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The present study proposes a novel concept of neuroadaptive technology, namely a dual

passive-reactive Brain-Computer Interface (BCI), that enables bi-directional interaction

between humans and machines. We have implemented such a system in a realistic flight

simulator using the NextMind classification algorithms and framework to decode pilots’

intention (reactive BCI) and to infer their level of attention (passive BCI). Twelve pilots used

the reactive BCI to perform checklists along with an anti-collision radar monitoring task

that was supervised by the passive BCI. The latter simulated an automatic avoidance

maneuver when it detected that pilots missed an incoming collision. The reactive BCI

reached 100% classification accuracy with a mean reaction time of 1.6 s when exclusively

performing the checklist task. Accuracy was up to 98.5% with a mean reaction time of

2.5 s when pilots also had to fly the aircraft and monitor the anti-collision radar. The

passive BCI achieved a F1−score of 0.94. This first demonstration shows the potential

of a dual BCI to improve human-machine teaming which could be applied to a variety

of applications.

Keywords: passive and reactive Brain Computer Interface, electroencephalography, flight simulator, user

experience, Visual Evoked Potential (VEP)

1. INTRODUCTION

Brain-Computer Interfaces (BCI) offer a direct communication pathway between a user and
a machine without requiring any muscular engagement (Clerc et al., 2016). To this end, BCI
derives the user’s intentions and mental states from neural signals. The decoding of specific
neural signals triggers interactions with aspects of the computerized environment (e.g., moving a
cursor, keystrokes) or external devices (e.g., prostheses) to which they are associated with. Its non-
invasiveness and high temporal resolution along with its ease of setup and relatively low cost have
established surface electroencephalography (EEG) as the most widely used brain imaging method
for BCI (Lotte et al., 2018). While BCI was initially developed within the confines of standard
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laboratory conditions, recent advances in mobile
neurophysiological sensing devices and artificial intelligence have
led to a renewed interest in BCI applied to real-world contexts
(Fairclough and Lotte, 2020). As a result, these neurotechnologies
are now expanding in the clinical field (assistive technologies,
motor rehabilitation, etc.), spreading to the entertainment
industry to enhance gaming experience, but also extending
to the general public through wellbeing (e.g., meditation and
relaxation induction, sleep improvement) and domotics (e.g.,
home automation) applications (Brouwer, 2021). Following
this trend, the range of neuroergonomics applications that can
benefit from BCI broadens as sensors and interfaces become ever
less intrusive (Dehais et al., 2020a; Gramann et al., 2021). Indeed,
BCI has the potential to alleviate mental and physical loads
associated with the repetition of straining actions (Carelli et al.,
2017; Maksimenko et al., 2018), to improve task performance
both in terms of its precision and speed, and to promote new
forms of interactions to enhance human-machine teaming
(Dehais et al., 2020b). Such assistance is particularly desirable
in the context of aircraft operations. Flying a plane is a highly
demanding task from a cognitive standpoint since it takes place
in a dynamic and uncertain environment. It is well-established in
cognitive science literature that attentional resources are limited
(Kahneman, 1973). This limited capacity implies that the pool
of cognitive resources has to be distributed across competing
sensory modalities (Wickens, 2008). The amount of cognitive
resources available at any given time is also mediated by other
factors such as stress and mental fatigue. Following prolonged
periods requiring attentional focus, individuals typically exhibit
performance decline as fatigue ensues (Dehais et al., 2018).
Pilots have to attend to and assess several sources of visual and
auditory information spread around the cockpit, and have to
take decisions under time pressure and execute maneuvers in a
timely manner (Wickens and Dehais, 2019; Behrend and Dehais,
2020). The combination of the stress-inducing context of flight
operations and the need to sustain attentional focus over long
periods of time is particularly taxing and tiring for pilots. The
accumulation of mental fatigue and stress hinders access to the
pool of cognitive resources (Hancock and Szalma, 2008), which
in turn can leads to completely overlooking information (e.g..,
attentional tunneling). This phenomenon has been observed
in experienced pilots and can have dramatic consequences
(Wickens and Alexander, 2009; Dehais et al., 2019a; Mumaw
et al., 2019). The on-line estimation of pilots’ monitoring
ability combined with implementing new types of interactions
through neuro-adaptive technologies may therefore have critical
implications for flight safety.

