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An automated recognition of faces enables machines to visually identify a person and

to gain access to non-verbal communication, including mimicry. Different approaches

in lab settings or controlled realistic environments provided evidence that automated

face detection and recognition can work in principle, although applications in complex

real-world scenarios pose a different kind of problem that could not be solved yet.

Specifically, in autonomous driving—it would be beneficial if the car could identify

non-verbal communication of pedestrians or other drivers, as it is a common way

of communication in daily traffic. Automated identification from observation whether

pedestrians or other drivers communicate through subtle cues in mimicry is an unsolved

problem so far, as intent and other cognitive factors are hard to derive from observation.

In contrast, communicating persons usually have clear understanding whether they

communicate or not, and such information is represented in their mindsets. This work

investigates whether the mental processing of faces can be identified through means

of a Passive Brain-Computer Interface (pBCI). This then could be used to support the

cars’ autonomous interpretation of facial mimicry of pedestrians to identify non-verbal

communication. Furthermore, the attentive driver can be utilized as a sensor to improve

the context awareness of the car in partly automated driving. This work presents a

laboratory study in which a pBCI is calibrated to detect responses of the fusiform gyrus

in the electroencephalogram (EEG), reflecting face recognition. Participants were shown

pictures from three different categories: faces, abstracts, and houses evoking different

responses used to calibrate the pBCI. The resulting classifier could distinguish responses

to faces from that evoked by other stimuli with accuracy above 70%, in a single trial.

Further analysis of the classification approach and the underlying data identified activation

patterns in the EEG that corresponds to face recognition in the fusiform gyrus. The

resulting pBCI approach is promising as it shows better-than-random accuracy and is

based on relevant and intended brain responses. Future research has to investigate

whether it can be transferred from the laboratory to the real world and how it can be

implemented into artificial intelligences, as used in autonomous driving.

Keywords: face recognition, passive brain–computer interface (pBCI), single-trial classification, automated

driving, human-computer interaction
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INTRODUCTION

Face recognition is considered a highly important skill for
humans. It also plays an important role in daily road traffic,
especially in the transition period toward fully automated
driving. Normally, drivers solve unclear situations with
non-verbal communication (i.e., eye contact, mimicry). An
autonomous car might have decided to execute a certain action
but might leave other traffic participants confused in complex
situations. This can be caused by the missing eye contact, which
is an important interaction element between the driver and
vulnerable road users (Alvarez et al., 2019; Bergea et al., 2022)
and promotes calm interactions (Owens et al., 2018). If the car
does not compensate for this missing communication between
drivers or pedestrians, a potentially dangerous situation might
be the result.

In this study, we investigated a potential solution to this
problem in semiautomatic driving. Here, the driver is intended
to be aware of the ongoing situational context the car is in
and should identify automatically non-verbal communication
attempts of other road users or pedestrians. The car could gain
access to this situational interpretation of the driver’s brain
by means of Passive Brain-Computer Interfacing (Zander and
Kothe, 2011). In that way, the brain of the driver would serve as a
sensor for the car, interpreting the environment and filtering out
relevant information of non-verbal communication that could
not be derived otherwise. The detection of the face of a person
that starts a non-verbal communication can then be transferred
to the car leading to further analysis of the environment and a
revision of the actions currently planned. As passive BCIs rely on
implicit control (Zander et al., 2014), the driver does not need to
be aware of this information transfer to the car.

The work here takes a first step toward the above-described
concept. It investigates whether a pBCI can be calibrated to
distinguish brain responses related to the identification of human
faces from those representing the mental identification of other
objects or information. Therefore, the pBCI is calibrated in
the laboratory where the different responses were evoked in a
controlled setup. The resulting data were evaluated regarding the
accuracy the pBCIs had in distinguishing the different stimuli and
regarding the cortical sources that contributed to the signal used.

Studies using MRI or fMRI have shown a significantly higher
activity in a certain brain area when participants see faces in
contrast compared to, e.g., houses or other objects (Kanwisher
et al., 1997, 1999). This area, which is especially sensitive to face
perception, is the fusiform gyrus. The fusiform gyrus is part of the
temporal lobe in Brodmann area 37. Trans Cranial Technologies
ldt. (2012) claim that face recognition activates a widespread
network in the brain. This network includes the bilateral frontal
area (BA 44, 45), occipital (BA 17, 18, and 19), the fusiform
gyri (BA 37), and the right hippocampal formation. Lesions in
this area are associated with different manifestations of visual
agnosia, e.g., object or face agnosia (Trans Cranial Technologies
ldt., 2012). In some studies, activities have also been recognized in
the region of the middle temporal gyrus/superior temporal sulcus
(STS) (Perrett et al., 1987; Kanwisher et al., 1997; Halgren et al.,
1999). The STS responds stronger to faces or its features than

