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Psilocybin (a serotonin 2A, or 5-HT2A, receptor agonist) has shown preliminary efficacy

as a treatment for mood and substance use disorders. The current report utilized

positron emission tomography (PET) with the selective 5-HT2A receptor inverse agonist

radioligand [11C]MDL 100,907 (a.k.a. M100,907) and cortical regions of interest (ROIs)

derived from resting-state functional connectivity-based brain parcellations in 4 healthy

volunteers (2 females) to determine regional occupancy/target engagement of 5-HT2A
receptors after oral administration of a psychoactive dose of psilocybin (10 mg/70 kg).

Average 5-HT2A receptor occupancy across all ROIs was 39.5% (± 10.9% SD). Three

of the ROIs with greatest occupancy (between 63.12 and 74.72% occupancy) were

within the default mode network (subgenual anterior cingulate and bilateral angular

gyri). However, marked individual variability in regional occupancy was observed across

individuals. These data support further investigation of the relationship between individual

differences in the acute and enduring effects of psilocybin and the degree of regional

5-HT2A receptor occupancy.

Keywords: psychedelics, neuropsychopharmacology, psilocybin, PET, fMRI, resting state, receptor occupancy,

MDL 100,907

INTRODUCTION

Psilocybin is a psychedelic drug that has shown preliminary efficacy as a treatment for depression
and anxiety (Carhart-Harris et al., 2016a, 2021; Griffiths et al., 2016; Ross et al., 2016; Davis et al.,
2021) as well as substance use disorders (Johnson et al., 2014, 2017; Bogenschutz et al., 2015).
However, there is a high degree of between-subject variability in the subjective effects occasioned by
psilocybin and other psychedelic drugs. For instance, individuals vary in the degree to which they
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encounter peak or mystical experiences during the acute effects
of psilocybin (Griffiths et al., 2011; Barrett et al., 2015; Barrett
and Griffiths, 2017), and a modest percentage of individuals
experience fear and anxiety during the acute effects of psilocybin
(Griffiths et al., 2006, 2011; Studerus et al., 2011). Also, the
degree of observed treatment response after psilocybin therapy
(including one to three doses of psilocybin) can vary widely
between patients with mood disorders (e.g., Carhart-Harris et al.,
2016a,b).

A number of recent functional magnetic resonance imaging
(fMRI) studies have shown that individual differences in
acute subjective effects of psychedelics, such as visual imagery
(Carhart-Harris et al., 2016b; Kaelen et al., 2016) and degree of
peak experiences described as “ego-dissolution” (Carhart-Harris
et al., 2014) tend to covary with individual differences in regional
brain activity and connectivity. Preliminary evidence suggests
that behavioral outcomes of psychedelic experience (Sampedro
et al., 2017) and clinical outcomes from psychedelic therapy
(Carhart-Harris et al., 2017; Roseman et al., 2017; Mertens et al.,
2020) may also be associated with changes in regional brain
activity and connectivity that persist after acute drug effects
have subsided. While these studies are critical to understanding
the underlying neurobiology of psychedelic experiences, they
are limited in terms of identifying the mechanisms that
determine individual differences in these experiences. For
instance, although acute alteration of visual system activity may
cause hallucinations (Kometer and Vollenweider, 2018), this
activity does not explain why this might happen to a different
degree in different individuals.

The primary molecular mechanism of action of psychedelics,
such as psilocin (the active metabolite of psilocybin), is
understood from preclinical literature to be 5-HT2A receptor
agonism (Halberstadt, 2015; Nichols, 2016). Human behavioral
(Vollenweider et al., 1998; Carter et al., 2005, 2007; Quednow
et al., 2012; Kraehenmann et al., 2017) and neuroimaging
(Kometer et al., 2012, 2013; Preller et al., 2016, 2017; Barrett
et al., 2017) studies using antagonist challenges with ketanserin
(a 5-HT2A/2C antagonist) support a necessary role of the 5-
HT2A (and potentially 5-HT2C) receptor in the acute subjective,
cognitive, and neural effects of psilocybin and other such
as LSD. Recent molecular imaging with positron emission
tomography and the 5-HT2A partial agonist ligand CIMBI-
36 have demonstrated an association between plasma psilocin
levels, neocortical 5-HT2A occupancy, and subjective effects of
psilocybin (Madsen et al., 2019). 5-HT2A gene expression maps
have been associated with psilocybin-induced changes in global
connectivity of sensorimotor cortical regions (Preller et al.,
2020), and degree of overall neocortical 5-HT2A occupancy has
been associated with duration of psychedelic effects as well
as magnitude of mystical experience scores (Stenbæk et al.,
2021). However, the regional distribution and degree of 5-HT2A

receptor occupancy by psychedelics has yet to be demonstrated
in humans, with previous studies reporting whole-neocortex
5-HT2A binding (Madsen et al., 2019; Stenbæk et al., 2021).