There are several ways whereby BCI can enhance pilot-
cockpit teaming. Firstly, active and reactive BCIs allow users
to perform interactions under voluntary control via their brain
waves (Hong and Khan, 2017; Lotte and Roy, 2019). Several
studies disclosed that such technology can be used by pilot to
control the flight-path of airplanes and drones (Fricke et al.,
2014; Nourmohammadi et al., 2018; Rodriguez-Bermudez et al.,
2019). Active BCI require the users to deliberately produce
brain signals to interact with the BCI, as with mental imagery.
In contrast, reactive BCI (rBCI) makes advantage of the user’s

cerebral responses elicited by different stimuli. Each stimuli is
associated with a different command. Due to their robustness
and quick onset (i.e., below 50 ms), the Visual Evoked Potentials
(VEP) elicited through the presentation of modulated visual
stimuli are a popular and efficient approach for rBCI (Zhu et al.,
2010; Chevallier et al., 2021). They offer very high classification
performance (Nakanishi et al., 2018; Nagel and Spüler, 2019).
Neural activity recorded in the visual cortex with surface EEG is
sensitive to temporal and frequency features of the visual stimuli.
Two main types of VEP-based paradigms can be distinguished:
Steady-States Visually Evoked Potentials (SSVEP) and code-
Visually Evoked Potentials (c-VEP). While SSVEP consists of
the periodic modulation of visual features (e.g., contrast, color)
at a regular frequency sustained over time, c-VEP waveforms
are generated by pseudo-random binary (on/off) sequences. The
c-VEP pseudo-random sequences are usually broadband and
aperiodic (Shirzhiyan et al., 2019). They are defined so that
temporal shifts have minimum cross-correlation and ensure a
good separation between classes. VEP-based paradigms present
the main advantage of relatively short training time, compared to
P300 ERP or Motor Imagery paradigms, as only a low number
of short-lasting trials is usually required to achieve accurate
calibration (Nagel and Spüler, 2019). In the field of aviation,
visual BCI could offer promising perspectives for pilots by
allowing them to free their hands when interacting with some
actuators (e.g., landing gear, flaps). This could be particularly
relevant during high g-force scenarios or critical flight phases
(e.g., low altitude situations) that require both hands to control
the stick and the thrust.

A second approach to improve pilot-cockpit teaming is
to consider the use of passive BCIs (pBCI). This latter type
of neuroadaptive technology supports implicit interaction by
monitoring mental states (e.g., stress, fatigue) and adapting
human-machine interactions to overcome cognitive bottlenecks
(Zander and Kothe, 2011; Ewing et al., 2016). Several pBCI
studies have been implemented in the field of aviation to infer
mental workload (Gateau et al., 2018; Dehais et al., 2019a), failure
of attention (Dehais et al., 2019b,c), flying performance (Scholl
et al., 2016; Klaproth et al., 2020), and mental fatigue (Dehais
et al., 2018). Interestingly enough, some authors managed to
close the loop by triggering adaptive automation to prevent
mental overload and task disengagement (Prinzel et al., 2000;
Aricò et al., 2016). Generally, specific frequency-domain features
are computed over the electrophysiological signal to account
for different mental states (for a review, see Borghini et al.,
2014). For instance, changes in mental demand are related to
the variation in the alpha band power and in theta band power
over fronto-parietal sites (for a review, see Borghini et al., 2014).
Some studies also disclosed that increased beta (Matthews et al.,
2017) is a neural marker of higher mental efforts. Alternatively,
time-domain analyses over the EEG signal (i.e., event-related
potential) can also predict variations of cognitive performance
and attentional states (Brouwer et al., 2012; Roy et al., 2016;
Dehais et al., 2018). One major drawback of such approach is
that the calibration requires the induction of the mental states
(e.g., different levels of stress or attention) in a repetitive fashion
to train the model. It is difficult to achieve under laboratory
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conditions and, more importantly, is detrimental to the user
experience. One alternative approach would be to take advantage
of VEP and to use code-VEP tagging stimuli to implement a
pBCI. By placing these flickers within the background of different
regions of interest, one can measure the intensity of the brain
response and derive the level of attention allocated to these
specific areas.

Taken together, all these studies demonstrate the benefit of
rBCI and pBCI to improve pilot-cockpit teaming and flight
safety. However the rBCI and pBCI technologies to date have
been used separately, whereas many of everyday-life tasks
involved conjointly some voluntary interactions with a user
interface and the monitoring of the state of the machine.
Moreover, the same device (e.g., EEG) could be used to collect
brain data and feed different algorithms in charge to control an
interface and to infer the user mental state. Such an approach
would pave the way to design a novel concept of neuroadaptive
technology, namely a dual BCI (dBCI). By “dual,” we mean that
it combines both “reactive” and “passive” components of the
BCI to support direct and implicit interactions for end-users.
This approach echoes with the concept of invasive bidirectional
BCI for disable people that have been designed to translate
motor cortex activity into signals to control an apparatus and
to provide feedback by translating artificial sensor to restore
sense of touch (Hughes et al., 2020). In our case, the dBCI relies
on a non-invasive technology such as surface electrodes placed
over the scalp (i) to allow an end-user to directly control a
machine through their brain activity and (ii) to allow a machine
to communicate feedback to its end-user and thus adapt human-
machine interaction to overcome cognitive bottleneck.

