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Investigations into physiological or neurological correlates of trust has increased in

popularity due to the need for a continuous measure of trust, including for trust-sensitive

or adaptive systems, measurements of trustworthiness or pain points of technology,

or for human-in-the-loop cyber intrusion detection. Understanding the limitations and

generalizability of the physiological responses between technology domains is important

as the usefulness and relevance of results is impacted by fundamental characteristics of

the technology domains, corresponding use cases, and socially acceptable behaviors of

the technologies. While investigations into the neural correlates of trust in automation has

grown in popularity, there is limited understanding of the neural correlates of trust, where

the vast majority of current investigations are in cyber or decision aid technologies. Thus,

the relevance of these correlates as a deployable measure for other domains and the

robustness of the measures to varying use cases is unknown. As such, this manuscript

discusses the current-state-of-knowledge in trust perceptions, factors that influence

trust, and corresponding neural correlates of trust as generalizable between domains.

Keywords: interpersonal trust, gender difference, reliability, human-robot interaction, vehicle automation

PROBLEM STATEMENT

Trust in automation is a rising concern in many safety-critical systems due to its influence
on the utilization strategy and emergent complacency behaviors of the operators. As such,
measuring trust in such complex systems is essential to improve system safety and collaborative
performance. In collaborative human-automation teaming, the operators can choose when and
how to rely on or utilize automation features, highly dependent on how well calibrated their
trust is. When trust is lower than the system’s capabilities, operators tend to underutilize
automated features, either by turning them off or rejecting the technology completely (Lee and
See, 2004; Mouloua and Hancock, 2019). When trust is higher, operators tend to over utilize
or misuse the assistance, such as continuing to use the assistance despite signs of unreliability,
utilizing it in situations that the assistance was not designed for, or easily becoming distracted
or complacent when automation has taken over. Currently, the state-of-the-art method to
capture trust states is through surveying or interviewing the operators (Lewis et al., 2018;
Hopko et al., 2021b), which, due to the discrete nature of surveys, cannot be used as a
continuous real-time measure for adaptive automation or trust-sensitive detection systems.
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Moreover, these subjective measures are invasive and can be
biased based on how the surveys are presented to a population;
a worker, pilot, or driver can be biased to answer safety-related
surveys following societal and employer expectations assuming
they are able to stop work to answer the survey. In a research
setting, surveys may also prime the participants to focus on trust,
which may disrupt experimental manipulations. Due to these
limitations, surveys alone cannot be readily applied to develop
adaptive automation systems that can monitor and respond to
trust levels real-time, nor used to mechanistically understand
trust influencers’ impact on perceptions and corresponding
behaviors. Deployable continuous techniques, such as functional
brain imaging, to objectively quantify trust in automation have
promise in filling the need for an accurate and deployable
measure of trust. This paper discusses the basis of neural
activity as a corollary measure of trust and the potential risks of
generalization between interpersonal and automation domains
in addition to generalization between popular safety-critical
domains such as aviation, vehicle automation, human-robot
collaboration, cognitive decision aids, and automation in medical
devices (Hopko et al., 2021a). This manuscript discusses the
differences between interpersonal and technological domains
for how trust is defined, the basis for trust perceptions, the
factors that influence trust (including dispositional and gender
difference), the neurological basis of trust through a review
of trust-manipulated studies, and identifies the current gaps
in knowledge.

