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Introduction: A well-designed brain-computer interface (BCI) can make

accurate and reliable predictions of a user’s state through the passive

assessment of their brain activity; in turn, BCI can inform an adaptive system

(such as artificial intelligence, or AI) to intelligently and optimally aid the user to

maximize the human-machine team (HMT) performance. Various groupings of

spectro-temporal neural features have shown to predict the same underlying

cognitive state (e.g., workload) but vary in their accuracy to generalize across

contexts, experimental manipulations, and beyond a single session. In our

work we address an outstanding challenge in neuroergonomic research: we

quantify if (how) identified neural features and a chosen modeling approach

will generalize to various manipulations defined by the same underlying

psychological construct, (multi)task cognitive workload.

Methods: To do this, we train and test 20 di�erent support vector machine

(SVM) models, each given a subset of neural features as recommended

from previous research or matching the capabilities of commercial

devices. We compute each model’s accuracy to predict which (monitoring,

communications, tracking) and how many (one, two, or three) task(s) were

completed simultaneously. Additionally, we investigate machine learning

model accuracy to predict task(s) within- vs. between-sessions, all at the

individual-level.

Results: Our results indicate gamma activity across all recording locations

consistently outperformed all other subsets from the full model. Our work

demonstrates that modelers must consider multiple types of manipulations

which may each influence a common underlying psychological construct.

Discussion: We o�er a novel and practical modeling solution for system

designers to predict task through brain activity and suggest next steps in

expanding our framework to further contribute to research and development

in the neuroergonomics community. Further, we quantified the cost in model

accuracy should one choose to deploy our BCI approach using a mobile

EEG-systems with fewer electrodes—a practical recommendation from our

work.
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1. Introduction

With continued developments in sensing and analyzing

neural activity, there is significant interest in the possibility

of passively monitoring mental states, which in turn could be

used to adapt the work environment to an operator’s needs

in real time (e.g., Yuksel et al., 2016; Dehais et al., 2019).

One sensor technology, electroencephalography (EEG), holds

particular promise as it has high temporal resolution (Kramer,

1991; Smith et al., 2001) and the measured signals correlate

relatively highly with task performance (Kramer, 1991; Gevins

and Smith, 2000; Kramer and Weber, 2000; Parasuraman

and Rizzo, 2006; Gawron, 2008; Andreassi, 2013). Modern

machine learning (ML) techniques are critical to extracting the

appropriate information from the EEG signal, but unfortunately,

a perpetual issue in ML, the trade-off between bias and variance,

also limits the ability to deploy adaptive systems based on EEG

signal outside of laboratory settings. In particular, the most

precise predictions of human performance based on EEG signal

are those trained on highly similar data. Human EEG signals are

nonstationary in nature, meaning even within a single subject

doing the same task, there is “drift” in the measurement over

time that can lead to misclassifications by a trained ML system

(Fairclough and Lotte, 2020). While techniques for online model

adaptation to drift exist, they are complex and computationally

expensive (e.g., Li et al., 2021). The lack in generalizability,

i.e., the bias of analysis, is much more dire when attempting

to predict performance on different sessions or anything about

cognitive state when a person performs a distinct task, let alone

when a system is applied to a different operator (see Zhou et al.,

2021, for a recent review). At the other end of the bias-variance

trade-off scale, specificmetrics based on power at predetermined

spectra and prespecified sensor locations have been proposed to

measure general cognitive states such as attention and mental

workload. While these measures are not specific to task, time,

nor individual, they offer only a crude and noisy, i.e., high

variance, picture of the operators cognitive state and hence could

lead to frequent misclassifications. The goal of our research

reported here is to examine the bias-variance trade-off when

using support vector machines (Cortes and Vapnik, 1995; Ben-

Hur et al., 2001) to recover information about task and workload

from EEG data.

In this work, we focus on multi-tasking performance

for two reasons. First, humans either choose to or are

required to complete multiple tasks, each typically with an

independent goal and level of urgency, both in workplace

settings and in their personal lives. Second, mental workload

is a major topic of research in human-factors psychology, and

hence, there is an extensive literature on predicting multi-

tasking performance based on estimated mental workload,

including from EEG signals. When taking on additional

tasks, numerous multitask demand manipulations can influence

mental workload, performance, and neural activity. A few task

demand manipulations include: a simultaneous change in the

level of difficulty for the entire environment (i.e., all subtasks),

the addition (subtraction) of a subtask(s), and the degree of

task similarity where subtasks compete for more (less) common

resources (Wickens, 1984). Typically, neural predictors of

multi-tasking performance involve one manipulation. Different

manipulations of task demand, for instance—the latter two

examples, may activate different patterns of neural activity;

thereby altering which neural indices are most informative

to measure mental workload and predict current, or future,

performance. Hence, we assessed how the indices of neural

activity reliably vary when the entire environment increases

in difficulty and how this generalizes to other types of

task demands. Specifically, we investigated whether consistent

patterns of brain activity may predict two types of task demands,

i.e., number of tasks (one, two, or three), and types of attentional

resource demands (tracking, communicating, monitoring).

Measurements from a typical EEG system include

information across the full range of cognitively relevant

frequencies at an extremely high temporal resolution. Neural

activity at particular electrodes and frequency bandwidths

fluctuate in response to the amount of resources demanded

from the task environment to maintain adequate performance

and, compared to event related potentials, varies by task type in

addition to workload (Ke et al., 2021). Specifically, theta (4–7

Hz), alpha (8–13 Hz), beta (14–25 Hz), and low gamma (25–40

Hz) wave activity consistently vary in correspondence with the

level of task demands, and we summarize this related work in

the next few paragraphs.

Theta band activity varies with the relative degree of

concentration one provides to completing task requirements. As

task load increases, theta activity increases (Smith et al., 2001;

Holm et al., 2009; Antonenko et al., 2010; Puma et al., 2018).

However, both increases and decreases in alpha power have been

associated with increased task demands and allocation of effort.

Alpha wave activity is associated with subjective relaxation and

default mode network activation (Knyazev et al., 2011) and has

similarly been shown to have an inverse relationship with task

difficulty (e.g., Freeman et al., 1999; Fallahi et al., 2016; Puma

et al., 2018). In contrast, some studies have found increased

alpha power with increased workload or task difficulty (Zhao

et al., 2012; Borghini et al., 2014; Kamzanova et al., 2014;

Wisniewski et al., 2017). These contrasting results may be due to

differences in task requirements, particularly working memory

demands. If increases in alpha power at a particular brain region

are interpreted as having a suppressive effect, then one would

expect alpha power increases in brain areas that would process

irrelevant or distracting information (for example, visual cortex

during a challenging listening task).

There are also conflicting results in the literature regarding

the relationship between beta wave activity and engagement.
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Some research has found that as task demands increase,

subjective engagement and beta activity increases (Pope

et al., 1995; Prinzel III et al., 2003), while others find the

opposite. These changes in beta wave activity may stem

from electromyographic (EMG) activity, like eye or muscle

movement, rather than neurological activity (Spydell et al., 1979;

Spydell and Sheer, 1982). Regardless, EEG beta activity may still

be a proxy for predicting performance: a high degree of mental

workload may correlate with higher or lower eye or muscle

movements depending on task and response demands, leading

to lower efficiency.