The objective of this study was to implement such a dBCI
in the cockpit. To meet this goal, we used the NextMind
9-electrode dry EEG system and their Unity framework
(www.next-mind.com) that allows to implement asynchronous
code-VEP based BCI for up to 10-class problems. We chose
the NextMind as their hardware is light, fast to setup, and the
classification is plug-and-play but this could have been done with
another BCI system. Ourmainmotivationwas not to focus on the
algorithmic implementation but to demonstrate the effectiveness
of our genuine dBCI to decode pilots’ intention to interact with
the flightdeck (reactive, rBCI) and to infer their level of attention
on a monitoring task and to adapt the interaction accordingly
(passive, pBCI, see Figure 1).

The designed scenario in the flight simulator requires to tackle
both direct (rBCI) and implicit (pBCI) interactions. Indeed, the
participants had to perform several checklists operated through
rBCI and a radar monitoring task which was handled by the
pBCI while completing an engaging traffic pattern exercise.
We evaluated the rBCI during two contrasted experimental
conditions in terms of task difficulty. In one condition, the
participants were interacting with the rBCI alone while the
plane was operated by the autopilot. In another condition, they
were operating the rBCI while flying the plane and monitoring
the radar. We collected objective measures (reaction time and
accuracy) and subjective measures (level of mental demand and
frustration). It was expected that the multitasking condition
would lead to longer reaction times to interact with the rBCI,

more frustration and lower accuracy. We evaluated the pBCI
component using classical machine learning metrics (F1 score,
sensitivity, and specificity).

2. MATERIALS AND METHODS

2.1. Participants
Twelve participants (one female, mean age = 29.8 year old
and SD = 7.4, mean flight hours = 488.9, and SD = 115.7),
all students and staff members from our aeronautical university,
took part in the experiment. The study was approved by the Local
Ethics Committee (approval number 2020 − 334). We followed
specific COVID procedures implemented by our Health, Safety,
and Working Conditions Committee (anti-COVID face masks,
sanitization of the flight simulator, disinfection of the eye tracker,
and EEG device following a thorough cleaning procedure).

2.2. Dual BCI Implementation
We used the NextMind Unity Software Development Toolkit
(SDK)1 to implement the rBCI and the pBCI. An MSI laptop
(processor Intel i7 − 6700HQ with 16 GB RAM and NVIDIA
GeForce GTX 960M graphic card) was used to received the EEG
data stream trough Bluetooth Low Energy. This PC executed the
decoding algorithms and sent the decoded brain command to the
core simulator via socket TCP/IP (using an Ethernet connection)
that consisted of a thread of four commands (integer type) to
change the states of the flaps, the landing gear, the landing
and taxi lights and the autopilot (see Figures 1, 2). Since the
NextMind is a closed system, it does not provide direct access to
the processing time for the classification. However, we managed
to estimate the pace of update for the classification output, before
it is displayed (to avoid a bias with the refresh rate of the screen).
Our measures indicated that the framework takes in average
10.38 ms (SD= 0.05 ms) to refresh the classification score.

2.2.1. rBCI
The rBCI display consisted of four toggle switches (diameter
= 4cm) that are defined as “Neurotag” interactive elements
(i.e., a NextMind code-VEP) in Unity. They are depicted in the
upper left part of Figure 1, outlined in red. These switches are
dedicated to lower/retract the flaps, switch on/switch off the taxi
and landing lights, to lower/retract the landing gears and to
engage/disengage the autopilot system (see Figure 2, left).

2.2.2. pBCI
For the pBCI, the region of interest was a radar. We have
integrated a “Neurotag” (diameter= 13.1 cm) in the background.
It is depicted in the lower left part of Figure 1, outlined in blue.
The brain response to this background c-VEP was used to assess
the level of attention of the pilot to the region. Thus, instead of
using the regular rBCI classification procedure, we have taken
advantage of a continuous confidence score (∈ [0, 1]) defined
by the NextMind Engine as a proxy measure for attention to
the radar. This score reflects the classification certainty for a
rBCI. If this score was too low and a collision was incoming, our
system would infer that the pilot is not paying attention at the

1https://www.next-mind.com/developer
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FIGURE 1 | Implementation of our dual passive and reactive Brain Computer Interface in the cockpit. It enables human-machine bi-directional communication: (1) the

pilots can directly interact with some flight deck actuators (e.g.., the landing gears—as shown by the red rectangles) using information from the EEG signal, and (2) the

flight deck can send visual feedback to the pilot and adapt the interaction when poor cognitive performance is detected.