TRUST DEFINITIONS IN AUTOMATION

Operator trust is a complex and dynamic human factor that is
impacted by a myriad of cultural, environmental, and system
factor influences (Hancock et al., 2011; Schaefer et al., 2014;
Chiou and Lee, 2021). Because trust is complex and dynamic
in its nature, it is difficult to comprehensively operationalize the
definitions of trust, regardless of technology domain. The most
commonly referenced definition in technology is by Lee and See
(2004) that depends on the uncertainty and vulnerability of the
operator given the automated agent’s actions (Chiou and Lee,
2021). While Lee and See’s definition is general, some definitions
of trust have domain specific divisions. For example, Hald et al.
(2019) defined trust as “the combination of feeling physically
safe around [the robot] and being able to predict the robot’s
action in context of the shared task.” While this is related
to the vulnerability (safety) and uncertainty (predictability), it
is a more specific application of Lee and See’s definition as
vulnerability is specified to physical safety, excluding potential
fiscal loss, workload changes, or connected affect state. Similar
specification of trust definitions has been observed in other safety
critical domains, including cognitive aids and alarms that focus
more on system reliability than safety (Madhavan et al., 2006;
Parasuraman et al., 2008). While definitions are similar, the
traditional survey measurements are influenced by the nuances
in definitions. A literature survey by Lewis et al. (2018) found
that the majority of utilized trust surveys are un validated,
i.e., they are developed study-specific by the researchers. Given

specializations of trust definitions across domains, and that
many surveys are developed based on these definitions, there
are nuanced differences between technology domains on what
trust is, the importance of factors that influence it, and questions
that are relevant to trust perceptions. In analyzing two validated
trust surveys, one generic to trust in automation and another
specific to trust in robotics, Kessler (2020) found that the
surveys were not interchangeable and were capturing distinct
trust perceptions. Given that many studies that investigate
neural correlates of trust validate their response to subjective
questionnaires, there is a need for the trust domain to unify
trust definitions, trust models, and measurement techniques (i.e.,
surveys, physiological responses), or to acknowledge domain
specific findings.

BASIS OF TRUST IN INTERPERSONAL
VERSES TECHNOLOGY AUTOMATION

Comparison of trust between interpersonal collaborative
domains and technologies is rare, especially with regard to
the generalizability of neural signatures (Parasuraman et al.,
2014). Madhavan and Wiegmann (2007) performed a literature
review illustrating that the predominate bases of trust differ
between interpersonal trust and human-technology trust.
Interpersonal trust is based on three major rationales: (1) the
integrity of the trustee (i.e., how lawful and of good moral), (2)
the ability of the trustee (i.e., their capabilities to accomplish
the desired interaction/task), and (3) the benevolence of the
trustee (i.e., how Good, or altruistic, an individual is). Another
investigation notes that interpersonal trust is also influenced by
the familiarity between the trusting parties, shared experiences,
shared goals, reciprocal discloser, and demonstration of non-
exploitation, all expressed over long-durations (Dani et al., 2006).
Interpersonal trust directly differs from trust in technology in
two ways. The first is that technology lacks intentionality, unlike
humans. Automation is based on scripts, system capabilities, and
algorithms scoped to a specific use case. Thus, automation cannot
truly develop its own intents unlike humans (Madhavan and
Wiegmann, 2007; Charalambous et al., 2016), although its intents
may be reflective of the designer’s (i.e., human) biases. Moreover,
the use of automation in safety critical systems are assumed to
be designed such that it improves the system or a subcomponent
of the system; users may assume automation is intended to
work in support of them. Therefore, the reciprocal discloser,
demonstration of non-exploitation, or other anthropomorphic
traits tend to be less relevant than they are in interpersonal trust.
As such, the perceived capability of the automated system has
been deemed as the primary basis for trust in automation (Chen
et al., 2018).

The second major difference between interpersonal trust and
trust in automation is the lack of anthropomorphism (in many
technologies) and accompanying societal expectations. While
benevolence and integrity are not directly attributable to the
technology, users are able to personify technology (Nass and
Moon, 2000). Systems that parallel human-like characteristics
and personas (i.e., humanoid robots, intelligent agents such as
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Alexa) tend to have more trust than systems designed with the
same capacities and purpose, but with non-anthropomorphized
characteristics (Hancock et al., 2011; de Visser et al., 2017;
Calhoun et al., 2019). However, there is a point where extreme
similarity between a technology and human can result in
a significant drop in trust levels, often referred to as the
uncanny valley (Flemisch et al., 2017). Because of this interaction
between trust and human-like characteristics in technology,
there are observable differences in trusting behavior, founded
on emotional connection to the system rather than system
capability (Jensen et al., 2020). Given the spatial association of
cognitive and emotional systems in the brain, it is conceivable
that these trust differences are observable in neural activity
between interpersonal, anthropomorphized technology, and
non-anthropomorphized technology trust.