The current open-label pilot study used positron emission
tomography (PET) with the radiotracer [11C]MDL 100,907
(a.k.a. M 100,907) to determine the regional occupancy of

5-HT2A receptors in the human brain after oral administration
of psilocybin (10 mg/70 kg). [11C]MDL 100,907 is an inverse
agonist (Weiner et al., 2001; Aloyo et al., 2009) that binds to
5-HT2A receptors in a wide range of cortical and subcortical
regions (Lundkvist et al., 1996; Gründer et al., 1997; López-
Giménez et al., 1998; Hall et al., 2000; Kakiuchi et al., 2000; Talvik-
Lotfi et al., 2000; Wong et al., 2008; Zhou et al., 2010), exhibits
favorable test-retest reliability of 7-11% difference between tests
(Talbot et al., 2012), is not significantly affected by changes in
endogenous serotonin (Talbot et al., 2012), and is highly selective
for the 5-HT2A receptor (Johnson et al., 1996), with greater
affinity and specificity than 5-HT2A receptor antagonist ligands
(including the widely used ketanserin and altanserin) (López-
Giménez et al., 1997, 1998).

This pilot study was conducted to test the hypothesis that
[11C]MDL 100,907 binding to 5-HT2A receptors will decrease
after oral administration of psilocybin in a broad range of cortical
regions, including default mode network, primary sensory, and
attention regions that were shown to have altered activity and
functional connectivity in fMRI studies of classic hallucinogens
(Carhart-Harris et al., 2012, 2014, 2016b; Barrett et al., 2017;
Preller et al., 2017, 2020; Sampedro et al., 2017; Müller et al.,
2018; Schmidt et al., 2018; Mason et al., 2020). This binding
decrease is interpreted as 5-HT2A receptor occupancy by psilocin,
the active metabolite of psilocybin. 5-HT2A receptor occupancy
was estimated in ROIs derived using a data-driven approach
(Craddock et al., 2012) from resting-state functional connectivity
data that were measured in each of the study volunteers before
PET or drug administration procedures were performed. This
approach generates a study-specific brain parcellation with ROIs
that show functional homogeneity, and allows for interrogation
of 5-HT2A receptor occupancy in volunteer-specific ROIs that
are relevant in light of the growing literature showing regional
differences in brain activity and connectivity during the acute
and also enduring/post-acute effects of psilocybin and other
psychedelic drugs.

METHODS

Participants
The current study enrolled six healthy individuals, each with
at least 25 lifetime exposures to a classic (5-HT2A agonist)
psychedelic drug. Two individuals (one female, one male)
dropped out before any PET or drug administration procedures.
The remaining four volunteers (2M/2F; mean age = 28 [27-
30], all Caucasian) completed all study procedures. Volunteers
were recruited from those who completed a comparative
pharmacology study of the behavioral and cognitive effects
of three oral doses of psilocybin (10, 20, and 30 mg/70 kg)
and one oral dose of dextromethorphan (400 mg/70 kg) under
blinded conditions (Barrett et al., 2018; Carbonaro et al., 2018).
At least one month elapsed between final psychoactive drug
administration in the parent study and the beginning of the
current study, and thus there was no risk of carry-over of drug
effects from the parent study to the current study, as the half-
lives of psilocybin and dextromethorphan are roughly 2–4 h.
All volunteers underwent medical and psychiatric screening,
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including physical examination, electrocardiogram, routine
medical blood tests, and the Structured Clinical Interview for
Diagnosis (SCID-IV) (First et al., 1997) before the current study.
Individuals were excluded from participation if they had a history
of substance dependence according to DSM-IV-TR criteria
(excluding nicotine and caffeine), were pregnant or nursing,
had a current significant medical condition, had a current
DSM-IV Axis-I disorder, had a personal or immediate family
history of schizophrenia, bipolar affective disorder, delusional
disorder, paranoid disorder, or schizoaffective disorder, were
taking any centrally-acting serotonergic drug, or antidepressant
or antipsychotic medication, had not well-tolerated psilocybin
administration in the parent trial (Carbonaro et al., 2018),
met exclusionary criteria for MRI or PET (including implanted
medical devices that are contraindicated for MRI, claustrophobia
incompatible with MRI or PET procedures, and current-year
radiation exposure that, coupled with study procedures, would
exceed safe limits), were pregnant, nursing, or were positive
for drugs of abuse (including alcohol). Written informed
consent was obtained according to procedures established by the
Institutional Review Board and the Radioactive Drug Research
Committee (RDRC) of the Johns Hopkins University School
of Medicine.

Procedures
Prior to the current study, and consistent with guidelines for the
safe administration of hallucinogen drugs in research (Johnson
et al., 2008), participants had established good rapport with
two study team members who served as monitors for all five
experimental drug administration sessions in the parent study
(Carbonaro et al., 2018). During the initial consent process
for the current study, volunteers were informed that they had
received a 10mg/70 kg dose of psilocybin in the parent study, and
they would receive that dose of psilocybin again in the current
study. Volunteers also reviewed the subjective reports that they
had provided of their experience with the 10 mg/70 kg dose
of psilocybin in the parent study. This was done to orient the
volunteer to the strength and character of drug effect that they
might reasonably expect to experience in the current study.