to other complex visual stimuli (Jeffreys, 1989). A different area
probably also contributing to face perception is the lateral inferior
occipital gyrus (Sams et al., 1997). Bötzel et al. have shown the
topographic display of face-evoked potentials. The results lead to
the assumption that the face-evoked potential is very strong on
electrode Cz as well as on the parietal hemispheres (Bötzel et al.,
1995).

Different single module studies locate different types of brain
activity when a face is perceived. This has opened a debate
of whether face perception is mainly done by one module
specialized to faces (Kanwisher et al., 1997) or distributed
processing. In their work, Haxby et al. collected the outcomes
of different studies and built a model of face perception areas in
the brain (Haxby et al., 2000). The author’s model demonstrates
that face perception activates the core system (occipitotemporal
visual extrastriate areas) as well as an extended system (neural
systems whose functions play a role in extracting information
from faces). The model has a more holistic approach since it
considers that different areas are activated according to, e.g.,
the familiarity of a face, the shown emotion, or the features of
the face.

Current ERP literature names two main components, which
are connected to face-specific cortical activity: the N170 and the
P1. Already, in the mid-1990s, it was described that the N170
is a bilateral potential at the occipital and posterior temporal
electrodes (Bötzel et al., 1995), originating from the fusiform
gyrus (Herrmann et al., 2004). It is face-sensitive as the response
is larger with “face” than “no face” stimuli. It indicates not only
head detection that is sensitive to the configurational analysis
of whole faces (including the features within the face, as nose
etc.) (Eimer, 2000). In fact, many studies of ERP correlate for
face processing did not report or analyze anything about the P1
component (Herrmann et al., 2005). Most studies that investigate
the P100 effect do report amplitude differences (Halit et al.,
2000; Itier and Taylor, 2004; Herrmann et al., 2005), but few
other studies did not confirm those findings (Rossion et al.,
2003). Herrmann et al. (2005) supposed the different findings
could be due to differences in low-level features between stimulus
categories, such as luminance and contrast. As the P1 component
is not fully understood yet, it should be used with caution until
further investigations have solved the inconsistencies.

The existing knowledge in the field of face recognition allows
taking a further step toward detecting facial recognition in a
single trial with a pBCI. The main research question of this work
aims at investigating the BCI-classifiability of face perception that
is processed in the fusiform gyrus. This includes determining the
single-trial classification accuracy, as well as the neuroscientific
identification of features contributing to classification. The
implementation of the experiment is based on the work of Deffke
et al. (2007). As in the study made by Itier and Taylor (2002),
eight electrodes were considered as important: the temporal-
parietal sites TP9 and TP10, the posterior parietal sites P7 and P8,
the occipito-parietal sites PO9 and PO10 as well as the occipital
electrodes O1 and O2. A further important electrode is Cz as the
“face-specific brain potential is most prominent here” (Herrmann
et al., 2002). This goes along with the former mentioned findings
by Bötzel et al. (1995).
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MATERIALS AND METHODS

In this study, next to faces, two other types of stimuli were shown,
and participants had to answer whether the shown stimulus was a
face or not. Further details of the participants and the experiment
are given below.

Participants
Thirteen participants were recruited from the Human Factors
Master’s Program at the Technical University in Berlin, Germany.
They were either paid by earning 30e or by collecting points for
taking part in experiments, which are mandatory for graduating
in the Master’s program mentioned above. Data of the two
participants had to be discarded due to technical difficulties.
Therefore, only the data of 11 participants were taken into
account for the analysis. The participants were between 24 and 34
years old; three were female. All of them had normal or corrected-
to-normal (three participants) vision, and none of them reported
physical or mental illness for the time of the experiments. The
Participants gave written consent to take part in the study.

Experimental Setup
Sixty-four channels of EEG were recorded with two amplifier
modules (BrainAmp32 DC) provided by the company Brain
Products GmbH. Electrodes were placed according to the
International 10–20 system, with the ground electrode placed
at position AFz, while electrodes were referenced to FCz.
In addition, the electrooculogram (EOG) was recorded. All
electrodes had impedances lowered to 5 k�. The participants

were placed in a comfortable chair with armrests with about 60–
70-cm distance to the monitor, while lighting conditions were
constant during the experiment.