FACTORS INFLUENCING TRUST IN
AUTOMATION

Trust is influenced by human factors, automation factors,
and environmental factors (de Visser and Parasuraman, 2011;
Hancock et al., 2011; Schaefer et al., 2014; Lewis et al.,
2018). Example human factors include demographics and user
characteristics (age, gender, culture, race, ethnicity, personality,
etc.), situational factors (mood, fatigue, affect, vigilance, task
engagement, etc.), and user attributes (mental workload capacity,
capability, expertise, etc.). Example automation factors include
the purpose of the system, the process in which the system
completes its task, automation level, the system attributes (size,
safety features, etc.), in addition to the capability, accuracy,
reliability, or ease of use of the system (Hoff and Bashir,
2015). Environment factors depend on the scoped boundary
of the system, but can include interaction with other systems,
physical layout and proximity to the system, cultural, and societal
factors, weather and others (Hancock et al., 2011). The following
review will compare and contrast these factors in the broad
sense of safety critical automation domains. Because the use
cases, and thus goals, tasks, strategies, and perceptions, are
different, we posit that the tendencies of trust perceptions differ
between technologies, potentially changing the accompanying
neural signatures.

Perceptual Basis of Trust
While themagnitude and variancemay change between domains,
trust is comprised of three, highly interrelated components:
dispositional, situational, and learned (Hancock et al., 2011).
Dispositional trust is the reasonably static underlying tendency
to trust the automation in general, and can be influenced
by several factors, such as demographics, culture, race, age,
gender, etc. Situational trust is the trusting behavior based on
both internal factors (i.e., mood, engagement, fatigue), and
external situational factors (i.e., environment, system process,
features). Learned trust is a dynamic mental model of the
trustworthiness of a system as one gains familiarity, both through
the reputation of the system and first-hand interaction. While
these components are not completely separable, studies primarily

focus on manipulating situational instances, such as reliability
and environmental factors, or manipulate situational-learned
components such as the influence of reliability (or unreliability)
over time or user experience with a specific task. The neural
activity associated with these manipulations relies heavily on
cognitive ability to determine an associated mental model of the
reliability and risk, such as Bayesian mental models (Adolphs,
2002). It is clear that emotional or affect factors also influence
trust perceptions as anxiety, hostility, and negative attitudes are
often measured alongside trust perceptions (Hopko et al., 2021b),
although emotional studies of trust are scarce (Jensen et al., 2020).

Dispositional and Gender Differences in Trust

Perceptions
The impact of dispositional trust on overall trust perceptions
has been commonly overlooked, where most trust-manipulation
studies focus on event-based trust breaches or system wide
changes that manipulate trust (Parasuraman et al., 2008).
Dispositional trust is key as the generalization of the importance
of trust influencers (e.g., reliability, cyber security, accuracy)
requires understanding of how users value trust influencers in
individual domains. This is needed in order to build robust
designs given the user population and predisposition to utilize the
technology. For example, gender differences have been observed
in both technology (Syrdal et al., 2007; Kuo et al., 2009; Strait
et al., 2015) and interpersonal trusting behavior (Croson and
Buchan, 1999). Furthermore, there have been gender differences
in societal values, where women have historically been more
implicated in healthcare and the well fair of the family than men,
making ∼80% of decisions for their families (Matoff-Stepp et al.,
2014). This has resulted in healthcare marketing strategies that
target women more often than men. However, other domains,
such as vehicle automation and industrial robotics, do not
have similar marketing or training strategies, which may have
implications for both safety and technology-focused workforce
development. Because gender is a factor in trusting behavior,
and gender has domain-specific characteristics and values, there
may be rationale for dispositional trust differences between these
technologies. This can be observed in a pilot survey conducted by
the authors (Hopko et al., 2021a), where the traditional measure
for dispositional trust, using a propensity to trust automation
questionnaire (Jessup et al., 2019), was found to correlate with
trust more strongly in cyber/cognitive aid technologies than any
other investigated domain (e.g., medical, robots, vehicle).