Pope et al. (1995) combined alpha and beta power, along

with theta activity into a single score that correlates with task

demands and performance (Pope et al., 1995; Prinzel III et al.,

2003). They posited that a rise in cognitive demands leads to a

larger increase in beta activity than the sum of alpha and theta

activity (i.e., Index = beta/(alpha + theta); Brookings et al., 1996).

Although alpha, beta, and theta have received the most

attention in the literature, fluctuations in gamma power may

also track workload, task demands, and task engagement1. An

increase in gamma power is associated with attention and

perception, specifically related to visual information (Müller

et al., 2000). Gamma power increases are also associated with

higher subjective ratings of workload and error rates (Choi

et al., 2018), can be used to distinguish workload even while the

individual is walking (Tremmel et al., 2019), and can be used to

differentiate task type (Ke et al., 2021).

Some authors have suggested that multi-tasking elicits more

activity in particular brain areas; this activation systematically

increases as more tasks are added and is not evidence of

increased difficulty in a single-task environment (D’esposito

et al., 1995; Adcock et al., 2000; Cudmore et al., 2000;

Sigman and Dehaene, 2008). Specifically, D’esposito et al.

(1995) found increases in unique neural activity located around

the dorsolateral prefrontal cortex (DLPFC) when completing

two, generally unrelated tasks, simultaneously. Therefore, they

characterize the DLPFC as a primary source for maintaining

multiple tasks and filtering relevant, vs. distractor, information

in a multi-tasking environment.

With respect to EEG, some authors have recommended

specific electrodes for measuring workload. For example, frontal

midline (Fz) theta activity increases and parietal midline (Pz)

1 The definition of Gamma activity varies between 30 and 100 Hz. Since

high frequencies are typically contaminated with line noise (50–60 Hz) or

muscle activity (70–100 Hz), we apply a lowpass filter to assess 1–40 Hz

(Andreassi, 2013), where 25–40 Hz is sometimes referred to as the “low-

gamma” band. Typically gamma activity related to cognitive functioning

is associated with band-power between 25 and 55 Hz (e.g., Choi et al.,

2018; Tremmel et al., 2019). Researchers should take note of this when

considering gamma activity fluctuations in relation to our data or their

own future work.

alpha activity decreases as the task difficulty increases in a multi-

tasking environment relative to a passive watching condition

(Gevins and Smith, 2003). Cannon et al. (2010) recommend a

standard set of electrode and frequency pairs for measurement

and specific sites for EEG electrodes that characterize task

demands for complex cognitive tasks including: EOG data

(theta), F7 (alpha, theta), Fz (alpha, theta), Pz (alpha, theta),

T5 (alpha, beta), and O2 (alpha, beta). Note that these features

tend to be evaluated for the full task environment. Each subtask

component alone may encompass a more task-specific list of

features, depending on the nature of the subtask component.

Some research has suggested an over-additive effect in

multitasking environments such that higher theta and beta

band activity and lower alpha activity occur (Adcock et al.,

2000). Others suggested whenmultitasking demands superseded

an operator’s mental limit, they transitioned to the “overload

region”, where specific features of neural activity declined (Just

et al., 2001). Subsequent research consistently demonstrated

the increases and decreases in neural activity over time as

hypothesized by previous research. However, there was not

a reliable correlation between changes in neural activity and

observed changes in performance (Serrien et al., 2004).

The generalizability of multi-task specific brain areas is

questionable; some demanding multi-task combinations that

elicit task performance decrements and overall neural activity

increases/decreases in specific bandwidths often associated with

mental workload do not illustrate the corresponding differences

in DLPFC activation. Rather, the neural activity of these

multitask combinations that will change in accordance with task

demands is representative of the electrode-bandwidth activity

evident when each subtask is performed in isolation at various

levels of difficulty (e.g., Brookings et al., 1996; Ke et al., 2014).

Understanding of the association between activity in

individual frequency bands and task load and type can be

combined with more data-driven machine learning methods to

better classify task load and type. The 2021 Neuroergonomics

Grand Challenge: Passive BCI Hackathon is a recent large

scale effort to leverage EEG data to classify workload. All

teams participating in the challenge used the same dataset:

EEG data from 15 participants while they completed various

combinations of subtasks at 3 levels of difficulty, collected across

3 days. Challenge teams were asked to develop an algorithm

that decodes workload level. The algorithm could be retuned

on an individual subject basis, but needed to classify data from

the third, unseen session. The winning entry to the challenge

(Singh et al., 2021) used support vector machine classification.

The selection of EEG channels was based on a maximal distance

between the three workload categories in a Riemannian space

representation of the data, considering only the theta and beta

EEG bands. Classification performance was 54% averaged across

all participants. The results from this challenge provide further

evidence that a machine learning method, combined with the
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TABLE 1 The full model and 10 electrode-bandwidth subsets.

Set # # of Features Electrode-bandwidth pairs Previous suggestion of indices

1 320 64-channels (δ, θ ,α,β , γ ) Casson, 2014 (19-channels)

2 128 64-channels (θ ,α) Borghini et al., 2014

3 64 64-channels (δ)

4 64 64-channels (θ) Antonenko et al., 2010

5 64 64-channels (α) Smith et al., 2001

6 64 64-channels (β) Prinzel et al., 2001

7 64 64-channels (γ ) part of Choi et al., 2018

8 64 64-channels ( β

α+θ
) Pope et al., 1995; Nuamah et al., 2017

9 10 (F7,Fz,Pz)(α, θ), (P7,02)(α,β) Cannon et al., 2010

10 5 Pz (δ, θ ,α,β , γ ) Hogervorst et al., 2014

11 2 Fz (θ), Pz (α) Gevins and Smith, 2003

The set of electrodes directly corresponds to those provided for the BioSemi-64 EEG system; bandwidths correspond to a specified frequency range, i.e., delta (δ): 2− 4 Hz, theta (θ): 4− 7

Hz, alpha (α): 8− 14 Hz, beta (β): 14− 25 Hz, and gamma (γ ): 25− 40 Hz.

field’s existing understanding of which aspects of EEG activity

reflect workload and task demand changes, can be useful for a

BCI system.

Extracting information from large, multivariate datasets

such as EEG signals requires care, particularly due to

the aforementioned bias-variance trade-offs. Support

vector machines (SVM) are one way to pull together

multiple characteristics of a neural signal to maximally

differentiate between multiple datasets, collected from different

environments, and hence allow us to quantify the classifier

performance at different levels of bias-variance trade-offs.

We used SVMs to investigate the stability in the relationship

between different components (i.e., bandwidths, electrodes)

of neural activity (e.g., frontal-theta) as we manipulated

task demands. Generally, our research advanced the field in

three ways:

1. Two manipulations to task demands: the number of tasks

and the degree of competition for common resources (dual-

tasks);

2. Comparison in the accuracy of 10 electrode-frequency

bandwidth subsets to inform machine-learning model

predictions at the individual-level;

3. Assessment of model generalizability through the

comparison of within- and between-session prediction

accuracy.

