reduction of fatigue
(Cogiamanian et al., 2007; Williams et al., 2013; Vitor-Costa
Okuno et al., 2015). A neural pathway that connects a large
number of brain areas, including, the spinal cord, thalamus,
secondary somatosensory cortex, medial IC, posterior cingulate
cortex, anterior cingulate cortex, premotor area, supplementary
motor area, and M1 represents the inhibitory network which
leads to fatigue. The balance between inhibitory and facilitatory
mechanisms in the M1 optimize the cortical excitability and
therefore increase the magnitude of EP. Application of tDCSmay
induces facilitatory effects to increase motor output from the
M1 helps to overcome the existing central fatigue (Vitor-Costa
Okuno et al., 2015).

Reduction of Psychological or Mental
Fatigue
Decision making-process during pacing and cognitive control
necessary to choose an optimal pacing strategy may be disrupted
by mental fatigue (Martin et al., 2018). This disruption is much
more evident in long-term aerobic types of exercise. TDCS of
DLPFC is a non-invasive technique for the reduction of mental
fatigue and therefore enhancement of PE (Nikooharf Salehi et al.,
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FIGURE 3 | The mechanisms behind the effects of A-tDCS of M1, TC, IC, SMA and DLPFC on EP. A-tDCS, Anodal transcranial direct current stimulation; M1, Primary

motor cortex; TC, Temporal cortex; IC, Insular cortex; SMA, Supplementary motor area; DLPFC, Dorsolateral.

2021). It should be noted that this reduction is only affecting
submaximal endurance type of exercise. Literature indicates
that mental fatigue does not affect athletes’ maximal strength
and anaerobic work (Boksem et al., 2006; Dantzer et al., 2014;
Martin et al., 2015; Van Cutsem et al., 2017). The difference in
the adaptation of athletes for their power output during these
long and short duration tasks could be the reason behind this
difference (Gandevia, 2001).

Reduction of RPE
Reduction of RPE following application of tDCS is considered
as one of the other reasons behind increased EP in several studies
(Okano et al., 2015; Angius et al., 2016a,b).Modulation of sensory
perception of effort plays a crucial role in the control of motor
output commands (Okano et al., 2015). Overall, the amount of
motor commands fromM1 or premotor area is considered as the
reason behind the changes in RPE (de Morree et al., 2012, 2014;
Goodall et al., 2013; Takarada et al., 2014; Zénon et al., 2015).

Modulation of Autonomic Nervous System
Activity
Literature indicates that the autonomic nervous system (ANS)
has an important role in the regulation of EP (Okano et al., 2015).
Literature supports the association between TC and IC, with ANS
control. Therefore, tDCS can modulate the cortical areas directly
under the electrodes related to ANS.

ANS is highly related to the mechanisms behind EP and
fatigue. It controls homeostatic mechanisms (Damasio et al.,
2000; Craig, 2003), especially during PE which requires high
metabolic demands (Tulppo et al., 1998; Williamson, 2010).
Indeed, ANS responses are linked to EP in healthy individuals

(Tanaka et al., 2009). Individuals with higher fitness levels (high
aerobic capacity) usually have significantly greater heart rate
variability, which is controlled by vagal modulation of the heart
rate, compared to individuals with lower fitness levels (low
aerobic capacity) (Tulppo et al., 1998).

Reduction of Perceived Pain
The effects of pain-inducing substances suggest that perception
of pain is one of the important regulators of exertion level
during fatiguing exercise. Literature shows that a common
analgesic such as Acetaminophen increases cycling performance
(Mauger et al., 2010). Recent literature indicates that
endogenous inhibitory responses, which normally act to
decrease nociceptive input and reduce the perception of pain,
could be increased following application of tDCS over M1
(Flood et al., 2016). TDCS stimulates descending regions
associated with endogenous pain inhibition, enhancing
central pain inhibitory responses and causing widespread
analgesia (Flood et al., 2016). The association between the
pain inhibitory networks and regulation of EP is challenged
by the study of Flood et al. (2017) which did not show any
significant increase in maximal force production or muscular
endurance following application of a single session of high
definition tDCS.

SUGGESTIONS FOR FUTURE RESEARCH

There are a number of issues regarding the studies
reported in this review which may have implications for
future research:
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1. Almost all studies reported in this review used single session

tDCS. Multiple session tDCS studies are recommended

because of its accumulating effects.

2. Majority of studies, used unilateral tDCS of M1. New studies

using bilateral tDCS of M1 for both upper limbs, trunk and

lower limb muscles are recommended specially in cases that
the activity involve trunk and all extremities.

3. Single site tDCS of a brain site was used in almost all of

the included studies. It should be noted that multiple sites of
the brain never working in isolation. Multi-site application of
tDCS is recommended for future studies.

4. In almost all of the included studies, large tDCS electrodes

(5 x 7 or 4–6 cm2) were used for modulation of single sites
of the brain. New tDCS studies using small electrodes is

recommended to increase focality of the effects.

In summary, different mechanisms such as facilitation of
M1 which causes enhancement of corticospinal excitability,
reduction of the supraspinal fatigue, reduction of the
psychological/mental fatigue, reduction of PRE, modulation of
ANS activity, and reduction of perceived pain play important
roles in the enhancement of EP. Literature indicates that
modulation of M1, DLPFC, TC, IC, and SMA using unilateral
or bilateral tDCS techniques enables us to benefit from
these mechanisms.
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