Volunteers completed anMRI scan to obtain a structural brain
image for use as a screening tool to identify and exclude those
with significant structural abnormalities, and to aid in PET image
registration. Participants also completed resting-state functional
MRI that was used for group-specific brain parcellation. A
baseline (pre-treatment) PET scan with [11C] MDL 100,907 was
completed at least two days before the blocking scan (a PET
scan after pretreatment with psilocybin). At least one of the
participant’s monitors from the parent study was present during
all procedures in the current study. Participants were instructed
to consume a low-fat breakfast and their usual amount of caffeine
before arriving at the laboratory on the morning of the psilocybin
administration, and they were told to refrain from using any
drugs while enrolled in the study. Before the baseline and
blocking PET scans, all participants underwent a brief physical
examination, and urine was tested for a panel of commonly
abused drugs and for pregnancy in female participants. Negative
results were required to proceed. During PET scan, participants

were instructed to turn their attention inward while listening to
a standard playlist of music that has been provided in previous
studies (Griffiths et al., 2006, 2011, 2016, 2018; Johnson et al.,
2014; Carbonaro et al., 2018; Barrett et al., 2020; Davis et al.,
2021). During PET scans, participants were in continuous contact
with study staff, including a monitor from their experimental
sessions in the parent study. Participants were administered a
10 mg/70 kg body weight oral dose of psilocybin 80min before
radiotracer injection for the blocking scan, in order to assess
psilocybin binding proximate in time to the estimated Cmax

(Passie et al., 2002; Brown et al., 2017).

MRI Acquisition and Preprocessing
A high-resolution structural image (MPRAGE; 1mm slice
thickness) and resting-state blood-oxygenation level-dependent
data (180 volumes of two-dimensional echo-planar imaging
sequences, or EPIs; 3 x 3mm in-plane resolution, 3mm slice
thickness, 1mm gap, 30 slices, TR = 2.46 s, total scan time
= 7min 22 s) were collected for each participant using a 3T
Siemens Skyra whole-body scanner with a 32-channel head coil
at the Center for Translational Molecular Imaging of the Johns
Hopkins University School of Medicine. The MPRAGE was
segmented into gray matter, white matter, and cerebrospinal
fluid (CSF) masks, and then normalized to the MNI152 template
through indirect normalization, which implements non-linear
registration through registration of gray-matter masks to a
tissue probability map for the MNI152 template (Ashburner
and Friston, 2005). Resting state data were preprocessed with
slice timing correction, motion correction, co-registration to the
MPRAGE image, MPRAGE normalization to the MNI template
using the normalized mutual information algorithm (Ashburner
and Friston, 2005), propagation of MPRAGE normalization
parameters to co-registered resting-state images, smoothing with
a 6mm full-width at half maximum (FWHM) kernel, motion
scrubbing (Power et al., 2012), linear detrending, regression of
nuisance variables including motion (6 motion parameters) as
well as the first five principle components of average signal
from ventricles and white matter (Behzadi et al., 2007), and
band-pass filtering between 0.008 and 0.09Hz. Preprocessing
was conducted using Statistical Parametric Mapping version
12 (SPM12; http://www.fil.ion.ucl.ac.uk/spm), custom scripts in
MATLAB (The MathWorks Inc.), and publicly available scripts
from the Cognitive Affective Neuroscience Laboratory at the
University of Colorado, Boulder (http://github.com/canlab).

Preprocessed resting-state data were clustered into 200
parcels, or regions of interest (ROIs), using spectral clustering
of the average (Fisher-transformed, averaged across-subjects)
between-voxel graymatter Pearson correlationmatrix (Craddock
et al., 2012). These ROIs were then used for PET ROI analysis.

PET Acquisition, Preprocessing, and
Quantification
PET scans were acquired in the Russell H. Morgan Department
of Radiology, Johns Hopkins Hospital, using a GE Advance PET
scanner. A thermoplastic mask was modeled to each participant’s
face and used to reduce head motion during the PET study.
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TABLE 1 | Baseline binding potential and occupancy by psilocybin of 5-HT2A receptors in each region of interest for each subject.

5-HT2A Receptor Binding Potential 5-HT2A Receptor Occupancy (%)

