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As a measure of the brain’s electrical activity, electroencephalography (EEG) is the

primary signal of interest for brain-computer-interfaces (BCI). BCIs offer a communication

pathway between a brain and an external device, translating thought into action with

suitable processing. EEG data is the most common signal source for such technologies.

However, artefacts induced in BCIs in the real-world context can severely degrade their

performance relative to their in-laboratory performance. In most cases, the recorded

signals are so heavily corrupted by noise that they are unusable and restrict BCI’s broader

applicability. To realise the use of portable BCIs capable of high-quality performance

in a real-world setting, we use Generative Adversarial Networks (GANs) that can

adopt both supervised and unsupervised learning approaches. Although our approach

is supervised, the same model can be used for unsupervised tasks such as data

augmentation/imputation in the low resource setting. Exploiting recent advancements in

Generative Adversarial Networks (GAN), we construct a pipeline capable of denoising

artefacts from EEG time series data. In the case of denoising data, it maps noisy

EEG signals to clean EEG signals, given the nature of the respective artefact. We

demonstrate the capability of our network on a toy dataset and a benchmark EEG

dataset developed explicitly for deep learning denoising techniques. Our datasets consist

of an artificially added mains noise (50/60 Hz) artefact dataset and an open-source EEG

benchmark dataset with two artificially added artefacts. Artificially inducing myogenic

and ocular artefacts for the benchmark dataset allows us to present qualitative and

quantitative evidence of the GANs denoising capabilities and rank it among the current

gold standard deep learning EEG denoising techniques. We show the power spectral

density (PSD), signal-to-noise ratio (SNR), and other classical time series similarity

measures for quantitative metrics and compare our model to those previously used in

the literature. To our knowledge, this framework is the first example of a GAN capable of

EEG artefact removal and generalisable to more than one artefact type. Our model has
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provided a competitive performance in advancing the state-of-the-art deep learning EEG

denoising techniques. Furthermore, given the integration of AI into wearable technology,

our method would allow for portable EEG devices with less noisy and more stable brain

signals.

Keywords: EEG, denoising, GAN, BCI, time series

1. INTRODUCTION

Electroencephalography (EEG) is a method of measuring the
electrical activity of the brain. It is a non-invasive procedure
that obtains measurements via several electrodes placed on the
scalp of the patient. See Figure 1 for an example of clean
EEG. EEG has become an essential tool for practitioners in
diagnosing abnormal brain activity and neurological conditions
such as epilepsy. A recurring issue with EEG readings is that
they can be heavily corrupted with artefacts induced frommuscle
movements, electrical interference or loose electrodes, to name
a few. These artefacts make classification and, consequently,
diagnosis of neurological conditions a bottleneck. As a result,
denoising EEG has become an extensive area of research in the
biomedical signal processing domain (Anderer et al., 1999; Jiang
et al., 2019).

Electrooculographic (EOG) and electromyographic (EMG)
signals are among the most common sources of noise in the EEG,
as mentioned previously. EOG originates from eye movements,
such as blinking and rolling, whereas EMG originates from
movements of the surrounding muscles. These artefacts are
highly prevalent because it is next to impossible to prevent
blinking of the eye and twitching of surrounding muscle groups.
As a result of these artefacts ubiquity in EEG signals, it
becomes apparentthat there is a need to estimate these noisy
signals accurately and remove them to obtain a high-resolution
EEG signal upon which fast and accurate diagnosis can be
performed.

There have been several methods used in the past to
denoise EEG signals. For example, Salis et al. (2013) implement
a comparative study of Empirical Mode Decomposition
(EMD), Discrete Wavelet Transform (DWT) and Kalman
Filter (KF) in an attempt to remove EOG artefacts with
different amplitudes from EEG. However, more recent
developments have focused on deep-learning to denoise
EEG signals, such as Zhang et al. (2021b), who denoise
EOG and EMG artefacts using a novel deep-learning-based
architecture.