We subset the full set of electrode-bandwidth components

(320) and those outlined as significant predictors of task

demands in previous research. In total, we tested the full

electrode-bandwidth set, and 10 subsets; each is outlined in

Table 1. We tested the degree that neural activity in each subset

informed a machine-learning model to predict 1 of 7 single-

and multi-task condition categories of varying demands. We

assessed the machine learning models’ predictive accuracy of

task condition, where task conditions consisted of two types of

demand manipulations: numbers of tasks and competition for

common resources. We then tested the most effective model

using subsets of electrodes that correspond to a number of

popular mobile EEG headsets to better estimate how our model

performance may be altered in a real-world scenario. Next,

we outline previous studies and their conclusions about neural

activity variations in response to changes in task demands.

Previous researchers subset EEG data to specific electrode

and frequency pairs and found a priori assumptions limit model

reliability and specificity. Specifically, models suffer when they

assumed the types of neural activity that were informative to

assist in operator support efforts (e.g., adaptive automation,

user enhancement). We compared hypotheses of bandwidths

and electrodes, as these are highly disputed and relatively

unexplored in manipulating number of, and types of, multitask

combinations. Alternatively, the 2021 Neuroegonomics Grand

Challenge represents a more data driven approach to creating

machine learning models of workload. The dataset used in

this challenge emphasized classification based on task difficulty

(i.e., workload) and not task type (i.e., did the task involve

communication? Visual tracking? etc.). Further, these data were

cleaned using an offline classification algorithm (IC Label) that

would be prohibitive for use in real-time BCI applications. In

the present study, we adopted an exploratory machine learning

approach to produce a relatively unconstrained model that

could take advantage of the abundance of EEG data, that was

minimally cleaned and processed. Here the model chose which

electrodes, and the bandwidths within electrodes, best captured

the differences between task demands to accurately classify task

demands and, in turn, predict performance; we created models

at the individual-level.
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1.1. Decoding

Our goal was to use neural activity to establish a model

that could delineate unique patterns of brain activity amongst

multiple levels of task demands and task types. We tested

this model by providing the model new data, from the same

participant, and assessing the model’s accuracy in correctly

identifying the source of task demands.

Multivariate pattern analysis (MVPA) is a machine learning

approach to analyze neuroimaging data that takes into account

the relationship between multiple variables (e.g., channels of the

EEG) instead of treating them each as independent variables

measured in relative activation strength (power). Lotte et al.

(2007) discuss the strengths and weaknesses of five machine

learning approaches that are most useful for brain-computer

interface (BCI); they suggest a combination of classifiers is

most efficient. However, they describe support vector machines

(SVMs) as the leading stand-alone classifier. SVMs are (1) highly

generalizable: accommodate to non-stationarity and variability

through normalization, (2) simplistic in nature: require minimal

parameter specifications, (3) insensitive to overtraining, and (4)

robust against the “curse of dimensionality.” Other classifiers

are faster to execute than SVMs, but the computational speed

of an SVM model is still efficient enough for real-time adaptive

automation or intervention (Lotte et al., 2007).

Our approach extends current research by investigating the

sensitivity and generalizability of machine learning models in

a few ways. (1) Typical decoding of neural data is limited

to a binary choice such as high and low cognitive activity

(e.g., Baldwin and Penaranda, 2012), although in recent years

the decoding of more categories has become slightly more

common (for example, see the 2021 Neuroergonomics Grand

Challenge); we developed a model that each distinguished

among 7 conditions. (2) Difficulty in multi-tasking studies is

primarily manipulated by increasing the demands of the full

environment, equally balanced between subtasks (e.g., Cannon

et al., 2010), or if difficulty is manipulated by adding additional

task types there is no effort to identify when each task is

being completed (Neuroergonomics Grand Challenge, 2021);

we manipulated task difficulty in two ways: the nature of and

number of the subtask components and worked to classify both

of these things. (3)We estimated the decision boundaries of each

model, for each participant; the decision boundaries were set to

maximally differentiate the participant’s neural activity in each

of the different task demand levels. In summary, we developed

multiple, individual-level classification models, referred to as a

classifier, where each was specific to a participant to predict the

type of demand manipulation (i.e., the number of subtasks, the

types of subtasks).

The first step of decoding was to use the algorithm

of choice (e.g., SVM) to place decision boundaries in a

higher-dimensional space that best separated the patterns

of brain activity that corresponded to each experimental

condition of interest. Following the recommendations of

Brownlee (2019), we fit the model using a random sample

subset (67%) of data, referred to as the training data. In

a recent review, Nalepa and Kawulok (2019) thoroughly

discussed the extensive body of research on selecting training

sets SVMs and stated that random sampling is simplistic

and easy to implement, does not depend on time, and

is a practical choice for real-time BCI. The drawback of

random sampling is the propensity to require laborious

outlier and noise reduction before randomly selecting the

training set.

After fitting the model to a random subset of neural data,

the model was subsequently evaluated using the remaining

third of the data. We assessed classifier performance relative

to chance performance. We defined chance accuracy as that

which would be predicted by uniform random labeling across

possible category labels. For example, we provided a classifier

seven categories whereby decision bounds were set to maximally

separate neural data between each; therefore, the level of chance

for a classifier with seven categories was 1/7 or 14.3%. If

the classifier performed higher than predicted by chance on

the new set of data, there was evidence that the classifier

generalized the learned associations to labeling new brain

response data patterns. We tested the classifier with the data

that was partitioned out before training the model (33%),

such that the category label was unknown to the classifier.

To assess the accuracy of the classifier, we recorded the

category that the algorithm identified as appropriate for the

testing data, given the model fit to the training data, and

compared it to the true category label. Therefore, to assess

classifier accuracy, it was necessary to have access to the

true category label for all data used for testing purposes. We

recorded the accuracy of the classifier to classify data correctly

or incorrectly.

2. Methods

2.1. Participants

Twenty participants (18 Caucasian; 2 Asian), 12 female (Age:

M = 25, range = [18, 34]) and 8 male (Age: M = 25.6, range

= [18, 31]), completed three sessions. Each session lasted no

longer than 2 h (Session 1) or 3 h (Session 2 and 3) for any

participant. Participants were compensated $10/h after each

session ($80 in total). The duration of the full study ranged from

3 to 10 days depending on the availability of the participant

and laboratory space; each session was separated by 1–3 days.

All participants’ primary language was English and all indicated

they were fluent in their ability to read, write, and comprehend

the English language. All participants had normal color vision

and normal (20/20) or corrected to normal (glasses/contacts)

visual acuity.
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FIGURE 1

Left: The Gauges used in the Monitoring (M) subtask of AF-MATB. Middle: The Lights used in the Monitoring (M) subtask of AF-MATB, both

properly functioning (Left = Green, Right = Black). Right: The Lights used in the Monitoring (M) subtask of AF-MATB, both signaling a

malfunction (Left = Black, Right = Red).

2.2. AF-MATB description

Participants performed the Multiple-Attribute Task Battery

(MAT-B; developed by Comstock and Arnegard, 1992),

later adapted by the Air Force (AF-MATB; Miller et al.,

2014). In the current experiment, we utilized three

subtasks while “blacking-out” the remaining tasks. Below

we briefly provide details pertaining to the goal and

demands of each subtask. For those interested in more

details about the subtasks or performance, participant

performance was modeled using an established measure,

Multitasking Throughput (MT), and published in Fox et al.

(2021).