(BPND) at Baseline by Psilocybin

ROIs S1 S2 S3 S4 Mean S1 S2 S3 S4 Mean

l angular gyrus 0.79 0.84 3.42 3.94 2.25 85.34 74.57 90.51 48.46 74.72

l intraparietal sulcus 0.84 1.05 2.56 2.50 1.74 77.22 63.94 82.71 59.99 70.97

r angular gyrus 0.82 1.32 2.56 2.97 1.92 61.88 65.53 83.98 70.52 70.47

superior parietal gyrus 0.82 0.66 1.79 2.34 1.40 72.57 49.38 81.95 70.14 68.51

l precentral gyrus 0.77 0.59 2.47 2.17 1.50 80.61 61.62 79.99 51.34 68.39

r intraparietal sulcus 0.74 1.30 2.19 2.23 1.61 72.12 59.76 70.93 60.90 65.93

sgACC 1.00 1.21 2.25 2.50 1.74 73.25 62.10 77.02 40.10 63.12

r postcentral gyrus 0.90 0.94 1.36 1.47 1.17 71.15 39.53 67.22 65.07 60.74

l posterior SFG 1.06 0.94 2.01 3.36 1.84 76.95 43.10 75.84 46.16 60.51

l postcentral gyrus 0.81 1.12 2.02 1.92 1.47 61.20 56.36 69.11 53.33 60.00

r dorsal lateral parietal 0.76 1.20 1.80 2.53 1.57 72.29 49.88 61.40 52.95 59.13

r precentral gyrus 0.79 0.98 1.44 1.33 1.14 66.85 43.46 68.03 57.88 59.05

l sensorimotor 1.09 1.14 1.67 1.75 1.41 64.19 44.41 71.94 46.26 56.70

l posterior MFG 0.85 0.81 2.46 1.73 1.46 65.23 56.51 63.32 37.97 55.76

l lateral sensorimotor 0.79 0.90 1.62 1.19 1.12 64.78 41.03 58.14 54.75 54.68

r premotor 1.02 1.18 1.75 1.56 1.38 55.86 40.59 65.86 54.01 54.08

l postcentral gyrus 0.97 1.24 1.82 1.62 1.41 57.08 43.24 60.68 41.41 50.60

l dorsal mid-insula 1.11 1.46 2.03 1.91 1.63 52.70 43.11 53.68 50.79 50.07

cuneus/calcarine sulcus 1.19 1.30 1.66 2.05 1.55 55.76 37.26 51.64 52.91 49.39

r posterior SFG 1.00 1.65 1.45 2.43 1.63 70.32 24.59 61.33 41.15 49.35

l premotor 1.11 1.37 1.58 2.16 1.55 63.16 30.94 62.22 40.89 49.30

l ventral sensorimotor 0.69 0.94 1.62 1.21 1.12 55.59 46.78 63.43 28.28 48.52

r posterior IFG 0.81 1.41 1.15 1.36 1.18 50.59 26.28 50.40 63.35 47.66

l SMA 1.13 1.71 1.59 2.10 1.63 57.30 29.25 57.60 45.84 47.50

r dorsal mid-insula 1.19 2.01 2.08 1.95 1.81 52.19 37.25 55.55 41.92 46.73

l hippocampus 0.52 0.81 1.00 0.64 0.74 49.43 22.87 63.69 50.75 46.68

r STG (BA41) 1.06 1.72 1.69 1.73 1.55 60.54 31.56 52.85 41.32 46.57

medial sensorimotor 0.97 1.30 1.78 1.20 1.31 48.95 37.45 51.96 47.12 46.37

r posterior SFS 1.09 1.91 1.60 1.77 1.59 49.14 29.26 49.97 53.75 45.53

l middle occipital gyrus 1.04 1.44 1.73 1.64 1.46 51.63 32.43 52.81 44.79 45.42

dorsal motor 1.08 1.22 1.72 1.20 1.31 51.42 33.74 49.40 45.52 45.02

r sensorimotor 0.84 1.89 1.53 1.33 1.40 29.64 28.55 60.38 59.46 44.51

l STG (BA41) 1.32 2.17 2.10 2.07 1.91 42.63 32.75 55.66 45.77 44.20

l medial temporal pole 0.81 1.39 1.06 1.55 1.20 48.08 32.74 58.90 36.31 44.01

l IFS 0.89 1.43 1.75 1.50 1.39 53.00 36.23 46.26 39.79 43.82

l posterior IFG 0.58 0.98 1.24 1.14 0.98 47.41 37.73 54.17 35.52 43.71

l postcentral gyrus 0.61 0.51 0.96 0.66 0.69 22.86 22.87 54.59 73.43 43.44

r postcentral gyrus 1.08 1.52 1.24 1.36 1.30 50.35 20.48 49.61 53.29 43.43

r posterior MFG 1.17 2.03 1.74 1.92 1.71 48.24 26.92 44.14 53.18 43.12

r dorsal posterior insula 1.28 1.96 1.93 1.79 1.74 50.60 25.97 55.98 39.22 42.94

l dorsal posterior insula 1.28 2.11 1.90 1.66 1.74 45.72 28.79 46.20 50.79 42.88

l posterior STS 0.84 1.62 1.56 1.60 1.40 45.41 33.85 46.56 44.83 42.66

l SFG 1.08 1.34 1.76 1.78 1.49 49.29 33.09 49.02 36.18 41.90

l dorsal precuneus 0.90 1.41 1.64 1.40 1.34 42.49 31.21 43.68 49.66 41.76

r ventral anterior insula 0.57 1.05 0.93 0.82 0.84 50.26 28.07 40.45 47.81 41.65

r middle occipital gyrus 1.01 1.53 1.33 1.26 1.28 41.81 24.06 48.63 51.16 41.42

l posterior MTG 1.05 1.67 1.76 1.67 1.54 44.10 35.34 48.35 37.72 41.38

l occipital pole 0.48 0.75 0.46 1.03 0.68 30.45 36.35 42.00 56.02 41.21

(Continued)
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TABLE 1 | Continued