In this work, we present our EEG denoising pipeline
based on our Generative Adversarial Network (GAN).
We use two datasets to demonstrate the capability of
our system. One dataset consists of EEG signals collected
using the ANT Neuro eego sports. The other EEG data
is the benchmark dataset EEGdenoiseNet presented in
Zhang et al. (2021b). We show both the power spectral
density (PSD), signal-to-noise ratio (SNR) along with other
classical time series similarity measures for quantitative
metrics and compare our framework to the benchmark in the
literature.

We demonstrate our competitive deep learning technique
capable of denoising common artefacts induced in EEG data.
Through SNR and other signal evaluation measures, we show the
GAN is capable of high-quality denoising that outperforms the
current deep learning benchmarks. The following experiments
illustrate the potential for use in the brain-computer-interface
(BCI) setting.

2. RELATED WORK

GANs were initially developed for image generation and
improved image synthesis. Although this has gained a lot of
traction over recent years, there has been a movement towards
implementing GANs for sequence and time series generation,
imputation and augmentation; Brophy et al. (2021). In this work,
we employ GANs to denoise common EEG artefacts experienced
in BCIs.

GANs have been used for EEG generation, and augmentation,
as in Palazzo et al. (2017), Hartmann et al. (2018), Corley
and Huang (2018), Luo and Lu (2018), Fahimi et al. (2019),
and Fahimi et al. (2021). However, few works have explored
GANs for denoising time series, particularly where EEG data
is concerned.

Gandhi et al. (2018) designed Asymmetric-GANs for
denoising EEG time series data. Their model for denoising time
series is trained using unpaired training corpora and does not
need information about the noise source. Sumiya et al. (2019)
denoise mice EEG using adversarial training. Their training
process requires a set of noisy signals and clear signals. Although
these methods reduce the noise present in the EEG signals, they
do not provide specific artefact removal nor solid quantitative
evidence of the improvement in the SNR. We improve on this
by showcasing GANs as a robust artefact removal/denoising tool
via the benchmarking experiments and demonstrate both strong
qualitative and, more importantly, quantitative evidence that our
GAN is a competitive performer in improving the state-of-the-art
denoising methods for EEG artefacts.

Other deep learning methods such as Convolutional Neural
Networks (CNNs) and Variational Autoencoders (VAEs) have
been used in the past to effectively denoise EEG signals (Hwaidi
and Chen, 2021; Zhang et al., 2021a). We demonstrate that
the GAN developed in this work is competitive with the state-
of-the-art deep learning methods. Many methods proposed
in the literature deal with only one artefact type with each
architecture. Our model is generalisable to each of the three
artefacts explored in this paper; in other words, the same
architecture can be retrained to remove more than one artefact
type effectively.
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3. GENERATIVE ADVERSARIAL
NETWORKS

GANs belong to the family of generative models and are an
alternative method of generating synthetic data that do not
require domain expertise. They were conceived in the paper by
Goodfellow et al. (2014), where amulti-layer perceptron was used
for both the discriminator and the generator. The discriminator
and generator are typically two neural networks (NN) that are
locked in a mini-max game defined by the objective function
in Equation (1) where the generator attempts to maximise the
failure rate of the discriminator, and the discriminator aims to
identify real samples from generated samples, see Figure 2. GANs
are most typically used for generating previously unseen data,
whether to augment existing datasets or to preserve the privacy
of the training data.

min
G

max
D

V(G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1− D(G(z)))] (1)

4. MATERIALS AND METHODS

We implement our GAN that has demonstrated its ability to
map from noisy to clean time series modalities. In this work, we
use the model as mentioned earlier to learn the noise mapping
between our signal pairs and generate clean, denoised EEG data
from a noisy EEG signal. Rather than sampling from a latent
space for the generator, as is common practice with GANs, we
sample the input to the generator from the noisy EEG training
data and compare it to the corresponding clean EEG signal in
the discriminator. Furthermore, we train this model to denoise
a noisy EEG signal segment to its clean or noise-reduced EEG

FIGURE 1 | Typical example of clean EEG.