The participants were welcomed and introduced to the
experimental task. After being seated, the electrode cap was put
on; gelled and EOG electrodes were fixed. At the beginning of
the paradigm, the participants were told that the experiment was
about the differences in recognizing a face and something else.
Each trial started with a fixation cross (800ms), followed by a
stimulus (1,200ms) in the center of the visual field. An example
of the trial sequence is given in Figure 1. Afterwards, a question
appeared whether a face had been seen. The answer was given by
pressing a button with the index fingers of their two hands (as in
the experimental paradigm of Collin et al., 2012).

Trials would repeat for the whole size of a block. In between
each block, the participants had to take a mandatory break for
2min, reminding them to not answer the question before the
stimuli disappeared. The whole experiment consisted of 6 blocks
each, having 90 trials, so 540 stimuli were shown overall. The
stimuli were randomized and were marked with “face” for faces,
“no face” for houses and “maybe face” for abstract images in
the EEG. Depending on the participants’ answers, a marker was
sent (“responseFace,” “responseNoFace”). During the procedure,
the participants got no kind of feedback on the validity of
their answers.

Stimuli
Perceiving face stimuli might evoke different brain responses
next to that being specific to faces. These include the
identification of a concrete object (e.g., the human head) and

FIGURE 1 | An example of a trial sequence. Blurred images for privacy.
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the processing of abstract information (information encoded in
the facial features). To ensure that the pBCI was calibrated on
brain responses specific to face recognition only, two different
types of counter-stimuli were used: houses, representing concrete
objects, and abstract pictures reassembling some familiarity with
faces, but not showing any concrete, known shape. With that,
the counter-stimuli evoke brain responses to object recognition
and to the processing of abstract information, but none specific
to face recognition. In that way, the pBCI can only rely on
the specific brain responses evoked by faces when trying to
discriminate the EEG activity evoked by face recognition from
that evoked by perceiving houses or abstract shapes. All pictures
were in greyscale and had the same format. The “face”-stimuli
were downloaded from a database provided by UT Dallas. About
180 pictures from the Minear and Park database were used to
create a database of normed faces, reflecting age and ethnic
diversity. All pictures were from the forward-facing profile with
a neutral expression (Kennedy et al., 2009). Half of the people in
the displayed pictures were 18–49 years old; the other half, older.
Distribution was equal between the genders. This sample was
chosen intentionally to represent an ethnically diverse sample.
The used stimuli representing obvious “no faces” were pictures
of houses. The pictures were retrieved from real estate pages
and displayed single family houses and apartment buildings. The
stimuli in the category “maybe faces” have been selected off a
database from the MIT Center for Biological and Computational
Learning. The purpose of the pictures was to generate a dataset
to train a Support Vector Machine classifier, which should detect
frontal and near-frontal views of faces. In order to achieve high
robustness for within-class variations (changes in illumination,
background, etc.), stimuli containing faces in different processing
stages were compared. Among those were the used stimuli,
which were Haar wavelets generated by a single convolution
mask originating from face pictures (Heisele et al., 2000). As
those pictures were originally face pictures but then processed to
unrecognizability, this stimuli set served as “maybe faces.”

DATA ANALYSIS AND STATISTICS

In order to analyze the data, MATLAB and the open source
toolboxes EEGLAB and BCILAB were used. EEGLAB was
used for pre-processing, analyzing, and visualization of ERPs
(Delorme and Makeig, 2004). The toolbox BCILAB was used
to extract and classify features (Kothe and Makeig, 2013). Pre-
processing of the EEG data is based on “Makoto’s pre-processing
pipeline” provided by the Swartz Center for Computational
Neuroscience at UCSD, USA (Makoto, 2016). Any command
described was used in a default mode if not labeled otherwise.
After minimal pre-processing, an Independent Component
Analysis (ICA) was run on the data, and the resulting quality
of the ICA was examined (Jung et al., 1998; Hyvärinen and
Oja, 2000). Eye components could be identified and further
considered in the analysis. The examination of the ERPs and
the actual training and testing of a classifier, as well as the
inspection of the cortical activity related to face recognition, are

reported below. Statistics with a p-value < 0.05 were considered
as being significant.

ICA Analysis
The ICA decomposes minimally pre-processed EEG data into
statistically independent time series, so called components. These
components can be distinguished by their spatial projection
pattern and their activity. Based on these features, ICs
representing cortical activity can be distinguished from those
reflecting artifact activities or cannot be clearly associated with
either of those source types. Here, only cortical components were
kept, while all others, like eye components, were discarded.