Situational and Learned Differences in Trust

Perceptions
The underlying trust behaviors are also likely to be different
due to the familiarity and experience with a domain. The
average knowledge of automation, given cultural standards,
varies between applications; people are more familiar with
vehicle automation than they are of collaborative robotics
(Hopko et al., 2021a) likely because it is a more commercialized
technology; moreover, aviation automation is a normality
for pilots (Trösterer et al., 2017). Furthermore, as these
domains have different working environments and different
tasks, the severity of situational trust factors may not be
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directly generalizable between domains; a reliability of 90%
may be acceptable for diagnostic systems but unacceptable
for vehicle automation (Wickens and Dixon, 2007). Because
each technology domain is a different use case, the relevance
of trust influencers (e.g., reliability) to operators and the
socially acceptable behaviors (e.g., reliability thresholds) of
the systems differ between domains. The importance of
traditional trust scales, namely reliability, accuracy, or ease of
use, have been shown to differ between technology domains,
such as accuracy being most important in medical device
automation, and reliability most important in vehicle and
robots (Hopko et al., 2021a). Thus, while there is overlap
in many of these technologies (e.g., vehicles can have cyber
aid alarm systems), the magnitude and relevance of trust
influencers, or trusting behaviors, between domains need
independent considerations.

The three trust components of trust and their
interdependency is likely to differ between domains. The
extent to which these differences would influence physiological
correlates is currently unknown. It is likely that physiological
responses, such as dermal activity, heart rate activity, etc.,
lack the spatial resolution offered by neurological responses to
capture these distinctions. For example, an increase in heart rate
may signal increased physical workload (Roscoe, 1992; Garet
et al., 2005), but also an anxious response (Perrotta, 2019), while
distinct changes in the amygdala, the hippocampus and the
prefrontal cortex may signal specific onset of anxiety (Perrotta,
2019). The initial biases of participants toward trusting certain
technologies more than others and the grounds for which
trust perceptions are founded hint that accompanying neural
and physiological responses may differ. The magnitude of the
neurological responses, and brain function-specific activation
patterns, may also differ between domain due to these attitudes
and emotional connection to certain technologies, which has
been shown to influence neural activity (Larsen et al., 2008).

NEURAL BASIS OF TRUST

Introduction to Popular Brain Imaging
Techniques
There is no better place to capture a subjective human state
than at the source: the brain. The non-invasive brain imaging
techniques discussed in this section are measurable corollary
responses of trust. Functional magnetic resonance imaging
(fMRI) is considered the gold-standard for mechanistic brain
imaging due to its increased spatial resolutions; however,
it has reduced temporal resolution, high cost, and is not
ambulatory (Logothetis, 2008; Table 1). In contrast to
fMRI, electroencephalogram (EEG) and functional near-
infrared spectroscopy (fNIRS) are ambulatory measures;
they can measure brain activity in real-time during a task
with higher temporal resolution, although are limited to
measuring cortical brain activity with lower spatial resolution
(Ferrari and Quaresima, 2012; Mehta and Parasuraman,
2013).

TABLE 1 | Summary of popular brain imaging techniques.

Imaging Method fMRI fNIRS EEG

Spatial Ranking High Mid-High Mid

Temporal Ranking Low Mid High

Cost Expensive Affordable Upper-Affordable

Measurement Hemoglobin

Dynamics

Hemoglobin

Dynamics

Electrical Activity

Ambulatory X X

Measurable

Locations

Cortical +

Subsurface

Cortical Cortical

TABLE 2 | Search terms.