2.2.1. Monitoring task (M)

Participants had to identify and “fix” malfunctions that

occurred in four gauges and two lights (Figure 1) using keyboard

responses (i.e., F1-F6). The participant watched each gauge

and judged the extent to which each slider fluctuated above

and below the center dash, a slightly longer dashed line

indicated the center. A “malfunction” occurred when the

slider moved outside of an acceptable range: one tick mark

above or below the center dash. During the malfunction the

slider would alternate between the malfunctioning and normal

range of tick marks. If the participant identified and corrected

the malfunction within the allowed amount of time (10 s)

the slider returned to the center of the gauge and began

alternating above and below the center range once again.

A yellow bar at the bottom of the gauge was presented to

signal to the participant that their response was detected

and correct.

The participant had to monitor two lights. The light on the

left was green, “ON,” and the light on the right was black, “OFF,”

during normal operations. A malfunction occurred when either

the left light turned black, “OFF”, or the right light turned red,

“ERROR.”

FIGURE 2

The Communications (C) subtask in the AF-MATB environment.

2.2.2. Communications task (C)

Participants listened for an auditory transmission that first

announced their assigned call sign, “NGT504,” followed by a

particular radio channel (4 possible channels) and a specific

frequency (illustrated in Figure 2). The call sign, “NGT504,” was

fixed for all participants and sessions; it was visible at all times.

Participants used their left hand to press the keyboard arrow

buttons and navigate through channels (up/down arrows) and

frequencies (left/right arrows). Participants again used their left

hand to press the enter key and submit a response; the visual

“Enter” flashed green to signal to the participant that their

response was submitted, regardless of whether it was a correct

or incorrect response. Two types of events could occur: True

communications events (TC) and false communications events

(FC). Each type of event demanded a particular participant

response. TC events occurred when the audio transmission

addressed the participant’s designated “call sign.”
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FIGURE 3

The Tracking (T) subtask in the AF-MATB environment.

2.2.3. Tracking task (T)

The participant used a joystick to control the movement of

a green, circular reticle (illustrated in Figure 3). The objective

was to steer the reticle as close to the center yellow crosshair as

possible. The AF-MATB software included three default levels of

difficulty where each increase in difficulty corresponded to more

frequent changes in direction and faster movement of the reticle.

For the analyzes reported here, we utilized the “Medium” level of

difficulty.

2.3. Experimental sessions

2.3.1. Training session

The purpose of the first experimental session (a maximum of

2-h) was to train and familiarize participants with each single-

task alone, dual-task pair, and the triple-task combination. We

pseudo-randomized 3-min trials for each of the seven trial types

(T-alone, C-alone, M-alone, T+C, T+M, C+M, T+C+M); this set

of seven trials was repeated 3 times for each participant split with

an optional break between each set (21 trials in total). All task

components were set to a moderate level of difficulty, see Fox

et al. (2021) for specific event details.

2.3.2. EEG sessions

The remaining two sessions had a pseudo-randomized,

factorial design of single- to triple-task combinations. For each

participant, neural data were collected across 2 days, each

containing thirteen (each 6 min) trial types. Task demands for

a given task could vary from low (indicated by a subtext of 1;

e.g., T1), moderate (indicated by a subtext of 2; e.g., T2), or

high (indicated by a subtext of 3; e.g., T3). For the modeling

reported in this paper, we only use data from the fixed ‘moderate’

level of difficulty. Therefore, trial types included each factorial

combination of single- to triple-tasks at a moderate level of

difficulty (i.e., T2, C2, M2, T2C2, T2M2, C2M2, T2C2M2).

Participants used a keyboard and joystick to respond; audio

transmissions came through external speakers.

FIGURE 4

Left: An example image of our post-training laboratory set-up.

Here we collected EEG data during the last two sessions

(post-training) of the experiment. Right: An example of the

64-electrode BioSemi system on a human subject using an ECI

and external mastoid and EOG electrodes.

2.4. Materials

2.4.1. Hardware

We required 2GB of RAM, 2GHz dual-core processor, a 15-

inch monitor, a keyboard, a mouse, a joystick, and speakers

to run the AF-MATB software. These were requirements for

the tasks to function properly as intended by the software

development team. A keyboard and joystick were necessary for

the participant to respond to experimental stimuli and we, as

the experimenter, used a mouse to press the start button to

begin the session. Speakers allowed the participant to hear the

audio transmissions of the Communications task. To protect our

EEG recording from exposure to excessive noise, we collected

all data inside a Faraday cage. The experimenter sat outside of

the Faraday cage, and monitored the subject directly via a small

webcam placed in front of them. The experimenter also viewed

the EEG data and the participant monitor in real-time for the

duration of the experiment.

The EEG signals were recorded in two experimental session

by a 64 Ag-AgCl pintype active electrodes (ActiveTwo, BioSemi)

mounted on an elastic cap (ECI) according to the extended

10–20 system, and from two additional electrodes placed on

the right/left mastoids, and an electrode on the tip of the

nose (example in Figure 4). Eye movement and blinks were

monitored using EOG electrodes. The EEG and EOG were

sampled at 1,024 Hz with 24-bit resolution and an input range

from−262 to+262 mV/bit. EEG data were saved and processed

offline.

2.4.2. Software

The AF-MATB software we used required Windows 7,

MATLAB Compiler Runtime 7.8, and Microsoft Office 2007

(Miller et al., 2014). We used a combination of Python

and R for processing the data; each provided unique
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strengths to facilitate processing models of performance

data, neural data, and the implementation of machine learning

algorithms. We used ActiView to monitor participant’s

brain activity during the experiment in real-time. Additional

software, provided by National Instruments (NI-DAQmx

and NI-MAX), were necessary for the AF-MATB to pass

triggers, i.e., information about what events happened

in the participant’s task environment, to the BioSemi

USB2 receiver.

2.5. Model evaluation

We established 3 criteria to evaluate classifier performance

and chose the “best” parameters and model customization,

for each participant separately. We defined our criteria with

the intention to adequately capture the characteristics we

found most valuable in a decoding algorithm: consistency,

accuracy, and low propensity to over fit. A rigorous and

sophisticated approach where we compared numerous

algorithms and parameter spaces is desirable and would

likely yield interesting findings; however, the full exploration

of modeling alternatives (e.g., k-means clustering, linear

discriminant analysis, etc.) is beyond the scope of

this paper.

Consistency was the degree to which the accuracy of the

model stayed the same when trained on different random

subsets that were sampled from the same overarching data

set. A high degree of consistency indicated the algorithm was

resilient to sporadic noise that is often littered throughout

raw EEG data. Accuracy was the degree to which the model

identified data as coming from the category that corresponds

to the true (known) category label. We assessed the accuracy

of the model in categorizing the data in which it was trained

on, and a subset of data that the model was “blind” to

during the training phase (33%). If we over-fit the model

to a subset of data, it decreases the ability for the trained

classifier to generalize and make accurate category predictions

using new data. We determined the propensity for a model

to overfit to the training data by calculating the change in

accuracy when testing the algorithm on the training data

and the testing data set. If accuracy substantially decreased

when the model was used to predict the testing data, as

opposed to the training data, then we concluded the algorithm,

for our purposes, had a higher propensity to overfit. Based

on these criteria, we chose to use SVM for analyzing these

data. SVMs accommodate a high volume of features; we had

320 features. Additionally, SVM models typically performed

well (i.e., high accuracy) in classifying data across multiple

days in a complex multi-tasking environment, compared

to alternative machine learning models (Christensen et al.,

2012).