The EOG has a dedicated reference electrode and cannot be
compared to EEG channels. Consequently, EOG channels had
been discarded before ICA was applied. To identify components
reflecting a high share of brain activity, several indicators were
used. One aimed at the residual scalp map variance (RV), which
had to be lower than 10% from the best-fitting equivalent
dipole to be considered as a brain component (Delorme et al.,
2012). Obvious time series artifacts were discarded by manually
scrolling through the data. Therefore, a highpass filter (1Hz)
and a lowpass filter (200Hz) were applied. We chose this rather
high frequency of 200Hz to include muscle artifacts in our
analysis and to ensure a quick response in the passive BCI
classification. One dataset was recorded with the AC power
line fluctuations (50Hz line noise and harmonics) being a very
dominant artifact. Harmonics are signals with an integer multiple
frequency of the original frequency. Therefore, in all datasets,
45–55Hz, 95–105Hz, and 145–155Hz were removed by using
the EEGLAB plugin CleanLine by Mullen (2012). Bad channels
and datapoints were rejected by visual inspection of continuous
data using obvious deviations from standard EEG signals as the
criterion. This included low drifts and high-frequency epochs.
Channels were rejected when more than 20% of their data
were considered being artifactual. After the manual rejection, an
automatic rejection of artifact channels using joint probability
was performed using pop_rejchan(). It was restricted to not
discard the channels in which the ERPs for face recognition
are assumed.

The cortical source of each IC was estimated by the following
procedure: The topography had to imply that the source is a clear
dipole located in the cortex; the activity power spectrum had
to show activity within alpha or beta band for a component to
represent brain activity; the intertrial coherence had to show any
form of phase-locked activity and residual variance of the source
localization done by the EEGLAB plug-in tool DIPFIT by Robert
Oostenveld and Arnaud Delorme had to be below 10%. Clusters
of ICs were generated across subjects by grouping ICs with a
similar dipole and activity pattern. Only those clusters containing
independent components from at least five participants were
considered representative.

ERP Analysis
Noisy channels with visibly corrupted data were removed
manually. An automatic rejection process computed the joint
probability by kurtosis. Re-referencing was then used to convert
the dataset to a common average reference. We decided to
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remove channel Oz from the data to reduce the rank according
to the average referencing of the data for ICA processing. O1, Oz,
and O2 are relatively close to one another, meaning interpolating
Oz should still bring good results, and using an electrode from
the middle should keep the symmetry.

Before the epochs are extracted, a bandpass filter from 2 to
30Hz is applied. In the present data, only little of the expected
ERP could be seen if not highpass filtered with 2Hz, which is
probably caused by the Readiness Potential. The epochs extracted
had a length from 800ms with a starting point 100ms before the
stimulus onset. At the baseline, 100ms before the stimulus onset
were subtracted.

Classification
Features were extracted along the windowed means approach
(as described in Blankertz et al., 2011). Data were resampled at
100Hz and bandpass filtered in a range of 0.1–10Hz. In each trial
and for each channel, features were then extracted by obtaining
the average of each of 6 consecutive 50ms windows, starting
at 200ms after the stimulus onset. This resulted in a 6-x-64
dimensional feature vector for each trial.

Three classifiers were generated for each participant through
applying regularized discriminant analyses (LDA) to each pair of
stimuli types and optimized to differentiate the classes in a binary
fashion. To estimate the validity of each classifier, accuracy rates
were generated by repeating 10-fold randomized cross-validation
(CV). This procedure was repeated three times, resulting in an
averaged accuracy rate as a performance measure.

RESULTS

On average, 60.18 (27.37%) of the ICs met the criteria of RV
< 10%. Further components were discarded according to
the procedure described in? 3, resulting in an average of 15
components per subject, which could still be considered as brain
components, while the rest was considered bearing no relevant
information. Only those clusters containing independent
components from at least five participants were considered
representative; the resulting 11 scalp maps are depicted in
Table 1.

ERP Results
EEG Data

Figure 2 (top) shows the grand averaged ERPs, on the channels
PO9, PO10, and Cz, on data not containing eye components,
bandpass filtered 2–30Hz.While the blue line describes the “face”
response and the red line the “no face” response, the black line is
the difference between these two. As noise at a higher frequency
superimposed the data, a lowpass display filter of 10Hz is applied
(Figure 2, bottom). ERPs of face and no-face stimuli types show
a similar morphology with minor differences in peak amplitudes.
The difference of these ERPOs shows a clear peak around 200ms.