FIGURE 2 | (Left) The participants had to perform the checklists with the reactive BCI (in red, upper part of the screen) while their monitoring performance on the

radar screen was assessed with the passive BCI (in blue, lower part of the screen). (Right) The dual BCI setup in the flight simulator.

radar and therefore not able to avoid the collision. It would then
automatically activate the anti-collision maneuver and trigger
an orange visual alert (see Figure 3). Based on a preliminary
experiment with 5 participants, we set a threshold of 0.1 on
the confidence score to have good responsiveness to determine
whether the pilots were actually monitoring the anti-collision
radar or not (see Figure 2, right). The classification processes
are different between the rBCI (regular and hard decision of
classification) and the pBCI (the certainty of classification by the
model as attention probe), though they both use the response to
the same type of c-VEP as input.

2.3. Flight Simulator
We used our three-axis hydraulic (pitch, roll, height) motion
flight simulator to conduct the experiments. It has eight external
panoramic displays that reproduces the outside world based

on the Flight-Gear open-source software.2 It simulates twin-
engine aircraft equipped with two side-sticks, a thrust, two
rudders, and an advanced auto flight system (Figure 2). Its user
interface is composed of a Primary Flight Display, a Navigation
Display, and an Electronic Central Aircraft Monitoring Display
and a head-up-display (HUD). The HUD provides basic flight
parameters (speed vector, angle of attack, total energy) and thus
allows the pilots to control the flight path and the speed of the
airplane. The flight simulator refreshes every 20 ms the inputs
from the BCI system sent through the TCP/IP connection, in
addition to the information coming from the traditional organs
of piloting like the autopilot button, the flaps and landing gear
levers, etc. The dual-BCI user interface (checklists and anti-
collision radar) was displayed on a head down 17′′ screen

2www.flightgear.org
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FIGURE 3 | (Left) The pBCI detected that the pilot was correctly monitoring the radar and, in return, displayed a green visual feedback. (Right) The pBCI detected

that the pilot did not notice the potential collision. It then displayed an orange warning and automatically simulated the avoidance maneuver.

(1, 280 × 1, 024–60 Hz) facing the participants (head distance =
80 cm).

2.4. Scenario
We have designed a scenario in which the participants had
to perform two checklists (rBCI) and a radar monitoring task
(pBCI). The flying task consists of a first landing at Toulouse
Blagnac runway (33R) followed by a go-around, then a traffic
pattern exercise leading to a final landing. The participants had
to use the rBCI during the:

1. first landing: to lower the gear, to lower the flaps, to
switch on the landing and taxi lights;

2. go-around: to retract the gear, to retract the flaps, to switch
off the taxi and landing lights and to engage the autopilot;

3. crosswind: to disconnect the autopilot;
4. downwind: to lower the flaps and to switch on the lights;
5. final landing: to lower the landing gear.

The four items of the checklist did not demand immediate
responses but their correct activation/deactivation is of critical
importance during the execution of the traffic pattern, as
specified by the standard operational procedures. As depicted
in Figure 1 these actuators (in red) were located out of reached
from the left-seated participant-pilot and any interactions with
them require torso movements and arm extension. Our objective
was to show that a reactive BCI could allow the pilots to keep
their hands on the stick and thrust lever while performing the
required check-lists.

Meanwhile and while flying the plane, participants should
monitor the anti-collision radar (pBCI). The anti-collision task
was not performed in the auto-pilot condition (low workload)
but only while flying (high workload). The collisions were not
linked to the actual flight pattern exercise and only appeared
on the radar. In practice, it implies looking frequently at this
radar to determine if another plane (represented by a red circle)
reaches the center of the radar, indicating a collision within 6 s.
In the case of an incoming collision, pilots were asked to focus
on the radar. This would mean that they have acknowledged

it and would avoid it. When a collision is incoming, an anti-
collision system would be triggered by the pBCI either by (i)
the detection of sufficient attention to the radar (ii) or by
the detection of inattention of the pilot. With this scenario,
the expertise of the pilot to avoid collisions is primary and
it is bypassed only if the system estimated that the pilot is
distracted. It is different to a scenario that would systematically
activate the anti-collision maneuvre, which sets aside the pilot
assessment of the situation. Thus, the idea of this pBCI is to
offer supplementary assistance to the pilot during overwhelming
situations but not to automate his or her tasks. It is worth
noting that we artificially increased the number of potential
collisions compared to what pilots are expected to face during
real operations for the purpose of the study. The goal was to
have enough events of missed collisions so as to have statistically
significant results without substantially extending the experiment
duration.

In order to assess the effect of mental workload and
multitasking on the use of rBCI, we manipulated two variations
of the experimental conditions:

• rBCI alone condition (single task
ondition): the participants only had to perform the
different checklists without flying (the aircraft was in
automated flight mode). They also did not have to do the
anti-collision monitoring task;

• r/pBCI and Flying condition (multi-tasks
condition): the participants had to perform the checklists
and the radar monitoring task while manually flying to
perform the five legs of the scenario.