Group Terms

Brain neural correlates, neural signatures, neural patterns,

neural features, brain, neuro, fMRI, EEG, fNIRS

Trust trust, distrust, overtrust, undertrust, mistrust

Technology robot, automation, technology, tech, machine, artificial

intelligence, computer, vehicle, aviation, pilot, air traffic,

operator

Review of Neural Correlates of Trust in
Automation
Here we review studies that manipulate trust in automation
and measure accompanying neural correlates. Studies were
identified using the following three search term groups in the
title, keywords, or abstract of the paper (Table 2) in addition
to reviewing references of included papers. A total of eleven
studies were included based on the criteria of (1) the study
focused on trust in any type of automation, (2) the study must
have manipulated trust and measured accompanying neural
activity, (3) the study must have reported the locations that
correlated with trust condition. Studies that applied machine
learning techniques to all measured brain locations but did
not provide which locations were significant contributors were
excluded. And, (4) the studies were not focused on highly
anthropomorphized technology. While anthropomorphism was
allowed in the included studies, highly anthropomorphized
technology (e.g., gendered humanoid robots, systems with
emotions) were excluded from this synthesis because high
anthropomorphism influences the bases for which trust is
provided as discussed in section Basis of trust in interpersonal
verses technology automation.

The locations that were found to correlate with trust are
defined based on Brodmann area or, for cortical locations, the
10–20 international standard, whose locations are universally
denoted as follows: Nasion (N), Frontal (F), Central (C), Parietal
(P), Occipital (O), and Inion (I). Table 3 summarizes studies’
trust manipulation methods, imaging method, and locations
that were significantly different between trust-manipulated
conditions. Figure 1 is the visualization of the identified
locations, where each green location was found to correlate with
trust in at least one study. The primary method to capture
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TABLE 3 | Summary of neural correlates of trust in technology domains.

Paper Trust manipulation method Imaging

method

Locations correlated with trust

manipulation

Wang et al. (2018) Autonomous agents are designated as “Trustworthy” or

“Untrustworthy” each with different probabilities of getting a

financial return.

EEG AFP5, F7, F5, F3, AF7, AF5, AF3, F1,

Fz, C1, Cz, AFP6, AF6, AF8, POz,

O1, O2

Eun-Soo et al. (2019) Human and robot faced agents with different risk-taking

natures who provide advice with a set reliability rate.

EEG Cz, FC1, FC2

Ajenaghughrure et al.

(2019)

Who Wants to be a Millionaire game with different question

difficulties and points per question with human or computer

help line

EEG C3, C4, P4, POz

Hu et al. (2016) Vehicle obstacle detection with reliability of 100% or 50% that

considers trust over time.

EEG Cz, C4

de Visser et al. (2018) Agent has credibility (expert, novice) with correct response

reliability rate (90, 60)%

EEG region centered at FCz

Dong et al. (2015) Prisoner’s dilemma type game against human or computer

agent with collaborative or egoism strategies.

EEG Fz, Cz, Pz, FC1, FC2

Goodyear et al. (2016,

2017)

X-ray luggage-screening task with human or computer agent

advice each with 60% reliability at detecting a knife.

fMRI right rostrolateral-PFC, right V1, right

and left pre-SMA, right orbito-FC

Sanders et al. (2019) Two levels each of reliability and credibility EEG Anterior cingulate cortex, centered at

FCz

Pushparaj et al. (2019) Aircraft conflict with accurate alerts at 5 levels of detection

difficulty and shown videos of potential conflicts.

fMRI Insular cortex, amygdala, putamen,

nucleus accumbens, anterior and

posterior cingulate cortex

Akash et al. (2018) Obstacle detection alert with reliability of 100% or 50% where

the operator must choose to take or ignore advice

EEG POz, P3, Fz, C3, C4, Cz

neural activity was with EEG, where the remaining papers
utilized fMRI. The majority of the studies included looked into
artificial intelligence or computer algorithms with correct and
incorrect responses at different reliability rates (Dong et al., 2015;
Goodyear et al., 2016; Akash et al., 2018; de Visser et al., 2018;
Wang et al., 2018; Ajenaghughrure et al., 2019; Eun-Soo et al.,
2019; Pushparaj et al., 2019; Sanders et al., 2019). It was shown
that humans react differently to correct and incorrect actions
of the agent, and these reactions correlate with subjective trust
scores, with accompanying neural activation.