ICA Data

One cluster (Cluster 6), to which six participants contributed,
could be directly located in the fusiform gyrus, BA 18. The ERP
resulting from this cluster is shown in Figure 2. The “face” stimuli

TABLE 1 | An average scalp map of computed clusters.

Cluster (number of

participants)

Scalp map Cluster (number of

participants)

Scalp map Cluster (number of

participants)

Scalp map

3 (5 Ps) 9 (9 Ps) 13 (9 Ps)

4 (8 Ps) 10 (6 Ps) 15 (7 Ps)

6 (6 Ps) 11 (6 Ps) 16 (6 Ps)

12 (8 Ps) 17 (5 Ps)
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FIGURE 2 | Grand average ERPs on the Channel PO9, PO10, and Cz with different bandpass filters.

shows a stronger N170 than the ERP for the “no face” stimuli. It
has to be kept in mind that the ERP component polarity has to be
inverted based on the scalp map polarity. The average negative
peak of the face response for Cluster 6 is at the time of 286ms.
The “maybe face” stimuli evoke an even stronger potential than
the “face” stimulus. This stays the same for the P1, for which the
potential of “face” is clearly stronger than of “no face.” Before,
at the N170, no obvious difference between “face” and “no face”
could be seen.

Cluster 4 contains components from eight participants, the
resulting ERP is shown in Figure 3. The negative peak starting
at t = 280ms is considered being the anticipated N170.
The potential for the stimulus “no face” is clearly stronger
than for “face” or “maybe face.” The following P1 has a
distinctive peak for “maybe face” and is the weakest for “no
face.” Cluster 8 is likewise located in the temporal lobe, but
on the right hemisphere. A difference is that the “maybe
face” causes the strongest N170 as well as P1 and the “face”
the weakest.

Cluster 10 shows activity close to the vertex, and the ERPs for
the three stimuli are similar to one another. The high similarity
between the ERPs leads to the conclusion that Cluster 10 does not
contain any “face-” related ICs.

Three clusters (3, 9, and 16) can be localized in the cingulate
cortex, which can be divided into three bigger areas: anterior,
posterior, and retrosplenial cingulate cortex. Cluster 3 and
Cluster 9 contain together 10 different participants. The clusters
are localized in the posterior cingulate cortex, while Cluster
16 is located in the anterior cingulate cortex. The ERPs of
Cluster 6 show a pattern, apparently consisting of the N170
and P1 (Figure 4). For both ERPs, the strongest potential is
evoked by “maybe face,” while “no face” is the weakest. Cluster
9 does not show the typical face-recognition characteristic. The
N170 is weak for every type of stimulus, especially the potential
caused by “face” is barely recognizable. Nonetheless, the P1 is of
recognizable shape for all three types. For Cluster 16, the different
stimuli do not evoke different potentials, and no characteristic
pattern can be identified.

Classification Results
In this section, we investigated the classification of data,
containing only cortical components and in comparison to the
data that include eye components. After identifying components
displaying eye activity using the ICA, the classification could
be run on data without the eye components or on solitary
eye components. To improve clarity, “face” is abbreviated with
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FIGURE 3 | Averaged ERP of the three conditions of cluster 4.

FIGURE 4 | Averaged ERP of the three conditions of cluster 6.

TABLE 2 | Misclassification results.

Marker

Classification data F vs. nF F vs. mnF mF vs. nF F vs. mF

Data after ICA and removal of eye components 27.75 (42.54) 26.61 (32.95) 35.12 (35.73) 27.48 (50.49)

Only eye components 39.31 (92.84) 37.90 (94.72) 46.27 (22.35) 37.09 (95.97)

Average misclassification accuracy (variance) (%).
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F, “maybe face” with mF, “no face” with nF, and the merged
dataset of “maybe face” and “no face” with mnF. Table 2 shows
the grand-average classification results after removal of the eye
components and when classifying only on the eye components.

The grand-averaged misclassification rate for discrimination
on the eye components in mF vs. nF, however, is 46.27%
(variance: 22.35 %), meaning solely eye components are barely
discriminable. The misclassification rate for the eyes for F vs. nF,
in contrast, is 39.31% (variance: 92.84%), and the rate for F vs.
mF and F vs. mnF is in a similar range. The rates mF vs. nF
indicate that, in this case, eye movements are not too dominant.
Eye movement in the other cases is slightly better distinguishable.
The patterns representing the eyes could build some kind
of distinguishable structure when overlapping. This possibility
could also be given in the other classification cases, even if eye
movements do not interfere as much, and is still a reason to
discard the eye components. The resulting misclassification of F
vs. nF without the eyes is 27.75% (variance: 42.54%).