FIGURE 2 | Architecture of the GAN. Noisy EEG to clean EEG.
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FIGURE 3 | Examples of both EOG and EMG artefacts that have been artificially added to the dataset.

version, which can then be used for further testing and analysis
in the BCI environment. Details of our method can be found in
the section that follows. See Figure 2 for the architecture of our
model.

4.1. Computing Platform
The experiments for this project were run on an Nvidia Titan
Xp with PyTorch and Google Colaboratory to make the project
readily deployable. The experiments are available online1.

4.2. Datasets
Two open-source datasets were used in this experiment. The first
dataset of EEG signals was downloaded from PhysioNet (Schalk
et al., 2004; Goldberger et al., 2000). For this dataset, subjects
performed different motor/imagery tasks while 64-channel EEG
was recorded using the BCI2000 system2 and sampled at 160
Hz. Each subject performed 14 experimental runs: two 1-min
baseline runs (one with eyes open, one with eyes closed) and
three 2-min runs of four motor movement and imagery tasks.We
used the baseline eyes open recordings only from this dataset and
artificially added mains noise at 50 Hz. The data preprocessing
steps for this toy experiment are described in further detail in
section 4.4. We refer to this dataset as EEG-50 for the remainder
of this work.

Our second dataset used is the EEGdenoiseNet, a benchmark
EEG dataset designed to be implemented with deep learning-
based denoising technologies. We use this dataset to act as a
performance comparison of our GAN to the models tested in
the data collection paper, and we further benchmark our GAN

1GitHub Repository: https://github.com/Brophy-E/DenoiseEEG-GAN
2http://www.bci2000.org

model against other deep-learning EEG denoising architectures
previously used in the literature. EEGdenoiseNet contains a
total of 13,512 physiological signal segments. Of that, 4,514
records are clean EEG, 3,400 are ocular artefact records, and
5,598 are muscular artefact records. This allows the dataset user
to synthesise artificial EOG and EMG artefacts into the clean
EEG records, resulting in contaminated EEG segments with the
ground truth clean EEG. The EOG data was sampled at 256 Hz,
and the EMGdata was sampled at 512Hz. The data preprocessing
steps are described in detail in section 4.4. Examples of both EOG
and EMG artefacts can be seen in Figure 3.

4.3. Model
The GANmodel maps from a noisy time series to a denoised time
series, and in this use case, we use it to learn the noise model of
the artefact and denoise the EEG signal. We define the generators
and discriminators of our GAN as follows. The generator is a
two-layer stacked long short-termmemory network (LSTM)with
50 hidden units in each layer and a fully connected layer at the
output, see Figure 4. The input size is 640 sample points for the
EEG-50, 512 sample points for the EEG-EOG and 1,024 sample
points for the EEG-EMG datasets. The discriminator is a 4-layer
1-dimensional CNN with a fully connected layer and sigmoid
activation function at the output, see Figure 4.

4.4. Training
4.4.1. Toy Data Processing
This dataset uses only the resting, eyes open EEG records from
the eegmmidb database available on PhysioNet. The dataset is
digitised initially at 160 Hz. We segment each EEG record into
4 s long intervals with an overlapping sliding window of 2 s.
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FIGURE 4 | Detailed architecture of generator (left) which is a two-layer stacked LSTM with 50 hidden units in each layer and a fully connected layer at the output,

with an input size varied to match the segment length for the chosen dataset. Architecture of discriminator (right) which is a 4-layer 1-dimensional CNN (ReLU

activation and max pooling functions) with a fully connected layer and sigmoid activation function at the output.

This yields 12200 EEG records which then have a noisy sinewave
of varying amplitudes centred around 50 Hz added to the clean
EEG signal. As a result of this, we then have the corresponding
clean and noisy signal pairs. The dataset is then normalised before
training.

4.4.2. EEGdenoiseNet Data Processing
The EEGdenoiseNet datasets use the same training setup as
described in the original paper. First, the noisy EEG segments are
created by linearly mixing the clean EEG segments with the EOG
and EMG artefacts according to Equation (2):

y = x+ λ · n (2)

where x is the clean EEG signals, n is the artefact (either EOG or
EMG), and λ is a hyperparameter that controls the SNR levels of
the noisy EEG signal y.