These stand for two realistic conditions of flight: auto-pilot mode
and full control. A video that illustrates the experimental scenario
can be downloaded in the Supplementary Materials.

2.5. Protocol
The participants underwent 30 min of training for the flight
simulator without the dBCI. It included a short tutorial about
how the simulator worked (user interface, flight parameters),
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several landings and a complete traffic pattern exercise.
Participants were then equipped with the 9-electrode NextMind
EEG headset (Oz, PO7, PO8, PO1, PO3, PO4, P3, P4), placed
over the visual cortex with the lowest electrode (Oz) set over
the inion, as recommended by the manufacturer best practices.3

Following this, participants went through the BCI calibration
phase which output a calibration score (between 1 and 5). During
the calibration phase, the participant had to focus on a single c-
VEP for 40 s. The calibration was redone if the score was below 4
to ensure satisfactory performances. After this setup, participants
completed the two conditions (rBCI alone and r/pBCI + flying).
The order of the two conditions was pseudo-randomized to
counterbalance between all participants and to control for
potential fatigue effects: six participants started with the “rBCI
alone” condition and the remaining six with “r/pBCI and flying”
condition. Finally, after completing each experimental condition,
participants were asked to fill the subjective questionnaire. The
total length of the experiment for a subject was about 1 h.

2.6. Measurements
2.6.1. Subjective Measures
The participants reported their subjective levels of mental effort
and frustration to perform the checklists using a Likert scale
(1 = very low, 10 = very high) in the two experimental
conditions. These subjective assessments were done immediately
after completing the experiments.

2.6.2. Objective Measures
We used a posteriori the recording from a Tobii Glasses II eye
tracking system (Tobii Pro AB, Stockholm, Sweden) to manually
evaluate the efficiency of the dBCI system. Tobii Glasses II
is a wearable eye tracker with an embedded scene camera of
frequency 60 Hz (i.e., a sampling interval of 16.67 ms). The
recording consists in the video of the scene camera, with a large
angle, with in overlay the gaze point of the subject. Built-in
parallax and slippage compensation methods were performed to
maintain tracking accuracy throughout the recording. During the
calibration procedure a target probe was presented in the cockpit.
During recording, if the gap between two retrieved samples was
more than 16.67 ms and <75 ms, the sample is considered as
missed. Missed samples were interpolated using the median on
a rolling window of five samples. If the gap is more than 75
ms, the samples were considered lost and not interpolated. The
proportion of missed and lost gaze samples was bellow 20%
for all the participants. The continuous eye-tracking sequences
were then smoothed using a non-weighted moving median filter
with a window size of three samples. The built-in Tobii I-VT
Fixation Filter was set with a velocity (expressed in visual degrees
per second) threshold of 30◦/s over 20 ms window length. Gaze
samples above the velocity threshold were classified as saccade
samples. Short fixations lasting<50 ms were discarded. Adjacent
short fixations were merged when their inter-fixation (saccade)
duration was lower than 75 ms or that the visual angle difference
between these fixations was lower than 0.5◦. A lower threshold
of 200 ms was used for the definition of visual fixations. The

3https://www.next-mind.com/documentation/sensor-manual/

eye tracker is not part of the dBCI system. The recording was
used (i) to compute the accuracy of the rBCI and measure the
reaction time to perform the checklist events, and (ii) to quantify
the performance of the pBCI as follow:
Regarding the reactive BCI:

• A “true positive” was labeled if the participant gazed at one of
the checklist item and this latter is then activated/deactivated
by the NextMind classification framework;

• A “false positive” was labeled if the state of one checklist item
changed without any eye fixation on it;

• The reaction time to interact with checklist itemwas computed
by measuring the time interval from the first fixation on this
item until this latter is finally activated/deactivated by the
NextMind classification framework;

Regarding the passive BCI:

• A “true positive” was labeled if the participant gazed at the
radar and the confident score computed by the NextMind
algorithm reached a value of 0.1 within the last 6 s, defined
as the time to avoid the collision;

• A “false negative” was labeled if the participant did gaze at the
radar but the confident score did not reach a value of 0.1 within
the 6 s;

• A “false positive” was labeled if the participant did not gaze at
the radar but the confident score reached a value of 0.1 within
the last 6 s.

3. RESULTS

In this section, we present the subjective and quantitative results
of our dual (reactive and passive) BCI.