Activation Features
Neural activation is the primary feature extracted from neural
activity. It illustrates the strength to which a region, or location,
is responding to a stimulus. The study conducted by de Visser
et al. (2018) predicted that a mismatch between expected and
actual outcomes in artificial intelligence agents would result in
a growing negative potential in the anterior cingulate cortex,
which can be measured in the front ocentral scalp region
centered around FCz. The authors confirmed that correct vs.
error responses have different neural signatures and that different
levels of reliability, but not credibility, impact the magnitude
of the activation; stronger activation occurs in the intermediate
frontal cortex, supplementary motor area, and premotor cortex
when there is an error in highly reliable situations. They also
report that this activation negatively correlates with human
trust; an increase in activation suggests lower trust. Validation
of this experiment was perfomed by Sanders et al. (2019), who
also observed increased activation of the region around FCz
during unreliable conditions. All EEG studies that manipulated

reliability report similar findings, where at least one of the
locations Fz, F1, F2, FC1, FCz, FC2, C1, Cz, C2 are identified
with identical activation direction (increased activity for lower
trust). The fMRI study (Goodyear et al., 2016, 2017) also
identified the left and right pre supplementary motor area,
located around FCz, which overlaps with the regions identified
in the aforementioned EEG-based trust studies. Time-domain
features were predominately found significant for EEG features in
the frontocentral region locations that are centered around FCz
(Akash et al., 2018; Eun-Soo et al., 2019), similar to that identified
in a literature review of EEG brain-computer-interface features
(Lotte et al., 2007).

For studies that did not manipulate reliability, there was more
variance in the locations that correlate with trust conditions.
For example, in an investigation that had agents provide
recommendations for a financial investment with three different
underlying probabilities of return, the locations that were
found to vary by probability were primarily located in the
left, medial, and right frontal lobe and occipital lobe (Wang
et al., 2018). The investigations into game theory strategies and
game show tasks also identified the locations in the parental
cortex and occipital cortex (Dong et al., 2015; Ajenaghughrure
et al., 2019). While these investigations focus on cyber aid
technology, the slight differences in the studies as they move
farther away from detection systems (namely, game theory
studies) illustrates the need to consider the generalizability of
these correlates to different use cases and trust influencers.
These correlates may only identify the influence of reliability
to trust perceptions, rather than robust to any trust influencer,
such as gender.
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FIGURE 1 | Binary summary of neural correlates of trust in technology

domain. All green locations have bee shown to vary by trust condition in at

least one study (refer to Table 3).

Four of the studies also compared human or
anthropomorphized agents to non-anthropomorphized agents
(Table 4), all of which observed differences in trusting behaviors
and neural correlates (Dong et al., 2015; Goodyear et al., 2016,
2017; Eun-Soo et al., 2019). In addition to distinct neural patterns
between the reliable and unreliable conditions in the intermediate
frontal cortex, Eun-Soo et al. (2019) reported that the strength
of activation for unreliable conditions were more noticeable
for human-faced assistive agents than for robot faced agents.
Similarly, Goodyear observed higher activation for unreliable
human-agents in the insular cortex, somatosensory association
cortex/ visuo-motor coordination, agranular retrolimbic area,
anterior prefrontal cortex, and superior temporal gyrus during
the first trials of the task as compared to machine-agents. When
participants observed feedback on their decision, increased
activation for human-agents who provided good advice was
observed in the left dorsomedial prefrontal cortex and the medial
frontal gyrus (BA 9/10). Furthermore, their participants were
more likely to follow the advice of a human-agent and perceived
the machine-agent advice as more unreliable even though the
objective reliability and subjective trust scores were similar
between the two groups.