5-HT2A Receptor Binding Potential 5-HT2A Receptor Occupancy (%)

(BPND) at Baseline by Psilocybin

ROIs S1 S2 S3 S4 Mean S1 S2 S3 S4 Mean

l posterior MFG 0.94 1.74 1.93 1.63 1.56 46.15 39.92 40.82 37.36 41.06

l SMG 0.91 1.65 1.98 1.67 1.55 42.20 35.75 46.22 39.90 41.02

l postcentral gyrus 1.03 1.85 1.80 1.57 1.56 44.19 32.14 43.56 43.32 40.80

l cuneus 1.30 1.81 2.27 1.83 1.80 53.00 27.84 41.18 40.75 40.69

r mid post OFC 0.82 1.45 1.21 1.31 1.19 57.95 24.15 43.08 36.66 40.46

l anterior SFG 1.07 1.78 1.76 1.75 1.59 42.83 30.44 48.89 38.36 40.13

l IFG (pars triangularis) 1.03 1.65 1.85 1.64 1.54 41.93 40.56 42.77 35.24 40.13

l mid post OFC 0.74 1.06 1.04 1.22 1.01 58.98 15.92 55.56 29.99 40.11

r SFG 1.09 1.63 1.78 1.81 1.58 44.80 27.21 43.98 43.32 39.83

r middle STG 0.90 1.68 1.28 1.38 1.31 46.39 11.12 43.89 57.30 39.67

r medial temporal pole 0.87 1.63 1.19 1.51 1.30 49.79 15.09 53.03 39.93 39.46

r occipital pole 0.75 1.15 0.78 1.42 1.03 42.16 24.66 39.38 50.84 39.26

r dorsal precuneus 0.90 1.43 1.63 1.25 1.30 42.12 27.54 43.51 43.45 39.15

l inferior occipital gyrus 0.86 1.30 0.90 1.41 1.12 44.99 16.32 49.73 44.98 39.00

r IFS 1.11 1.73 1.75 1.67 1.56 40.03 28.28 40.29 46.90 38.88

l MFG 1.24 1.68 1.98 1.80 1.68 45.60 35.54 43.36 30.92 38.86

l medial orbital gyrus 1.33 2.28 1.56 1.94 1.78 41.16 21.10 49.44 43.06 38.69

r angular gyrus 0.91 1.93 1.59 1.44 1.46 35.70 26.67 42.75 48.00 38.28

l angular gyrus 1.11 1.88 2.13 1.69 1.70 42.00 35.93 40.16 33.89 38.00

r STG 0.83 1.84 1.35 1.25 1.32 39.08 17.24 40.39 53.28 37.50

r MFG 1.27 2.09 1.71 1.94 1.75 46.93 15.31 44.28 42.90 37.36

r SMG 0.97 1.75 1.52 1.16 1.35 20.65 24.90 43.61 60.18 37.34

l STS 1.16 1.96 1.64 1.61 1.59 34.31 27.20 49.86 36.99 37.09

r posterior MTG 0.86 1.67 1.10 1.46 1.27 33.64 16.95 41.74 55.42 36.94

r medial orbital gyrus 1.26 1.97 1.49 2.11 1.71 53.94 11.86 41.92 39.70 36.86

r posterior MFG 1.16 2.24 1.66 1.65 1.68 45.75 23.72 29.57 48.26 36.82

l SFS 1.44 1.86 1.63 1.84 1.69 38.61 21.03 51.05 36.49 36.79

r IFG (pars triangularis) 1.23 2.10 1.78 1.87 1.74 40.54 16.01 43.73 46.25 36.63

medial OFC 1.36 2.37 1.82 2.00 1.89 42.60 23.91 39.82 39.34 36.42

r hippocampus 0.37 0.76 0.67 0.57 0.59 49.72 16.52 41.18 37.67 36.27

l dorsal anterior insula 1.27 2.04 1.80 1.77 1.72 44.68 23.90 37.02 39.38 36.25

r dorsal anterior insula 1.52 2.30 1.70 1.94 1.86 46.33 20.27 40.61 36.51 35.93

r perirhinal 0.80 1.58 1.09 1.28 1.19 50.16 7.75 47.85 37.72 35.87

r inferior lingual gyrus 0.87 1.36 1.24 1.19 1.16 45.62 18.77 31.95 45.84 35.54

posterior cuneus 1.61 2.00 2.30 2.31 2.05 38.28 25.41 34.47 43.51 35.42

dorsal medial precuneus 1.23 2.09 1.85 1.69 1.72 39.22 25.20 33.00 44.12 35.39

r frontal polar gyrus 1.15 2.10 1.74 1.72 1.68 36.56 26.73 38.34 39.90 35.38

l parieto-occipital fissure 1.38 1.93 1.73 1.69 1.68 37.33 24.06 36.91 43.22 35.38