3.1. Subjective Results
A paired t-test (p < 0.001) demonstrated that the mean level of
frustration to interact with the checklist items was significantly
lower in the “rBCI alone” condition (mean = 2.6, SD = 2.0)
than in the “r/pBCI and flying” condition (mean= 4, SD= 2.2).
Similarly, a paired t-test (p < 0.001) demonstrated that the mean
level of mental workload to interact with the checklist items was
significantly lower in the “rBCI alone” condition (mean = 2.2,
SD = 1.4) than in the “rBCI and flying” condition (mean = 5,
SD = 2.0, see Figure 4). Such reported results were expected as
the “rBCI and flying” is way more demanding compared to “rBCI
alone.” We selected these two conditions as they represent two
classical flight situations: auto-pilot with low workload and flying
with high workload.

3.2. rBCI Objective Results
In the “rBCI alone” condition, the classification accuracy reached
100% since all the participants interacted successfully with the
checklist items without experiencing any false positives (i.e.,
activation of an undesired item). Unlike a traditional rBCI with a
fixed epoch length, here the epoch length varies. In the “r/pBCI
and flying” condition, all the participants managed to fly the
different legs of the aircraft while interacting with the different
checklist items. The classification accuracy reached 98.5% since
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FIGURE 4 | Questionnaire responses of the participants to statements regarding frustration and mental workload in the two conditions. The width of the bars and the

numbers inside them reflect the number of participants that provide a certain rating on the Likert scale for the associated question (1–8). Lower scores (represented in

green) indicate a better user experience whereas higher scores (represented in red) are associated with negative experiences (higher mental workload and frustration).

only two single false positives occurred out of 132 trials (i.e., 11
checklist items× 12 pilots).

A paired t-test indicated that the mean reaction time to
activate the checklist items was significantly lower (p = 0.002)
when interacting with the rBCI alone (mean = 1643.7 ms,
SD = 390.6 ms) than when interacting with the rBCI while
flying and monitoring the radar task (mean = 2493.1 ms,
SD = 1055.4 ms). Mean reaction times per participant can be
found in Figure 5.

3.3. pBCI Objective Results
The pBCI system have classified as missed by the pilots, a total
of 53 potential collisions out of 203 events. Among these 53
missed collisions, the recordings from the eye tracker, manually
examined, showed us that in nine cases, the pilot was actually
fixating the radar but the pBCI considered as an attentional
lapses (False Negative, FN). For the remaining 44 cases (True
Negative, TN) and still based on the manual study of the
recordings from the eye tracker, the pBCI had accurately detected
that the pilot was distracted and compensated attention errors
by automatically triggering the orange alert. These results are
summarized in Figure 6. During the post-hoc analysis, we have
also determined that in eight cases among the 150 potential
collisions classified by the pBCI as acknowledged by the pilots,

but the eye tracker disclosed that the participants were not
actually paying attention (False Positive, FP). Therefore it makes
a total of 150 − 8 = 142 true positives (TP). As such, the True
Positive Rate (TPR, also called recall= TP

TP+FN ) of the pBCI system

was 94.04%. The precision ( TP
TP+FP ) was 94.67% and it gives a

F1-score (harmonic mean of precision and recall) of 0.94. The F1-
score reflects the number of false positives and negatives along
the true positives and negatives while traditional classification
accuracy only provides information about true positives and
negatives. Within our framework, missing a collision could have
dramatic consequences, thus it was more informative to consider
F1-score than accuracy. The True Negative Rate (TNR, also called
selectivity = TN

TN+FP ) was 84.61%.

4. DISCUSSION

This study is the first demonstration of a dBCI system that
promotes direct (rBCI) and implicit (pBCI) interaction between
the user and the interface. In our task, the reactive and passive
aspect did not interact together but were motivated by the task
involving interactions with the flight deck and the monitoring
of the radar screen. More specifically, the rBCI component
allowed the participants to interact with the flight simulator,
sending commands through a TCP/IP connection, to change
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FIGURE 5 | Mean reaction time per participant and grand average reaction time to activate the checklist items when interacting with the rBCI alone (in blue) and when

interacting with the rBCI along with the flying task and the pBCI (in orange). Bars represent standard deviations.

the state of specific flight deck actuators. This approach differs
from previous aviation-oriented BCI studies, which apply BCI
to directly control the aircraft’s trajectory (Fricke et al., 2014;
Nourmohammadi et al., 2018; Rodriguez-Bermudez et al., 2019).
It is important to note that in all these previous studies, the
pilots were required to fully allocate attentional resources toward
the BCI interface in order to perform the flying task whereas
the flight performance under the BCI condition does not meet
the standards of manual flying accuracy. Another important
consideration is that operating an aircraft requires to constantly
monitor a rich flow of information distributed across the cockpit.
Therefore such artificial setups in which pilots only pay attention
to a single source of information does not accurately reflect real-
flight situations and may not be transferable to these use cases.
Moreover, any relevant secondary task (e.g., radar monitoring,
communication with air traffic control) or critical stimuli (e.g.,
alarms) will distract them from flying. The pBCI component
was precisely dedicated to assist the pilot when performing a

secondary task, namely monitoring an anti-collision radar task.
To the authors’ best knowledge, this is the first time that a VEP
is used to monitor attention. Traditionally, this is performed
using frequency and/or time-domain features to assess the level
of attention (Brouwer et al., 2012; Dehais et al., 2018).