By analyzing the activation patterns resulting from the LDA
in the Pattern Matching approach (Haufe et al., 2014; Krol et al.,
2018), dipolar projections from cortical sources were identified
(Figure 5). Specifically, the third time window (0.30–0.35 s)
shows a clear projection pattern reassembling the projection
from the fusiform gyrus, with stronger activity on the left
hemisphere. This is in accordance with the assumptions from the
literature on face recognition and fusiform activation.

Post-hoc Analysis
In order to make an objective statement about the difference
between the ERPs, a t-test with two paired samples was calculated
for the ERPs of Clusters 6 and 4. First, all the average values
along with the variances for the “face” and “no face” ERPs in
Cluster 6 were calculated for the area of 286 ± 10ms (time of
the appearance of the N170). It has to be checked whether those
values follow a Gaussian distribution before computing the t-
test. Since the sampling size is rather small, this is done by using
the Kolmogorov-Smirnov-Test. All three calculated cases follow a
Gaussian distribution. Calculating the t-test for the N170 and P1
(t= 258± 10ms) led to the result that the difference between the
samples within Cluster 6 with p= 0.10 and p= 0.17, respectively,
was not significant. Since Figure 3 already showed that the peak
for “no face” is more negative than the one for “face,” the N170 of
Cluster 4 did not need to be calculated. The average values of the
P1 were calculated for a time range of ± 25ms around 380ms.
The difference resulted in p= 0.60; therefore, the seen difference
does not get significant either. Since the sampling size was rather
small, this was done by using the Kolmogorov-Smirnov-Test; all
calculated cases follow a Gaussian distribution.

Restrictions of the Given Experimental
Paradigm
Task-induced artifacts can reduce the reliability of apBCI
approach as the noise level and likelihood for misclassification
are increased. Possible artifactual influences resulting from the
chosen experimental paradigm are discussed in this section.
The first artifact coming to mind in the presented experimental
design is context-related eye blinks. Eye blinks go along with

FIGURE 5 | The pattern of ERPs (face vs. no face).

task accomplishment and could, therefore, increase the noise.
When concentrating on a task, especially on one which demands
visual attention, eye blinks are suppressed. The suppression
allowsmaintaining a stable visual perception as well as awareness.
This causes eye blinks to occur immediately before and after
the task (Nakano et al., 2009). In a study from Fukuda (1994),
this could also be observed within visual discriminative tasks.
Eye blinks were not inhibited during or before tasks, but after
tasks completion frequent blinks could be recorded. The blinks
concentrated between 370 and 570ms after the stimulus onset,
which indicates that they should not have an impact on the
ERPs of interest. What occurs within that time frame though is
incomplete blinks: The upper lid does not touch the lower one,
but the relative lid’s distance is reduced. This could have had
an impact on the recorded EEG data and should be considered
in further analyses. Secondly, as gating can be influenced by
the fix inter-stimulus interval, some kind of anticipation artifact
could occur. Low-frequency oscillatory activity is a mechanism
that has been proposed to reflect gating (Buchholz et al., 2014).
One characteristic of visual activity in anticipation of a visual
event is a posterior oscillation from about 8–12Hz, called the
posterior alpha rhythm. It originates in the occipital-parietal
area and arises during a wakeful rest (Romei et al., 2010).
It is, furthermore, top-down controlled, also in discrimination
tasks (Haegens et al., 2011). A negative relationship between
the alpha power and perception/detection performance has been
observed (Ergenoglu et al., 2004). Not only alpha, but also beta
band oscillations correlated with sensory anticipation and motor
preparation (Buchholz et al., 2014). The detection performance
is, furthermore, influenced by oscillation bands (Ergenoglu et al.,
2004; Hanslmayr et al., 2007). Therefore, it is likely that data
recorded for this study are contaminated with oscillation caused
by non-intended artifactual activity. The third interfering factor
is the Readiness Potential (RP) due to a fixed ISI. It precedes
self-paced movements and induces a slow negative shift. It
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can start up to 850ms prior to the event and is bilaterally
symmetrical (Libet et al., 1983). About 400–500ms before the
movement begins, the RP becomes asymmetric and larger over
the contralateral hemisphere (Shibasaki et al., 1980). While it is
positive in the frontal area, the RP has a negative maximum at
the vertex. In the occipital area, it is recorded either absent or
dismissable small (Deecke et al., 1969).