TABLE 2 Summary of individuals’ classifier accuracy to predict

number of tasks (single-task, dual-task, triple-task).

Training data (67%) Testing data (33%)

Index Level Day Level Day

1 Individual Day 1 Individual Day 1

2 Individual Day 2 Individual Day 2

3 Individual Day 1 Individual Day 2

4 Individual Day 2 Individual Day 1

2.5.1. Model prediction

We split the data in two parts: training and testing data.

We used cross-validation such that the model was blind

to the test data. We computed model accuracy for each

classifier and individual. The classifier modeled the bounds

of 7 categories: T, C, M, T+C, T+M, C+M, T+C+M; chance

performance for this model was 14.3%. We calculated the

accuracy of the model to predict data across multiple levels

of generalizability (Table 2). The training data were the subset

of data that were used to estimate the model bounds. The

within-day testing data were a subset not used for training

but were collected on the same day. Between-day testing were

a subset of neural data (same participant and task demands)

collected 1–3 days before or after the training set (Note:

“before” or “after” was dependent on which data set, Day 1

or Day 2, the model was trained on). We constructed and

tested models for each participant, for each of the two model

types, at each level of generalization. In Table 2 we provide

a summary of the 4 ways we defined and tested each model.

We trained and tested a separate set of models for the full

model and 11 subsets of electrode-bandwidth features, shown

in Table 1. We swapped the data set used for training and

testing such that Training: Day 2 (67%), Within Day: Day 2

(33%), Between Day: Day 1 (33%) and repeated these analyzes

a second time.

2.6. Model parameters and specifications

We used cross-validation to learn the best parameters

for our data. The hyperparameters of the model include a

class weight, kernel, and two corresponding to the trade

off between model specificity and generalizability (denoted

as C and gamma). To choose the fixed values of these

parameters, we randomly selected a single participant’s data,

normalized their data (mean = 0, variance = 1) and did

a parameter sweep across a range of values, for an SVM

model to find the bounds between numbers of tasks. As

a result, we selected C=100.0 and gamma=0.001. For all
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TABLE 3 Linear vs. nonlinear model comparisons for one participant’s data to predict the number of tasks.

Training data Within-Day Between-Day

Training Chance Linear RBF Linear RBF Linear RBF

Day 1 33.3% 89.6% 100.0% 78.1% 86.9% 47.7% 52.4%

Day 2 33.3% 92.6% 100.0% 82.5% 89.9% 46.1% 51.2%

We compared a linear and nonlinear support vector machine to predict the number of tasks on the training data, data held-out from the same day (“Within-Day”), and data that was

collected on a different day (“Between-Day”). Models predicted one of three categories (chance rate= 33%).

Bold values indicate the radial basis function (RBF) model outperformed the linear model.

models, we used a 5-fold cross validation method to obtain

model accuracy.

We tested whether to restrict our model to only fitting

linear functions. A linear model typically was implemented as

a single support vector that distinguishes the respective data

from data of all other categories; this is called a “one-vs-

the-rest” approach. We tested a linear model against a “one-

against-one” approach (Knerr et al., 1990) that allowed for

nonlinear modeling between categories. In a nonlinear model,

each support vector was trained on data between two categories;

the number of constructed support vectors was Nc * (Nc-1) /2

where Nc equals the number of categories.

Using a subset of category predictions (predict number of

tasks: 1, 2, or 3), we computed the accuracy (% correct) of

the classification model. We examined the additional benefit of

using a nonlinear SVM function for our model over and above

linear SVMs. In sum, we found the nonlinear function, i.e.,

the radial basis function (RBF), to outperform a model based

on linear SVMs to accurately predict training data, within-day

data withheld from training for both multi-class decisions. The

nonlinear model was also superior for classifying the number

of tasks between-days; however, the models performed equally

well at classifying the type of tasks, a 3-class decision (Table 3).

Furthermore, we fixed the best RBF parameter values when we

trained all participants’ SVMmodels.

2.7. Data cleaning

We modeled neural activity at the individual-level.

Therefore, we only kept the participants where neural activity

was appropriately collected and stored for all task conditions

(T, C, M, T+C, T+M, C+M, and T+C+M) across both Day 1

and Day 2. Due to incomplete or corrupt neural recordings, we

eliminated 4 of the 20 participants (N = 16).

2.8. Pre-processing

Files for each individual, condition, and session were

processed separately. Pre-processing was completed using mne

(Gramfort et al., 2014) in Python. Raw data were loaded and

referenced to the average of the two mastoids. Data were

then bandpass filtered from 1 to 40 Hz using a firwin filter.

The first 10 s of each run was removed to exclude noise

that commonly occurred at the onset of the experiment. Data

were then segmented into partially overlapping windows—

each window as 2 s in length with a 1 s shift. Average

power was then calculated for each electrode using the

Welch method with a Hanning window and density scaling

in the following bandwidths: delta (2–4 Hz), theta (4–7

Hz), alpha (8–14 Hz), beta (14–25 Hz), and gamma (25–40

Hz). Mean power spectral density (PSD) was calculated for

each bandwidth.

3. Results

We trained and tested 704 models (N x F x I): N = total

number of subjects (16), F= number of input neural feature sets

(11: Table 1), and I = model generalizability index (4: Table 2).

In Table 4 we report the average percent correct between using

Day 1 or Day 2 for training the model. We computed the average

predictive accuracy of the individualized SVMmodels to classify

data at multiple levels of generalizability: 1. data used to train the

model, 2. testing data collected on the same day, and 3. testing

data collected on a separate day, where “testing data” is a portion

of data set aside when training the ML model.

Average train and test accuracy for categorizing training

data, data from the same day, and data from a different day

are given in Table 4 and shown in Figure 5. “Train” results is

the average accuracy of every model to predict the same data

that was used to train it (averaged across individual (16) and

Index 1–4 for each subset of features (11), respectively; n =

704). As expected, these predictions always yielded the highest

accuracy, M = 65.24, [22.49, 99.33], SE = [0.21, 3.88]. Same

day is the average accuracy of each model to predict data from

the same individual collected on the same day as the data used

to train the model, but the model was “blind” to these data

when training, i.e., these data were left out of the training phase

(n = 352). As expected, these predictions were lower than the

Train predictions, but higher than the Different day predictions,

M = 50.06, [19.78, 84.49], SE = [0.39, 1.78]. Finally, Different

day is the average accuracy of each model to predict data from
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TABLE 4 Summary of individuals’ classifier accuracy to predict type of task(s): T, C, M, T+C, T+M, C+M, and T+C+M.

Train Test

Set # # of Features Channels Within-Day Between-Day

1 360 64-Channels (δ, θ ,α,β , γ ) 99.32% 84.49% 32.01%

2 128 64-Channels (θ ,α) 91.89% 61.54% 26.16%

3 64 64-Channels (δ) 67.10% 49.50% 21.33%

4 64 64-Channels (θ) 69.10% 49.25% 21.43%

5 64 64-Channels (α) 69.78% 53.55% 25.24%

6 64 64-Channels (β) 82.53% 69.40% 25.92%

7 64 64-Channels (γ ) 89.66% 82.77% 27.63%

8 64 64-Channels ( β

α+θ
) 61.82% 19.78% 15.01%

9 10 (F7, Fz, Pz)(α, θ), (P7, O2)(α,β) 36.55% 33.46% 23.89%

10 5 Fz(δ, θ ,α,β , γ ) 27.68% 25.63% 19.59%

11 2 Fz(θ), Pz(α) 22.52% 21.33% 19.22%

Average percent accuracy of individuals’ classifiers predict type of task(s): T, C, M, T+C, T+M, C+M, T+C+M for each feature set outlined in Table 1. Chance performance was 1 of 7

(14.3%). Same day refers to the average score across both classifier Index 1 and 2 (Table 2) such that Day 1 or Day 2 was both used for training and testing the model. Different day refers

to the average score across both classifiers Index 3 and 4 (Table 2) such that Day 1 (Day 2) was used for training in Index 3 (Index 4) and Day 2 (Day 1) was used for testing.