r STS 1.24 2.22 1.59 1.85 1.73 40.60 9.59 44.07 46.33 35.15

l middle ITS 1.19 2.09 1.75 2.01 1.76 41.06 23.91 40.33 34.00 34.82

l IFG 1.15 1.74 1.59 1.62 1.53 41.50 17.85 43.11 36.33 34.70

l anterior MFG 1.33 2.17 1.75 1.82 1.77 39.73 23.34 39.37 36.09 34.63

preSMA 1.16 1.91 1.84 1.63 1.63 40.96 20.73 38.10 38.22 34.50

r pgACC 1.22 2.12 1.78 1.71 1.71 41.75 18.81 34.87 41.84 34.32

l frontal polar gyrus 1.11 2.27 1.65 1.58 1.65 36.14 22.62 35.49 42.12 34.09

r anterior SFG 1.03 1.82 1.64 1.64 1.53 42.38 18.02 35.16 40.01 33.89

l posterior ITS 1.14 1.98 1.66 1.90 1.67 27.39 25.78 42.15 38.35 33.42

l inferior lingual gyrus 0.98 1.35 1.22 1.24 1.20 37.91 15.82 42.82 36.95 33.37

(Continued)
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TABLE 1 | Continued

5-HT2A Receptor Binding Potential 5-HT2A Receptor Occupancy (%)

(BPND) at Baseline by Psilocybin

ROIs S1 S2 S3 S4 Mean S1 S2 S3 S4 Mean

r SFS 1.16 2.13 1.42 1.84 1.64 44.59 11.13 33.32 43.93 33.24

r posterior STS 1.34 2.55 1.87 1.88 1.91 36.91 14.85 33.69 46.80 33.06

r cuneus 1.34 1.98 2.24 1.70 1.82 28.54 24.93 35.76 42.70 32.98

l anterior STS 1.08 2.18 1.54 1.45 1.56 36.74 17.93 38.00 38.51 32.79

r anterior MFG 1.23 2.39 1.66 1.78 1.77 36.04 21.84 28.49 44.74 32.78

l anterior orbital gyrus 1.28 1.83 1.24 1.80 1.54 43.83 0.00 47.54 39.22 32.65

r parieto-occipital fissure 1.36 1.72 1.61 1.65 1.58 34.76 15.89 34.21 44.72 32.39