The contaminated signals are from a combination of EEG
segments and ocular or myogenic artefact segments, with 80%
for generating the training set and 20% for generating the
test set. Each set was generated by randomly linearly mixing
EEG segments and EMG or EOG artefact segments according
(Equation 2), with SNR ranging from ten different SNR levels
(–14, –12, –10, –8, –6, –4, –2, 0, 2, and 4dB) rather than the 10
levels of (–7, –6, –5, –4, –3, –2, –1, 0, 1, and 2dB) in Zhang et al.
(2021b). This procedure expanded each dataset to ten times its
original size. The clean EEG records act as ground truth, and the
corresponding mixed records are the noisy EEG.

4.4.3. Objective Function
The loss function of our GAN framework is calculated as in
Equations (3) and (4). Here, a is the label for the generated
samples, b is the label for the real samples, and c is the

hyperparameter that G wants D to recognise the generated
samples as real samples.

min
D

VLSGAN(D) = 1/2 ∗ Ex∼pdata(x)[(D(x)− b)2]

+ 1/2 ∗ Ez∼pz(z)[(D(G(z))− a)2] (3)

min
G

VLSGAN(G) = 1/2 ∗ Ez∼pz(z)[(D(G(z))− c)2] (4)

4.5. Evaluation
To quantitatively evaluate our denoised data, we look at the
SNR vs. relative root mean squared error (RRMSE), Pearson’s
correlation coefficient (CC) and the power ratios of the associated
EEG bands across the signals. We also qualitatively evaluate our
results through a visual inspection in both the time series domain
and the frequency domain via the PSD of the EEG.

We use SNR to compare the level of the desired EEG signal
to the level of noise/artefact present in the signal. The formula
for SNR is given as in Equation (5), again, where x is the EEG
signal of interest, n is the artefact, and λ is the hyperparameter
that controls the SNR.

SNR = 10 ∗ log10
RMS(x)

RMS(λ · n)
(5)

The Root Mean Square (RMS) of a signal is given in Equation (6).
N is defined as the number of samples in the EEG signal segment
a, and ai denotes the ith sample in the EEG signal. N = 512 and
1, 024 for the EOG and EMG signals, respectively.
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RMS(x) =

√

√

√

√

1

N

N
∑

i=1

a2i (6)

RRMSE is given in Equation (7) for the temporal/time domain
and in Equation (8) for the frequency/spectral domain. f (y) is the
noisy signal passed through our model; in our case, it becomes
the denoised signal generated by the GAN. We calculate the PSD
using the FFT-length equal to the total length of the EEG input
segment with a Hanning window.

RRMSEtemporal =
RMS(f (y)− x)

RMS(x)
(7)

RRMSEspectral =
RMS(PSD(f (y))− PSD(x))

RMS(PSD(x))
(8)

Pearson’s correlation coefficient is shown in Equation (9), where
Cov is the covariance and Var is the variance of the signals f (y)
and x.

CC =
Cov(f (y), x)

√

Var(f (y))Var(x)
(9)

5. RESULTS

5.1. EEGdenoiseNet Experiment
In this section, we showcase our model’s performance on
the EEGdenoiseNet dataset. We present both quantitative and
qualitative evidence of our methods competitive performance
against the benchmark established in the original paper. A
qualitative example of high-fidelity denoised EEG for our GAN
model is presented in Figure 5. For visualisation purposes,
an offset is artificially introduced to the ground truth and
denoised EEG signals. Further examples of denoised EEG with

the corresponding noisy EEG and ground truth can be found in
the Supplementary Material.