Bold values indicate the accuracy of the full model.

the same individual collected on a different day as the data

used to train the model (n = 352), and, as expected, these

predictions were the lowest among our comparisons, M =

23.44, [15.01, 31.94], SE = [0.29, 1.33]. Nonetheless, accuracy

was still above chance among each of the feature sets, with the

exception of Set 8 where the model fit to all electrodes “workload

index” (β/(α + θ) consistently resulted in around chance level

(14.3%) performance when testing its generalizability to predict

task on 1 day when the data used to train the model were

collected on a separate day, a within-subject model.

3.1. Exploratory analyzes

The ultimate goal of neural models of task type and load is

real-world applicability. However, moving out of the lab requires

the use of mobile equipment, which is often associated with

fewer electrodes which often leads to sparser scalp coverage.

As an exploratory next step, we quantified the cost in model

accuracy should one choose to deploy our BCI approach using

mobile EEG-systems with fewer electrodes. We created subsets

of features to include electrodes which correspond to state-

of-the-art commercial systems and assessed models’ accuracy

across all bandwidths (delta, theta, alpha, beta, gamma). Mobile

systems were selected from recent literature in BMI and

workload/task type classification. These systems include the

Insight 2.0, Epoc + and Epoc Flex, all from Emotiv, and the

NeuroskyMindWave (e.g., LaRocco et al., 2020), the Cognionics

Quick Cap 20 (e.g., Marini et al., 2019), Neuroelectrics Enobio

8 (e.g., Somon et al., 2022), DSI VR 300 (e.g., Kim et al.,

2021), interAxon Muse (e.g., Arsalan et al., 2019), Neurable

Enten (e.g., Alcaide et al., 2021), and cEEGrid (e.g., Bleichner

and Debener, 2017; Somon et al., 2022). Table 5 depicts each

mobile system’s electrodemontage, reporting the closest possible

electrode within the 10–20 system when there was no one-

to-one correspondence, and the average percent correct. Our

original data set, collected using a 10–20 Biosemi system with

64 electrodes, is provided as set 1 for comparison purposes.

We illustrate these results in Figure 6. We computed the

average predictive accuracy of the individualized SVM models

to classify data at multiple levels of generalizability: 1. data

used to train the model, M = 70.19, [29.73, 98.95], SE =

[0.26, 1.23], n = 576 2. testing data collected on the same

day, M = 58.66, [28.57, 81.78], SE = [0.75, 1.95], n =

288 and 3. testing data collected on a separate day, M =

26.87, [21.87, 31.38], SE = [0.65, 1.19], n = 288.

4. Discussion

The long-term goal of our work is to build deployable

BCI that predicts operator task and workload. This current

project examined performance on data from varying degrees of

similarity of collection, ranging from the training set to held-out

data from a separate day of data collection. This allowed us to get

a sense of the bias-variance trade-off space for predicting multi-

task performance. For these analyzes, we relied primarily on a

well-known ML modeling approach, support vector machines.

The SVMs were able to learn consistent patterns of brain activity

to predict two types of task demands: the number of tasks (one,

two, or three), and the types of attentional resources demands

(tracking, communicating, monitoring). To better understand

the influence of the data used and compare with previously
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FIGURE 5

Plot of summary of individuals’ classifier accuracy to predict type

of task(s): T, C, M, T+C, T+M, C+M, T+C+M, for each feature

subset outlined in Table 1. The number of features decreases

from top (Set #1) to bottom (Set #11) in a nonlinear fashion, see

Table 4 # of features. Numeric averages are provided in Table 4.

Chance performance was 1 of 7 (14.3%). Set number refers to

the electrode and bandwidth pairs included in the feature set

used for classification. 1) All electrodes (δ, θ ,α,β, γ ), 2) All

electrodes (α, θ ), 3) All electrodes (δ), 4) All electrodes (θ ), 5) All

electrodes (α), 6) All electrodes (β), 7) All electrodes (γ ), 8) All

electrodes (α/(β + θ )), 9) F7(α, θ ), Fz(α, θ ), Pz(α, θ ), P7(α,β),

O2(α,β), 10) Pz (δ, θ ,α,β, γ ), 11) Fz(θ ), Pz(α). Same day refers to

the average score across both classifier Index 1 and 2 (Table 2)

such that Day 1 or Day 2 was both used for training and testing

the model. Di�erent day refers to the average score across both

classifiers Index 3 and 4 (Table 2). In model Index 3, Day 1 was

used for training and Day 2 was used for testing. In model Index

4, Day 2 was used for training and Day 1 was used for testing.

published work connecting EEG signals to task environments,

we examined different subsets of the potential electrode-

bandwidth components (320). We compared the accuracy of

each electrode-frequency bandwidth subset to informMLmodel

predictions, at the individual-level. We then computed the loss

in prediction accuracy should one attempt to generalize the

model to classify unseen within- and between-session brain

activity. As a follow-up analysis, we repeated our approach using

subsets of the data corresponding to nine different commercial

mobile EEG-systems which included fewer electrodes.

In all models, classifier decision bounds were set to

maximally separate the electrode-bandwidth features between

seven categories: T, C, M, T+C, T+M, C+M, and T+C+M. We

assessed classifier performance relative to chance, which was one

in seven or 14.3% accuracy. As expected, we found classifier

accuracy depended on the number of features within each subset

such that accuracy improved as more features were included.

Additionally, we tested the reduction in classifier accuracy as we

increased the level of generalizabilty of the testing dataset. The

level of generalizabilty was higher for the between- compared to

within-session classifications since it was further removed from

the model it was trained on. Our results indicated that classifier

accuracy decreased as the level of generalizability increased. For

all subsets, model accuracy was the highest when classifying the

subset of neural data it was trained on, followed by within- and

between-session classifications, respectively.

The best performance was based on the full data set,

including all bandwidths and electrodes. It may seem

unsurprising to find that the best performing model is the

one with the most features. Nonetheless, practitioners are

limited by the electrode montage they can collect and the quality

of the data at each electrode site. Our work investigated the

accuracy of 19 unique subsets of the full model: 10 proposed

in the literature (Model 2–11) and 9 montages of existing

commercial devices (Model 12–20). Through this work, we aim

to offer a practical guide under the necessary tradeoff when

using mobile systems or subset of the full feature space. As

such, the next best was a model based on only gamma activity

across all 64 electrodes. This was consistent across all levels of

generalizability; accuracy on the training set was 99.32% (full)

and 89.66% (gamma), on new data within-session was 84.49%

(full) and 82.77% (gamma), and on new data between-session

was 32.01% (full) and 27.63% (gamma), where performance

consistently remained well above chance (14.3%).