Dong et al. identified varying event-related potentials such
as increased mean amplitudes associated with human-like cues
and increased visual saliency affects that strongly correlated
with the participants’ perceived capability of the teammate.
Similar cues were not identified in the conditions without
human-like cues. These findings demonstrate the physical and
behavioral anthropomorphism of a machine teammate impacts
trust perceptions, where increased human-like features result in
increased trust, measurable in neural correlates.

Connectivity Features
In addition to activation features, connectivity features can
provide context into which regions are functionally working
together or driving activations in other regions. Two main types
of connectivity analysis are traditionally employed: functional
connectivity and effective connectivity. Functional connectivity
is the non-directional coupling of regions whereas effective
connectivity is a directional coupling. Only three of the studies
performed any type of connectivity analysis (Table 5). In
addition to identifying significant locations, Goodyear et al.
(2016, 2017) also used granger causality, a type of effective
connectivity analysis. When comparing human and machine
agents, they found that the left anterior precuneus and the
posterior insula are drivers of the trust network with influences
on all other significant regions of interest identified as correlates
after FDR corrections (namely, right anterior precuneus, left
posterior temporoparietal junction, posterior cingulate cortex,
and left rostro lateral prefrontal cortex). They argue that
the left anterior pre-cuneus and posterior insula jointly work
together by integrating social and logical evaluations with
internal interception responses. Granger causality was also used
by Sanders et al. (2019), although no specific conclusions are
reported due to the limited sample size of the study. They do
suggest that the anterior and posterior cingulate cortex may be
important nodes to consider in connectivity networks, and that
the total flow and asymmetry of the network may be important
features. The last study used seed-based connectivity, a functional
connectivity analysis (Pushparaj et al., 2019). For all five levels
of task difficulty, the anterior cingulate cortex was a strong
network seed connected to the insular cortex, and in more
difficult tasks, the putamen. The insular cortex was similarly a
strong seed in the functional connectivity network connected to
the anterior cingulate cortex, insular cortex network, putamen,
and nucleus accumbens.

Considerations for Neural Correlates of
Human-Automation Trust
There is consensus within the current studies that trust
in automation can be monitored using neural signatures,
frequently identified in the fronto-central region, including
areas functionally named as the intermediate frontal cortex,
primary motor cortex (MC), pre-MC, and supplementary motor
area (SMA), potentially influenced by the anterior or posterior
cingulate cortex. It is not surprising that the primary MC, pre-
MC, and SMA were recognized in technology agent studies, as
they are responsible for planning and executing motor actions
based on internal and external cues. These areas also have
overlap with the intermediate frontal cortex that is thought to
be responsible for managing uncertainty (Ferng, 2020). These
locations could potentially provide a continuous measurement of
trust to be used for trust calibration, in addition to providing a
mechanistic understanding of trust influencers.

While the prefrontal cortex (PFC) was not found significant
in most of the papers, our review identified its relevance. It
has been previously observed that trust and workload act a
co-varying entities, where an increase in workload results in a
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TABLE 4 | Summary of activation features for trust-agent type interaction.

Paper Agent types

investigated

Imaging

methods

Trust-agent type interaction

Dong et al. (2015) Human verses

computer agent

EEG Increased mean amplitudes ERPs is associated with human-like cues. And, increased

visual saliency affects strongly correlated with perceived capability of the teammate.

Eun-Soo et al. (2019) Human verses

robot faced agents

EEG Strength of activation for theta frequency band in unreliable conditions are more

noticeable for human-faced agents.

Goodyear et al. (2016,

2017)

Human verses

machine agent

fMRI Higher activation early on for human agents in the insular cortex, somatosensory

association cortex, agranular retrolimbic area, anterior PFC, superior temporal gyrus.

When receiving feedback, Increased activation for human agents who provided good

feedback in the left dorsomedial PFC and medial frontal gyrus.

TABLE 5 | Summary of connectivity features.