In keeping with the benchmark evaluation metrics we present
the RRMSEtemporal, RRMSEspectral and CC graphs at all our SNR
levels. It should be noted that the performance of our model
outperforms the other models in the benchmark experiment,
we also provide results from deep learning models that have
been implemented in the literature as a comparison to our
GAN. For all SNR levels, our GAN performs extremely well,
see section 5.1.1 for further details. The graphs in Figure 6

correspond to the denoised EEG signal in Figure 5 (left).
Similarly, the graphs in Figure 7 correspond to the denoised
EEG signal in Figure 5 (right). For both EOG and EMG
our model outperforms the benchmarks across RRMSEtemporal,
RRMSEspectral and CC. In general, the denoising capability of our
model improves as the SNR improves. The CC for the EEG-EMG
experiment does increase as the SNR improves, however, this is
one of the few metrics that needs further experimentation on to
improve.

We present a final metric to evaluate our denoising model
quantitatively, and it is the power present in the different
EEG bands. Figure 8 and Table 1 are the corresponding PSD
and power band ratios for the EEG signals shown in Figure 5

(left), respectively. It can be seen that the high power low-
frequency components in the delta band are present in the
EOG contaminated signal are removed from the denoised signal.
We present results for the noisy EEG at −14dB as this can
be considered the worst-case scenario for the denoising GAN
model. As can be observed, the model effectively removes the
EOG artefacts in the contaminated data.

Likewise, Figure 9 and Table 2 are the PSD and power band
ratios that corresponds to the EEG signals in Figure 5 (right).
Again, it is apparent that the high-frequency noise in the beta
and gamma bands present in the EMG contaminated EEG is
suppressed in the denoised signal. For both EOG and EMG
datasets, the power across the denoised EEG frequency bands is
recovered in the denoised signal.

FIGURE 5 | Example of denoised time series EEG corrupted with (left) EOG artefact and (right) EMG artefact. The signals contain an artificial offset for visualisation

purposes.
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FIGURE 6 | Metrics of the EEG-EOG signals shown in Figure 5 (left).

FIGURE 7 | Metrics of the EEG-EMG signals shown in Figure 5 (right).

FIGURE 8 | PSD of the EEG-EOG signals shown in Figure 5 (left) with corresponding EEG bands.
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5.1.1. Benchmarking Deep Learning Models
It is important to frame our model in the context of other deep
learning frameworks, and as such, we benchmark our model
against neural networks that have been used successfully in the
past to denoise EEG data. We implemented various CNNs, VAEs
and Convolutional Autoencoders (CAEs) with the same training
process as the GAN and 5-fold cross-validation. As GANs are not
intuitive, the training and validation losses can be misleading.
Still, it is worth monitoring the losses for convergence between
the discriminator and generator as the original concept is a
zero-sum game between the two NNs. Rather than observing
a validation loss, it is better practice to quantitatively and
qualitatively evaluate the data generated by the GAN.

We compare each NN models’ denoised signals to the ground
truth. The comparison we present is the ability of each model
to preserve the power ratios across the various EEG frequency
bands.We compute the cosine similarity of the power ratio across
the frequency bands between the denoised and ground truth at
the -14dB level, as can be seen in Table 3.

Ranking the DL-models in terms of the EEG frequency
preservation across bands shows that the GAN outperforms the
other models.

To truly demonstrate the usefulness of deep learning models,
it should be shown that the denoising method can improve
downstream tasks. However, we cannot readily apply this dataset
to a classification task with this dataset. Instead, to demonstrate
the effectiveness of the denoised data, we trained a classifier to

TABLE 1 | Power ratios of different frequency bands before and after EOG

artefact removal.

Denoising method Delta Theta Alpha Beta Gamma

GAN (-14dB) 0.3020 0.4091 0.1647 0.1023 0.0217

Ground truth 0.2769 0.4299 0.1349 0.1158 0.0424

Contaminated signal (-14dB) 0.7999 0.1280 0.0319 0.0289 0.0113

distinguish between the original ground truth data and noisy
data. Following this, we test the trained classifier on the ground
truth vs. noisy data and then again on the denoised data vs noisy
data. Finally, we compare the F1-score of both classifiers. The F1-
score of the original ground truth data is 0.8987, with an accuracy
of 88.75%. Whereas, when using the denoised data, the F1-score
reduces to 0.7799 and accuracy of 77.94%.