It is possible that at least some of the predictive strength

associated with gamma activity is related to motor control.

During the preparation and control of voluntary movement,

gamma is thought to reflect the integration of sensory andmotor

information. Background gamma activity occurs even at rest due

to thalomocortical loop activity, but motor movements increase

gamma power spectral density above and beyond this low level.

The topographical distribution of increases in gamma power

has been leveraged to classify the type of motor command that

was initiated. While single trial movement classification (type

and lateralization) is often achieved using mu or beta rhythms

(Kim et al., 2003; Alomari et al., 2013), power in the gamma

frequency band is also informative. Amo et al. (2016) compared

gamma power across left and right wrist movements and found

variations as a function of handedness; the induced gamma

response will be larger in a right handed individual moving their

right wrist than when that same individual moves the left wrist

(Amo et al., 2016). Gamma is also useful in decoding type of

movement, even if those movements were simply imagined. In

a single trial classification experiment of four different types of

imagined right wrist movement, 66% of useful features were

from the gamma band, found generally across an electrode

montage for a 64-channel system (Vuckovic and Sepulveda,

2006). Our work demonstrates that variation in gamma power

is informative for distinguishing task load and type in MAT-B

tasks, and this could be attributed to the differences in motor

requirements across conditions.

However, gamma activity is also associated with higher level

cognitive processes that go beyond the motor demands of a

particular task (Fitzgibbon et al., 2004). A previous investigation
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TABLE 5 Summary of individuals’ classifiers to predict task type using subsets corresponding to commercial EEG systems.

Train Test

Set # # of Features System Montage Within-Day Between-Day

1 360 BioSemi ActiveTwo 99.32% 84.49% 32.01%

12 160 Emotiv Epoc Flex 98.95% 81.78% 31.32%

13 95 Cognionics Quick Cap 20 97.91% 78.77% 31.38%

14 70 Emotiv Epoc + 94.93% 77.92% 29.04%

15 40 Neuroelectrics Enobio 8 70.30% 54.08% 24.93%

16 35 DSI VR 300 70.18% 55.54% 28.59%

17 25 Emotiv Insight 2.0 70.69% 60.01% 27.08%

18 20 interAxon Muse 38.92% 36.71% 24.80%

19 10 cEEGrid/ Neurable Enten 60.11% 54.55% 23.00%

20 5 NeuroSky 29.73% 28.57% 21.87%

Average percent accuracy of individuals’ classifiers predict type of task(s): T, C, M, T+C, T+M, C+M, T+C+M for each feature set of commercial EEG systems. Chance performance was

1 of 7 (14.3%). Same day refers to the average score across both classifier Index 1 and 2 (Table 2) such that Day 1 or Day 2 was both used for training and testing the model. Different day

refers to the average score across both classifiers Index 3 and 4 (Table 2) such that Day 1 (Day 2) was used for training in Index 3 (Index 4) and Day 2 (Day 1) was used for testing.

Bold values indicate the accuracy of the full model.
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FIGURE 6

Plot of summary of individuals’ classifier accuracy to predict

type of task(s): T, C, M, T+C, T+M, C+M, T+C+M, for each

feature subset outlined in Table 5. Numeric averages are

provided in Table 5. The number of features decreases from top

(Set #12) to bottom (Set #20) in a nonlinear fashion, see Table 5

# of features. Chance performance was 1 of 7 (14.3%). Set

number refers to the electrode and bandwidth pairs included in

the feature set used for classification. Same day refers to the

average score across both classifier Index 1 and 2 (Table 2) such

that Day 1 or Day 2 was both used for training and testing the

model. Di�erent day refers to the average score across both

classifiers Index 3 and 4 (Table 2). In model Index 3, Day 1 was

used for training and Day 2 was used for testing. In model Index

4, Day 2 was used for training and Day 1 was used for testing.

of the MAT-B task held task number and type constant, but

changed difficulty mid trial (Bowers et al., 2014). These authors

investigated changes in power in various frequency bands at

multiple electrode sites in response to this change in difficulty.

They found higher gamma power at temporal electrode sites

during high difficulty. Runs that changed from easy to hard

showed a clear increase in gamma power time locked to the

transition point, and vice versa. However, the change in power

was abrupt when difficulty was changed from easy to hard,

and transitioned more gently when difficulty was changed from

hard to easy. While difficulty changes may be associated with

a change in the tempo of movements, gamma power changes

were present despite no motor requirements being added or

removed. Further, in a study using brain activity to classify single

trial data from tasks with varying workload levels and sensory

modalities, gamma band features were found to be the most

reliably predictable across participants (Caywood et al., 2017).

The importance of gamma features in the present study is likely

due to a combination of changes to motor demands, difficulty

level, and sensory modality.

Although beta power did not yield model accuracy quite as

high as gamma power, it remained a practically useful predictor

of task (i.e., 69.4% accurate in within-day testing) compared to

theta and/or alpha power. Interestingly, previous work found

beta power accurately predicted conditions differing in working

memory demands (i.e., the n-back task; Ke et al., 2021), and,

similarly, alpha power predicted the maintenance/exclusion

of items in memory (Capilla et al., 2014) and exclusion of

interfering items from memory (Rihs et al., 2007). However,

we found higher model accuracy using beta compared to alpha

power. The nature of the MATB tasks place very few explicit

demands on working memory, and the dissociation we found

in model accuracy suggests beta activity may capture changes in

task demands beyond those of working memory alone, rather

demands that are specific to the nature of the task(s).

We found models trained on alpha or theta activity

performed moderately well when predicting (multi-) task

condition, yielding around 49.5% accuracy in within-day testing.

Nonetheless, performance suffers when compared to gamma or

beta activity. Numerous manipulations to (mulit-)task demands

many influence mental workload and neural activity, and alpha

and theta power have primarily been investigated in the context

of a simultaneous change in the level of difficulty for the

entire environment (i.e., all tasks at once), rather than the

addition (subtraction) of task(s), or the degree of task similarity

where tasks compete for more (less) common resources. In our

work, we manipulated the task (T, M, or C), the number of

tasks (1, 2, or 3), and the degree of competition for common

resources (TC, TM, and CM), and found evidence our demand

manipulations may evoke different patterns of neural activity

than that observed when all tasks change in their demands

simultaneously. Hence, our work suggests that which neural

indices are more informative to measure mental workload may

depend on the type of demand manipulation the researcher is

interested to predict. Neuroadaptive modeling may benefit from

the development of a joint modeling approach to predict both

the overall system demands and the task(s) one is performing at

any given time. One can imagine leveraging several bandwidths

to predict shifts in the task(s) being performed or a change in the

demands of all tasks simultaneously.

One subset that performed particularly poorly was Set #8,

the ratio proposed by Pope et al. (1995), where our results

indicated the classifier accuracy to predict between-day data

was not above chance level. This pattern indicated overfitting;

we saw a large loss in model accuracy between classifications

of the training dataset (our control; 61.82%) vs. new brain

activity that were collected on the same day (19.78%), a

substantial loss of about 42% accuracy resulting in only slightly

better than chance performance (14.3%). Previous research has

used the beta/(theta+alpha) ratio as a marker for workload.