The rBCI analyses disclosed state of the art results in the
control condition (auto-pilot) with an accuracy of 100% and a
average reaction time of 1.6 s. It should be compared with other
asynchronous, online and with 4 classes BCIs of the literature.
Kalunga et al. (2016) have reported a reaction time of 1.1 for a
3 class problem and an accuracy of 87.3% for they asynchronous
and online BCI. In Gembler et al. (2020), authors have achieved a
reaction time of 2.31 s for a 4 class problem and a mean accuracy
of 94.4%, also online and asychronous. The rBCI also led to very
high accuracy (98.5%) in the condition where the participants
had to operate it while flying the plane and monitoring the radar.
The mean reaction was longer but quite acceptable (2.5 s) and
allowed the pilots to perform the checklist in a timely manner
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FIGURE 6 | Confusion matrix for the pBCI. The ground truth was obtained using post-hoc manual analysis of the recordings from the eye tracker. Acknowledged

collision corresponds to a collision actually spotted on time by the pilot.

while still being able to navigate and safely land the plane. This
slight decrease in classification accuracy (−1.5%) and increase in
reaction time (+0.9 s) can be explained in terms of higher mental
demand as previously demonstrated by Vecchiato et al. (2016).
Indeed, the participants were engaged in a complex multitasking
activity, leading them to divide their visual attentional resources
between the flying, the radar, and the rBCI tasks. Our subjective
results seemed to confirm this hypothesis as our participants
expressed significantly higher mental workload and higher
frustration in the multitasking condition. It is worth noting that
the variability in reaction times between users was also much
higher in the multitasking condition. Indeed, the performance
of a BCI is tightly related to the subjective mental workload
experienced by the users (Felton et al., 2012), the higher the less
the BCI performance would be. While the task difficulty was
the same for all subjects, the subjective workloads experienced
were different as it depends also on the skills, fatigue, etc. of
the subjects. Nevertheless, the implemented rBCI demonstrate
sufficient efficiency and responsiveness to be operated, even while
flying and with high workload which was the aim.

Beside that, the pBCI findings also seemed to indicate the
soundness of VEP to probe the level of attention to a monitoring

task. One of the main advantage of this approach is that the same
calibration, lasting only 40 s, was used to train the rBCI and
the pBCI. To the best of our knowledge, this is the first online
demonstration that flickering stimuli could be used for pBCI
purpose. The behavioral results showed that our pilots missed a
total of 44 out of 203 collisions. The pBCI provided assistance to
the pilots by simulating safety maneuvers with an acceptable rate
of false negatives. We believe that this hybrid approach provides
flexibility since the expertise of the pilot is kept at the center of the
design, while providing a safety net in case the pilot’s attentional
resources are engaged on other aircraft operations. We consider
it as an improvement compared to automatically activating the
anti-collision safety whenever a collision is coming. In some
cases, the pilot could have paid attention to this incoming danger
but determined that the anti-collision safety was not necessary.
In our scenario, the anti-collision safety was triggered only if
the pilot deliberately chose to do it or if he or she was not
paying attention. However, it is worthy to note that such adaptive
automation could cause some drawbacks such as over-reliance on
fallback mechanisms.

Despite these promising results it appeared that in eight cases
out of 150, the pBCI did not detect pilot’s attentional lapses
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and failed to trigger the automatic maneuver (false positive).
The occurrence of such failure could lead to critical scenarios
in real-life situations. One has to keep in mind that we used
a an empirical threshold set to 0.1 for all participants to infer
the attentional state and trigger the pBCI. This fixed threshold,
while proving to be efficient overall may not be optimal for
each individual. A possible solution is to define an individualized
threshold to obtain an optimal ratio between false positive and
true negative. Interestingly enough, the findings disclosed that
in nine instances out of 150 events, the pBCI classified that
the participants detected the collision whereas the participants
were not glancing at the radar as attested by the eye tracker
(false negative). However, during the debriefing, the participants
declared that they actually spotted the collision via peripheral
vision. Such situation is possible since peripheral vision, via the
rods, is highly sensitive to motion and flickering objects such as
the VEP stimuli that were used in this experiment. For instance,
some authors demonstrated the potential of using concurrent
presentation of VEPs-based stimuli to assess processes outside
of the focus of spatial attention (see for reviews Vialatte et al.,
2010; Norcia et al., 2015). Future work should investigate this
hypothesis.