5.2. Toy Experiment
Here we present brief examples of the GAN’s performance on
the toy EEG-50 dataset. Further examples of the results from
this experiment can be found in the Supplementary Material.
Examples of the denoised time series EEG signal can be seen in
Figure 10.

Similar to the EEGdenoiseNet example, we demonstrate the
performance of our model at removing the 50 Hz noise through

TABLE 2 | Power ratios of different frequency bands before and after EMG

artefact removal.

Denoising method Delta Theta Alpha Beta Gamma

GAN (–14dB) 0.6528 0.2243 0.0299 0.0908 0.0023

Ground truth 0.6458 0.2213 0.0658 0.0671 1.19e-10

Contaminated signal (–14dB) 0.0612 0.0471 0.0796 0.2981 0.5140

TABLE 3 | Co-sine similarity score of the different frequency bands after artifact

removal (to ground truth).

Denoising model EOG-Score EMG-score

GAN 0.995 0.998

SimpleCNN 0.985 0.9766

C-VAE 0.982 0.9916

CAE 0.819 0.9202

Novel-CNN 0.793 0.9914

FIGURE 9 | PSD of the EEG-EMG signals shown in Figure 5 (right) with corresponding EEG bands.
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FIGURE 10 | Example of denoised time series EEG corrupted with 50 Hz mains noise. The signals contain an artificial offset for visualisation purposes. Note the

appearance of an ocular artefact in both examples.

FIGURE 11 | PSD of the EEG-50 signals shown in Figure 10 (right) with corresponding EEG bands.

the use of metrics. As this dataset was not divided into SNR
levels we return one set of values for the metrics and they are
as follows; RRMSEtemporal = 0.05, RRMSEspectral = 0.1 and
CC = 0.89. These metrics show that our model is more than
capable of learning the noise model between our signal pairs.

Again, to quantitatively evaluate our denoising model, we
illustrate the power present in the different EEG bands of our
signals. Figure 11 and Table 4 are the corresponding PSD and
power band ratios for the EEG signals shown in Figure 10 (left),
respectively. It can be seen that the high power high-frequency
components, centred around 50 Hz in the gamma band, is
present in the contaminated signal and is heavily suppressed in
the denoised signal. Once again, the model effectively reduces the
mains noise artefacts in the contaminated data.

6. DISCUSSION AND CONCLUSION

In this work, we have introduced a novel deep learning
framework capable of denoising and evaluating EEG data. In

TABLE 4 | Power ratios of different frequency bands before and after 50 Hz noise

removal.

Denoising method Delta Theta Alpha Beta Gamma

GAN 0.6528 0.2243 0.0299 0.0908 0.0023

Ground truth 0.6046 0.2212 0.0658 0.0671 1.19e-10

Contaminated signal 0.0612 0.0472 0.0796 0.2981 0.5140

addition, we have presented our qualitative and quantitative
analysis that demonstrated that our model outperforms the
benchmarks on many of the metrics provided in the original
paper. Thus, we build on and contribute to the initial experiments
and show that our model is currently state-of-the-art in this deep
learning-based EEG denoising experiment.

To demonstrate the full capability of these models and that
they have not overfitted to their respective datasets, we pass
a signal with both 50 Hz noise and EOG artefact through
our models. This signal is taken from the eegmidb dataset
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FIGURE 12 | Denoised EEG signals following 50 Hz and EOG artefact removals.

that has a natural ocular artefact introduced from the subject.
We then artificially introduce 50 Hz noise to the signal.
This corrupted EEG signal is then denoised using the EEG-
50 model, the output of which is then resampled and passed
through the EEG-EOG model. Two examples of EEG signals
at each stage of the denoising process are shown below in
Figure 12.

GANs can be implemented as supervised and unsupervised
learning methods making them ideal for portable physiological
monitoring systems. Furthermore, with the integration of
AI systems into wearable technologies, our framework lays
the foundation for continuous, portable and remote EEG
and BCI devices with less noisy and more stable brain
signals. Using these methods to produce high fidelity and
reliable EEG data may be a solution for clinicians to
remotely and accurately monitor patients’ brain activities
states.
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