SMA 1.19 2.24 1.70 1.74 1.72 39.12 16.50 32.09 40.62 32.08

l pgACC 1.22 2.13 1.92 1.83 1.78 35.99 25.26 35.12 31.22 31.90

r middle ITS 1.06 2.20 1.27 1.85 1.59 40.58 3.91 35.02 46.15 31.42

r posterior lingual gyrus 0.80 1.20 0.93 1.21 1.03 38.07 15.68 35.77 36.00 31.38

l anterior STG 0.81 1.79 0.83 1.01 1.11 21.55 13.75 43.04 46.99 31.33

l anterior temporal pole 0.71 1.55 1.04 1.04 1.08 32.17 5.49 45.35 41.58 31.15

r IFG (pars opercularis) 0.86 1.75 0.93 1.14 1.17 31.04 0.00 30.48 62.07 30.90

r posterior orbital gyrus 1.26 1.75 1.13 1.85 1.50 47.14 0.00 41.65 34.10 30.72

r temporal pole 0.96 1.57 0.88 1.75 1.29 45.07 2.84 43.72 29.66 30.32

l ITG 0.50 1.13 0.78 1.19 0.90 40.31 17.56 32.53 29.82 30.06

r ventral mid-insula 0.96 1.77 1.20 1.24 1.29 36.39 6.55 34.22 42.84 30.00

r anterior STS 0.95 1.88 1.32 1.37 1.38 38.23 10.33 30.20 41.04 29.95

PCC 1.40 2.36 1.73 1.79 1.82 36.08 10.39 33.52 37.84 29.46

r inferior occipital gyrus 0.81 0.98 0.62 0.91 0.83 16.31 0.00 41.66 59.85 29.45

r posterior ITG 0.97 1.55 0.95 1.23 1.17 29.61 1.34 32.98 50.23 28.54

l anterior ITG 1.18 2.05 1.24 1.87 1.58 35.48 3.02 43.01 32.11 28.41

l posterior ITG 0.76 1.59 1.03 1.27 1.17 32.44 10.01 35.09 35.40 28.23

l inferior occipital gyrus 0.92 1.31 0.96 1.30 1.12 31.30 6.62 34.57 39.96 28.11

l posterior lingual gyrus 1.16 1.76 1.02 1.51 1.36 28.28 12.20 31.62 40.30 28.10

r fusiform gyrus 0.90 1.11 1.14 1.27 1.11 29.89 14.12 39.69 28.19 27.97

midcingulate 1.10 2.06 1.24 1.46 1.46 42.84 0.00 28.78 40.26 27.97

r posterior ITS 0.93 1.87 0.96 1.41 1.29 25.91 0.00 35.61 49.71 27.80

r anterior ITG 1.07 2.28 1.00 1.60 1.49 38.85 0.00 32.59 39.42 27.72

r lateral orbital gyrus 1.08 2.43 1.32 1.57 1.60 34.50 0.00 31.98 42.53 27.25

dACC 1.11 2.27 1.43 1.24 1.51 29.70 9.89 30.56 38.16 27.08

medial precuneus 1.22 1.95 1.38 1.47 1.51 33.65 9.62 23.60 35.01 25.47

l lateral orbital gyrus 1.22 2.46 1.57 1.68 1.73 26.26 0.64 30.46 43.25 25.15

l IFG (pars opercularis) 0.97 1.69 1.21 1.27 1.28 30.16 7.71 28.96 33.27 25.02

l fusiform gyrus 0.54 0.65 0.53 0.62 0.58 35.33 10.02 30.58 23.00 24.73

posterior dACC 1.13 2.18 1.23 1.12 1.41 23.55 0.00 33.26 40.20 24.25

r anterior fusiform 0.54 0.70 0.61 0.71 0.64 25.83 3.59 32.59 34.62 24.16

l IFG pars orbitalis 1.06 1.98 1.19 1.59 1.46 30.43 0.00 26.10 32.20 22.19

l putamen 0.06 0.27 0.26 −0.04 0.14 7.70 3.87 43.55 28.29 20.85

r IFG (pars orbitalis) 0.92 2.12 0.69 1.19 1.23 13.42 0.00 14.45 51.48 19.84

Data are sorted in descending order by mean occupancy by psilocybin. S1-S4: subject 1 through subject 4; S1 and S4 were male, and S2 and S3 were female. L, left; r, right; SFG,

superior frontal gyrus; SFS, superior frontal sulcus; MFG, middle frontal gyrus; IFS, inferior frontal sulcus; IFG, inferior frontal gyrus; OFC, orbitofrontal cortex; SMA, supplementary motor

area; STG, superior temporal gyrus; STS, superior temporal sulcus; MTG, middle temporal gyrus; ITS, inferior temporal sulcus; ITG, inferior temporal gyrus; SMG, supramarginal gyrus;

ACC, anterior cingulate cortex; PCC, posterior cingulate cortex.

Mean across subjects for 5-HT2A receptor availability and occupancy by psilocybin for each region of interest are shaded to aid in readability.

The radiotracer [11C]MDL 100,907 was synthesized using C-
11 methylation (Wong et al., 2008) and was used to measure
availability of the 5-HT2A receptor. [11C]MDL 100,907 dynamic
scanning began immediately following a 20.46 mCi ± 0.55

mCi radiotracer injection (specific activity at the baseline scan:
10,432 mCi/µmole± 3,109, specific activity at the blocking scan:
10,358 mCi/µmole ± 3,224) and lasted for 90min, and scans
were obtained using a 30-frame acquisition protocol (framing
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sequences: 4 x 15, 4 x 30, 3 x 60, 2 x 120, 5 x 240, and 12 x
300 s). All PET images (image size 128 × 128, pixel size 2 ×

2mm, slice thickness 4.25, 4.5mm FWHM at the center of the
field of view) were reconstructed using filtered back projection
with decay and attenuation correction (Zhou et al., 2010). The
summed 90-min dynamic PET images were used for PET-to-
PET registration andMRI-to-PET co-registration using SPM and
MATLAB. The MRI images and dynamic PET scans following
treatment were registered to the baseline PET scans for each
subject (Martin-Facklam et al., 2013). Co-registered images were
normalized to the MNI template through the MRI image using
the normalized mutual information algorithm (Ashburner and
Friston, 2005).

The ROI time activity curves (TACs) were calculated by
applying the ROIs generated from resting-state data to dynamic
PET images. The binding potential (BPND) (Koeppe et al., 1991;
Innis et al., 2007), an index of tracer-specific binding to receptors,
was estimated by simultaneously fitting a simplified reference
tissue model (SRTM of 3 parameters R1, k2REF, BPND) to all
ROI TACs with k2REF coupling (Zhou et al., 2007). Cerebellum
was used as reference tissue input, as the concentration of 5-
HT2A receptors in this region is negligible, and this region has
been validated as a reference region for [11C] MDL 100,907 (Hall
et al., 2000; Talbot et al., 2012). The ROI percent occupancy
(Martin-Facklam et al., 2013) was calculated as:

Occ (%) = 100∗
BPND

(

baseline
)

− BPND(blocking)

BPND(baseline)

The ROIs exhibiting low binding potential (< 0.2), low
distribution volume ratio (< 1.2), or impossible occupancy (<
0% or > 100%) were discarded (including striatum and basal
ganglia) and the SRTMmodel was re-fit with the remaining ROIs.
137 ROIs (listed in Table 1) in total were retained for analysis. BP
at baseline and occupancy by psilocybin were then calculated for
each retained ROI.