Following on these promising results, this work calls for
refinement through an actual implementation of the dBCI in the
wild, i.e., under operational conditions. For instance and from
an operating time point of view, it is blatant that using one’s
hands is still faster than the rBCI to interact with the cockpit.
One solution is to provide hybrid interaction so that the pilots
can choose to use either the BCI or physical modalities depending
on the flight phase and time pressure. One could imagine that
the pilot would interact trough the BCI when the autopilot is
engaged, so to increase his comfort and availability, andmanually
during more dynamic phases of the flights (i.e., maneuvers),
when full commitment is required. In the present study the eye-
tracking data were used as to provide a ground truth to assess
both passive and reactive BCI performances in post-hoc analyses.
The gaze data could also have been leveraged as a complementary
source of spatial and temporal information to improve BCI
speed and accuracy. Indeed, the eye-tracking data could provide
contextual information, as to which area of the environment
the user focus attention. This contextual information (regions
of interest in eye-tracking terminology), would lead to the
activation of only a subset of the VEP stimuli based on the
localization of user’s attention (Lin et al., 2019). This approach
would allow to artificially increase the number of classes while
using a constant number of distinct VEPs therefore reducing the
complexity of the classification problem (Stawicki et al., 2017).
This lower number of distinct VEP also implies to acquire less
calibration data compared to traditional paradigms in which each
class is represented by a distinct VEP. Moreover, by triggering
stimuli presentation, the eye-tracking data would provide the
precise onset time of the stimuli thus giving valuable information
for asynchronous BCI allowing to compute classification only
when necessary and optimize computing power and time
requirements. Additionally, gaze contingent rBCI would reduce
the bottom-up influences of the visual stimuli on the user
attentional resources. Indeed, the high contrast nature of stimuli

commonly used inVEP-based paradigmsmay distract attentional
resources away from the primary task (Zhao et al., 2018). From
an user experience perspective, the reduction in the number of
VEP stimuli presented at the same time may improve visual
comfort. Eventually, visual fixations on the radar area may be
used as a two-step certification process to validate the VEP-based
pBCI decision. Similarly for the rBCI, visual fixations within VEP
stimuli area could be used to confirm the intention of an user
to interact with a command. Overall eye-tracking information
concurrent to VEP-based BCI classification outputs may be used
to further improve classification performance and reduce the rate
of false positives. This latter point is particularly important in
the context of translating the proposed dual BCI system to real
cockpit day-to-day flight operations as meeting high standards
of aviation certification criteria is particularly challenging (10−3

allowable failure probability). In the context of aviation, any
undesired activation of a command could jeopardize flight safety.

To conclude, we believe that the concept of dBCI opens
promising prospects to improve human machine symbiosis
for neuroergonomics applications in many domains such as
transportation, industrial workplaces, medical care but also for
disable people. We have developed a proof of concept that
relies on the code-VEP based stimuli and classification tools
provided by the NextMind company. However, this approach is
limited as it is a closed system. The EEG data streams are not
accessible and the processing and classifications algorithms are
not provided by the manufacturer. It is thus not possible to assess
data quality or any data loss related issue. However, we hope
that this study should encourage the development of open-source
c-VEP code for the scientific community. Alternatively, other
types of stimuli and classification procedures could be explored.
For instance, the decoding of user’s expectation (Zander et al.,
2016) represent an interesting alternative since it does not require
to present additional stimuli in the user interface. Combining
together active and reactive tasks and the use of hybrid EEG and
functional near infrared spectroscopy based BCI could maximize
the number of commands (Hong and Khan, 2017) provided
by a BCI. Regarding the pBCI, the use of more traditional
features (e.g., changes in the well defined band of power for
EEG) or more advanced ones like brain connectivity could be
considered to target specific degraded mental states (cognitive
fatigue, failure of auditory attention) so as to trigger the most
appropriate neuro-adaptive solutions (Dehais et al., 2020b).
Indeed, several solutions could be designed to dynamically
optimize human-machine teaming by (1) adapting the user
interface using notifications to alert of impeding hazards, (2)
adapting the task and the level of automation to maintain
the performance efficiency of the operators, and (3) “neuro-
adaptating” the end-users to warn them of their mental state and
stimulate them to augment performance (e.g., neurofeedback).
Eventually, some further work should be conducted to assess the
effect of training with such system and stimuli, as few participants
had a previous experience interacting with a BCI. It is generally
reported that regular use of neurotechnology mitigates BCI
illiteracy, improves classification accuracy and reduces reaction
time (Blankertz et al., 2009). Also, future experiments could
include a baseline condition without BCI use, to assess the effect
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on pilots performance of such neurotechnology. We truthfully
hope that this study will foster research efforts to improve the
concept of dual BCI for safer, seamless, and efficient human-
human and human(s)-machine(s) interactions.
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