However, it should be noted that the ratio, and its variants,

are used in many other studies, such as a marker of Attention

Deficit/Hyperactivity Disorder (ADHD), risk-taking behavior,

or resting, making the literature on it difficult to parse. Hence,

it is not surprising that our results further indicate that a simple
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TABLE 6 A systematic way to test the generalizability of classification models.

Training data # of Classifiers Testing data Total # of Tests

Index Level Day Level Day

1 Individual Day 1 N × F = 220 Individual Day 1 N × F = 220

2 Individual Day 2 N × F = 220 Individual Day 2 N × F = 220

3 Individual Day 1 N × F = 220 Individual Day 2 N × F = 220

4 Individual Day 2 N × F = 220 Individual Day 1 N × F = 220

5 Individual Both N × F = 220 Individual Day 1 N × F = 220

6 Individual Both N × F = 220 Individual Day 2 N × F = 220

7 Individual Both N × F = 220 Individual Both N × F = 220

8 Group Day 1 F = 11 Individual Day 1 N × F = 220

9 Group Day 2 F = 11 Individual Day 2 N × F = 220

10 Group Both F = 11 Individual Day 1 N × F = 220

11 Group Both F = 11 Individual Day 2 N × F = 220

12 Group Both F = 11 Group Day 1 F = 11

13 Group Both F = 11 Group Day 1 F = 11

14 Group Both F = 11 Group Day 1 F = 11

The current research involved Index 1–4 (italicized). The subset of data we used for training and testing was modeled at the individual-level and varied in whether it was randomly drawn

from the Day 1 or Day 2. N = 20 (assuming no participants are excluded), F= number of input neural feature sets (11).

formula that takes the ratio of a few spectral bands cannot

make better than chance level predictions without considering

mediating factors (e.g., age or psychiatric conditions).

The ultimate goal of deploying an AI-enabled system is

to augment, assist, or automate the environment or user in

order to enhance overall HMT performance. We argue that BCI

equipped to assess a psychological construct, such as mental

workload, alone will not provide clear information regarding

how to intervene in the most appropriate way. Further, the

cause of current cognitive state and the decision on how to

best complement the HMT highly depends on the task(s) and

strategy of the user. In designing an AI-enabled system, it

would be useful to not only understand when to intervene (e.g.,

workload is high) but also what task(s) the user is currently

engaging in so that the system may better adapt for the user,

given the context and their focus of attention.

In field applications, one is forced to trade-off between

focusing on model specificity vs. implementation. We explored

this space using one complex and multi-tasking environment,

MAT-B, to offer a general prescriptive set of guidelines for

predicting how many, and which, tasks one is completing at a

given time. We found models trained from device subsets with

fewer electrodes were outperformed by those which included a

higher density array. Models trained using electrodes mapping

to the Emotiv Epoc + system, which included only 14 electrodes,

performed only marginally worse than those trained using

electrodes corresponding to the layout of the Cognionics Quick

Cap 20 (19 electrodes map to the 10-20 system) and the

Emotiv Epoc Flex (32 electrodes). These results may help inform

decisions about what methodological approach to emphasize,

given goals of accuracy, generalizability, and practical feasibility

such as physical constraints of the environment (e.g., in-flight)

or other user equipment (e.g., headphones, helmet).

In our work, most models surpass the chance level for

this 7-classes problem, but one may have a tolerance criterion

for the minimum acceptable model performance. For example,

nearly all models, including the full model, dropped below 30%

accuracy when predicting an individual’s data collected in a

separate session. While it was better than chance, further model

development is required for it to be useful in practice. Our work

serves as a baseline recommendation for which mobile system

may suffice for training a model to make multi-class decisions

given their requirements for model accuracy. Additionally, these

results give a sense of how well model settings can generalize

across days and whether this degree of complexity requires a

multi-dimensional array of electrodes and bandwidths. These

types of investigations can improve our understanding of the

connections between neural classification methods; it can also

improve system design and boost the success rate of choosing the

appropriate classification models to implement in environments

that require mobility and versatility.

4.1. Future research

We formed a relatively comprehensive list of ways to test

the generalizability of classification models (Table 6). For the

research reported here, we choose to focus on models that both

were trained and tested on an individual’s data, for a particular

day (i.e., Index 1 and Index 2) and models that were trained on

an individual’s data, for a particular day and was tested on the

same individual’s data from a different day (i.e., Index 3 and
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Index 4). Note that each of these 4 model types were run for

all subjects (N), 2 demand manipulations, (T) and 11 neural

input feature sets (F); we created and evaluated the performance

of SVMs in 4 of these models. In future research, we plan to

use Table 6 to inform how we may further systematically assess

model generalizability.

Importantly, our exploratory analyzes provided results from

subsets of electrodes from our 64-channel dataset collected

using a Biosemi ActiveTwo system in a controlled experimental

setting. The real word applicability does not depend only on

the number of electrodes of the commercial EEG systems

considered. It also depends on the reliability of the EEG signal

recorded by such devices. Future research should replicate these

analyzes using the commercial device of interest.

Another consideration is that our models were static and

unchanging. We did not incorporate any model learning or

adaptation across time. In future work, we could adapt our

model using new data, as long as those data have a ground-truth

of the correct classification. This would hopefully reduce the

impact of overfitting and hence improve model generalizability.

Repeatedly introducing the model to more sources of noise

may offer a type of learning that is flexible to account for

idiosyncrasies that may be highly characteristic of one’s brain

activity. In turn, these models will more accurately capture true

variation driven by condition (e.g., task type, degree of cognitive

load).

In a similar way, we can train models using the brain activity

of multiple people, variations of broad-level types of tasks (e.g.,

MATB tracking and aircraft simulator), and several different

environmentally imposed constraints (communications in

silence and embeddedwithin cockpit noise). Certainly variations

in neural activity exist as models become more generalized,

and some recent work in this domain shows initial promise

through model transfer to new tasks (Gupta et al., 2021) and

people (Zhou et al., 2022) when classifying a low or high level

of cognitive workload. Understanding which neural features

are consistent and differentiate among several broad-level task

categories will maximize model accuracy in generalizing to

new contexts. In addition, this future work will improve our

theoretical understanding of how neural activity and cognitive

processing may depend on cognitive load and the nature

of the task(s) being performed (e.g., tracking, monitoring,

communications).

5. Conclusions

Our work systematically investigated a major challenge

in neuroergonomics, the ability to assess and predict an

operators activity and workload. Through a carefully controlled

experiment and analytic framework, we identified the extent that

features of neural activity and a machine learning approach may

provide generalizable predictions across multi(task) contexts

and sessions. We trained and tested SVM models using

individual’s neural data to classify the number and type of tasks

being completed. We compared the accuracy of 10 electrode-

frequency bandwidth subsets and nine commercial EEG systems

across three levels of generalizability. We found model accuracy

improved as more features were included and decreased as

a function of generalized predictions (within- followed by

between-session). We found gamma activity performed nearly

as well as a full model, which may in part be attributed to both

its relationship with motor activity and workload demands. In

addition, we found that despite having fewer electrodes some

commercial systems may offer the neural features necessary to

obtain a fairly high level of accuracy compared to a higher

density system. Our research offers a novel and practical

modeling solution to predict task and cognitive load through

brain activity. In addition, we provide estimates for system

designers and researchers to make informed decisions about

if (how) to generalize models of neural activity to predict

(multi)task and cognitive workload.
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