Another possible experimental influence to be pointed out
here is the participant’s response with the index finger. Within
the paradigm, the participants had to indicate whether they saw
a face or not. This should assure the participant’s throughout
attention but, at the same time, caused several measurable ERPs
on the motor cortex and in areas preparing the movement.
A high number of publications can be found investigating
movement-related potentials. A study from Shibasaki et al.
distinguishes between eight different components, pre-motion
as well as post-motion (Shibasaki et al., 1980). Naming and
allocation the potentials are inconsistent within this field of
research. Only the two most considered potentials (beside the
RP) regarding the movement will be mentioned in the following:
the pre-motion positivity and the motor potential. A pre-motion
positivity can precede the motoric response. It is about 100ms
before the movement onset (Böcker et al., 1994) and is diffusely
spread over the scull and has high inter-individual variation
(Deecke et al., 1969). Due to these features, it is not feasible
to take the pre-motion positivity into account when making
the analysis. Another possibly relevant factor is the motor
potential, beginning about 60ms before the movement. The
motor potential has a maximum over the contralateral area,
representing hand movement (Deecke et al., 1969). Deecke et al.
consider the motor potential to be different from the RP for two
reasons: First, the considered ERPs show an abrupt deflection
before the onset of movement. Second, the distribution over
the skull is different; the RP is mainly symmetrical while the
motor potential is asymmetrical. Richter et al. did an fMRI study
with a finger movement task (Richter et al., 1997). According
to their results, pre-motor cortex and supplementary motor
area (both BA 6, Grahn, 2013) show activity during movement
preparation of the self-initiated movement as well as during
execution. The primary motor cortex shows comparably weaker
activity during preparation but is also very active when the
movement is executed (BA 4, Grahn, 2013). Böcker et al. (1994)
aimed at the activity before left or right hand movement. The
readiness potential (about 900ms before stimulus), the pre-
motion positivity (about 100ms before stimulus), and the motor
potential (about 25ms before stimulus) are close to the vertex of
the brain.

DISCUSSION

The results presented here show that it, indeed, is possible to
detect correlates of face recognition in single-trial EEG with
a pBCI. Cluster 6 could be located in BA 18, which is the
corresponding Brodmann area for the electrodes for O1 and
O2. These electrodes are close to the electrodes PO9 and PO10
on which Deffke et al. (2007) focused in their study as well.
The stimuli evoke an ERP in this area (Figure 4), which is very
similar to the evoked potentials by Deffke et al. with the difference

of a weaker amplitude. It is concluded that Cluster 6 probably
represents the activity evoked when a face is recognized. Clusters
4 and 8 are localized in the temporal lobe. It was mentioned
that facial response could also be observed in the temporal lobe.
Furthermore, the shown ERPs are very similar to the face-related
patterns described in literature. Both clusters are, therefore,
recognized as indicators for face recognition as well. Clusters 3
and 9 both have their mean dipoles localized in the posterior
cingulate cortex. Thatmainly correlates with retrieval ofmemory.
This can be explained by the activation of the posterior cingulate
cortex in the recognition of objects, places, or houses (Kozlovskiy
et al., 2012). The localization of the mean dipoles in the occipital-
parietal area (Clusters 6 and 8) and in the frontal area (Cluster 4)
goes along with findings in the literature. All of these areas have
also been relevant in the study from Bötzel et al. (1995). The ERPs
are also very similar to the expectations resulting from literature
review and have frequency components in the alpha band. In
sum, these are very strong indicators that the experimental design
did generate facial response in the brain, which is represented by
those clusters.

After removal of the identified eye components, clear ERPs in
the occipital-parietal area and close to the vertex were found. This
is consistent with findings in the literature. On single channels,
oscillations above 10Hz were found and could represent alpha
waves resulting from the Readiness Potential. Through band-pass
filtering from 7 to 13Hz, covering the interindividual differences
in alpha would have ensured that the RP component is filtered out
for each participant. Nevertheless, such strict filtering would have
significantly affected the ERPs, diminishing the already small
differences found between classes. One difference between the
obtained and expected ERPs is an additional, short positive peak
just before the main negative peak (∼420ms) that can be seen on
PO9 and PO10 but not on Cz. Before that early potential, “face”
is stronger negative than “no face,” which was expected. But later,
“no face” is even more negative than “face.” Furthermore, the
positivity evoked at roughly t = 600ms at PO9 and PO10 could
be the P1. In this case, the N170 and P1 would occur far apart
in time. Comparing to the P1, “face” is stronger than “no face”
though, which was also described in literature.