RESULTS

Binding potential (BPND ) of [11C]MDL 100,907 at baseline
(reflecting available 5-HT2A receptor binding sites) and 5-
HT2A receptor occupancy by psilocybin for each individual is
presented in Table 1. Average baseline 5-HT2A receptor binding
potential (BPND) was 1.44 (± 0.33 SD), and average 5-HT2A

receptor occupancy across all ROIs was 39.5% (± 10.9% SD).
Group-averaged 5-HT2A BPND at baseline and 5-HT2A receptor
occupancy by psilocybin are represented in Figure 1. Brain
regions demonstrating greatest 5-HT2A receptor occupancy by
psilocybin (between 63.12 and 74.72% occupancy) included
bilateral angular gyrus, bilateral intraparietal sulcus, precentral
gyrus, and subgenual anterior cingulate cortex. Time activity
curves for the right angular gyrus and the reference region
(cerebellum) in a representative volunteer are presented in
Figure 2.

DISCUSSION

The 5-HT2A receptor is implicated in a number of psychiatric
disorders, most notably mood disorders and psychosis (Sibille
et al., 1997; Marek et al., 2003; Frokjaer et al., 2008). Recent
brain imaging studies have shown 5-HT2A receptor occupancy
in humans by psilocybin (Madsen et al., 2019; Stenbæk et al.,
2021). Studies have also shown psilocybin, as well as other
classic hallucinogens, to alter activity and connectivity in primary
sensory regions (Kaelen et al., 2016; Roseman et al., 2016;
Barrett et al., 2017; Mason et al., 2020; Preller et al., 2020) and
regions of the default mode network (Carhart-Harris et al., 2012,
2014, 2016b; Mason et al., 2020). These are brain regions that
both densely express 5-HT2A receptors (Gründer et al., 1997;
Hall et al., 2000; Kakiuchi et al., 2000) and are implicated in
the pathophysiology of mood disorders (Greicius, 2008) and
addiction (Sutherland et al., 2012). Further studies have suggested
that alteration of brain function in these regions may be a
mechanism of therapeutic effects of psychedelics (Carhart-Harris
et al., 2017; Sampedro et al., 2017; Doss et al., 2021).

FIGURE 1 | 5-HT2A receptor binding potential (BPND) at baseline and 5-HT2A receptor occupancy by psilocybin. The x-coordinate of each sagittal brain slice in

Montreal Neurological Institute coordinates is presented in the lower-left-hand corner of each panel. The color bar identifying the range of plotted values is presented

on the left-hand side of each plot. BPND is presented in normalized values relative to the reference region (cerebellum). Occupancy by psilocybin is presented in

percentages of total possible occupancy.
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FIGURE 2 | Time activity curves at baseline and post-psilocybin time points for the right angular gyrus and the cerebellum reference region in a representative

volunteer (S4, a 28-year-old male). Differences between baseline and post-psilocybin standardized uptake values demonstrate substantial blocking of [11C]MDL

100,907 by psilocybin in the angular gyrus, but not in the reference region (as expected). Time activity curves for the right angular gyrus are representative of time

activity curves for others regions with highest occupancy by psilocybin (including left angular gyrus, bilateral intraparietal sulcus, and subgenual anterior cingulate

cortex).

The current report provides additional evidence for
substantial psilocybin occupancy of 5-HT2A receptors
throughout the cortex in humans, using a different 5-HT2A

ligand than had previously been used (Madsen et al., 2019;
Stenbæk et al., 2021). All 137 ROIs that were retained for analysis
are reported, since average occupancy in each of these regions
ranged from 19.84 to 74.72%, and the magnitude of occupancy
well-exceed the test-retest variability (7-11%) of [11C] MDL
100,907 (Talbot et al., 2012). Three of the regions with greatest
occupancy by psilocybin are within the default mode network
(sgACC and bilateral angular gyrus), but individual occupancy
levels varied widely between individuals in these ROIs (e.g.,
between 48.5 and 90.5% in the L angular gyrus; Table 1).

A clear limitation of this pilot study is the small sample
size. Alternate explanations for individual variability in subjective
effects of psilocybin may be genetic polymorphisms related to
5-HT2A receptor expression and function, and/or differences in
the bioavailability of psilocybin and its active metabolite psilocin,
however we did not test for these factors in this limited sample.
Future studies, including controlled measurement of plasma
levels of psilocin, will determine whether some or all of these
factors are involved.

The current report demonstrates widespread and substantial
occupancy of cortical 5-HT2A receptors by psilocybin. Future
investigations of the relationship between 5-HT2A receptor
occupancy and both subjective effects of psilocybin and a
wider array of other brain-derived measures (e.g., functional
connectivity, task-based neural responses, pharmacokinetic and
pharmacodynamic measures) may yield important insights
into the mechanisms underlying individual differences in both
the acute response to psychedelics and enduring therapeutic
responses to psychedelics in patient populations.
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