In all three cases, for F vs. nF, F vs. mnF, and F vs. mF, the
grand misclassification rates for the eyes are about 38%. The
variance is roughly 94%, which means that high variabilities
existed between the participants. Considering the case mF vs. nF,
the misclassification rate is 46.27%, variance: 22.35%. In this case,
where no face stimuli were considered, the eye movements were
less distinguishable. This leads to the assumption that, in all cases,
eyes barely had any impact on classification. When face stimuli
appeared, eye blinks locked to the stimuli could occur, causing a
higher detection rate.

Classification rates without eye components are discussed
in the following paragraph. The change in classification
performance on raw data (misclassification rate: 25.33%,
variance: 33.86%) to data after ICA cleaning (misclassification
rate: 27.75%; variance, 42.54%) is minimal. Some clusters show
a strong contamination with artifacts, as discussed in the
previous section. Therefore, the clusters were removed, but the
classification results did not improve much (misclassification
rate: 28.91%, variance: 53.49%), leading to the conclusion that
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those artifacts did do not have significant impact on classification
and can thus be ignored.

The pattern in Figure 5 shows a bi-dipolar activity in the
occipital-parietal area, which was expected. It is an indicator that
classification rates are based on features generated by the “face”
stimuli. It is, furthermore, an indicator for a successful ICA: The
solution allowed to identify the certain components (in this case,
artifacts) and remove them, resulting in a pattern close to those
expected by literature.

In order to apply the research idea of facial recognition
to the automobile industry, a real-time detection of the N170
and P1 needs to be established with apBCI reliably and
practically. This work showed that discrimination is, indeed,
possible in a laboratory setup. A redesign of the experimental
paradigm appears not to be relevant, as the artifacts that were
identified here do not have a significant impact on classification
performance. With that, the given calibration paradigm can be
considered well working. The next step has to focus on the
application in more realistic scenarios and in an online fashion.
These findings could be extended using the results by Shishkin
et al. (2016), who introduced a marker to differentiate between
intentional and spontaneous eye movements. In addition, a
real-world application of such a pBCI approach would need a
sufficiently usable sensor system available. Research investigating
such systems shows different approaches that might lead to
ubiquitous solutions supporting the intended in-car application
(Zander et al., 2017; Kosmyna and Maes, 2019; Vourvopoulos
et al., 2019; Hölle et al., 2021). The recognition of a face combined
with the intentional gaze would be a good indication of the intent
to interact. The classification results of facial recognition would
contribute to the detected intention to communicate, allowing
the robustness of the system to increase.

CONCLUSION

The expectation of finding sources for facial recognition in the
occipital-parietal, the temporal area, and close to the vertex was
met by the results presented. Two clusters show activity in the
occipital-parietal area (Clusters 6 and 9). Furthermore, the mean
dipoles of Clusters 4 and 8 are located in the temporal lobe. The
ERPs of the Clusters 4, 6, and 9 show a clear N170 and P1; they
are alike to those known from other face-recognition studies. The
ERPs of Cluster 9 show slight differences, especially the N170.

The misclassification rates, displayed in Table 2, have a
mean value of about 27.69%. These rates do not suffice for
real-life application, especially if security issues are involved.
Nevertheless, each correct classification can contribute to safety
in autonomous driving. Thus, further research is indicated
and improvements will bring this approach closer to real-life
applications. In any case, these results do show that the patterns

have a discriminable difference. The cluster study showed that the
N170 and the P1 depicted by Cluster 6 were relatively strong in
the fusiform face area. Cluster 6 could be located in the occipital
lobe, BA 18. This is exactly the area describing the fusiform face
area—this was expected in theory.

Due to the high variance of results between the participants,
we suggest to include more participants in future studies.
Specifically, before this very first approach can be taken further
into the application domain, the overall classification accuracy
needs to be improved, and it has to be investigated how
far artifacts and loss-over-context control in realistic scenarios
impact the classification. Also, the use of current EEG caps
and electrodes hinders the real-world application. Further
developments are needed in the engineering of EEG systems and
in the usability of a pBCI with non-experts. With this study, the
first step toward an automated detection of face recognition from
EEG data is taken.With this, the idea of using the human brain as
a sensor to support automated decision-making comes closer to
reality and stimulates future research to identify other cognitive
processes to be detected by a pBCI and be used in meaningful
real-world scenarios.
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