Paper Connectivity

type

Imaging

methods

Connectivity features correlating with trust

Sanders et al. (2019) Effective EEG No specific conclusions due to limited sample size, although they do posit the

anterior and posterior cingulate cortex

Goodyear et al. (2016,

2017)

Effective fMRI The left anterior precuneus and posterior insular are drivers of the trust network with

influences on all other significant activation regions

Pushparaj et al. (2019) Functional fMRI Anterior cingulate cortex and insular cortex are strong seeds of the network, highly

connected to other regions including the putamen and nucleus accumbens

decrease in trust (Chen et al., 2011; Hu et al., 2016). As the
PFC, responsible for complex cognition and working/short-term
memory, was identified by a subset of the reviewed articles,
investigations into the neural correlates of trust should control
for the co-varying influence of workload on trust perceptions
in the accompanying neural signatures. Within interpersonal
trust, there is a similar consensus that the cognitive system
of trust is primarily comprised of the ventrolateral prefrontal
cortex and amygdala and that trust is influenced by deeper
brain regions linked to the motivational (risk-reward) and risk
cognition systems and to social affect systems (Adolphs, 2003;
Yanagisawa et al., 2011). Trust in automation has primarily been
discussed similar to risk cognition, where trust is characterized
by user uncertainty and vulnerability (Lee and See, 2004), and
risk cognition itself has often been measured alongside trust or as
subscales of trust (Hopko et al., 2021b). Thus, one can posit that
trust relies on ability or willingness to perceive risk in addition
to the willingness to be subject one’s self to the consequence.
There are three identified candidates responsible for the risk-
reward evaluation of decision alternatives: the amygdala, ventral
striatum, and orbitofrontal cortex (Drnec et al., 2016). The
importance of these regions lies on the cognition of an action;
the amygdala and lateral orbitofrontal cortex are thought to
be responsible for interpreting the negative risk of an action,
whereas the ventral striatum and medial orbitofrontal cortex are
responsible for the perceiving the rewards (Basten et al., 2010).

GAPS IN NEURAL CORRELATES OF
TRUST LITERATURE

Most of the summarized studies in Table 3 are exploratory
or pilot studies that compared neural correlates of human

verses technology agents, as the neural correlates of trust have
been predominantly studied in interpersonal and reciprocal
trust (Parasuraman et al., 2014). These studies reported small
sample sizes in highly controlled environments. Many of these
studies that compared human with technology agents found
statistically significant differences in brain activity between agent
type, supporting the claim that people trust technology agents
differently than they trust humans (Madhavan and Wiegmann,
2007), measurable in neural activity. There is limited work on
neural correlates of trust in automation, where the vast majority
of current studies are in cyber aid/detection system technologies.
It is still unknown how well the neural correlates of trust will
generalize between automation domains.

There is a lot left to unravel about what features in the
brain signal trust levels and whether brain activity can capture
changes in trust perceptions (i.e., trust building, breach, and/or
repair). Systematic investigation into these time-dependent trust
markers is warranted to understand, measure, and model
effective human-automation trust calibration. Furthermore, mis-
calibrated levels of trust do not always influence the user’s
behavior (Chiou and Lee, 2021). As such, the neural correlates
associated with a user’s identification of a trust influencer and
the decision to act upon the trust perception are needed. The
studies reviewed here highlight the potential of using neural
signatures, both through activation and connectivity features,
in better capturing operator trust in automation. However,
only three studies performed any form of connectivity analysis.
When data mining the neural correlates of trust, it is important

to consider not only which regions are effectively responsible

for driving the activations, but also how the different regions

of interest are functionally communicating with each other.

Connectivity analysis can be used to better understand trust
adaptations in different conditions rather than just a snapshot
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of activations. Furthermore, the predominant method to capture
the neural correlates of trust in existing literature is EEG,
which has a disadvantage when measuring region specific
dynamics due to poor spatial resolutions. Other neural imaging
methods, like fNIRS, have an advantage of offering higher spatial
resolution, are less invasive, and are cost effective, and thus might
provide additional information, perhaps implemented alongside
or independently of EEG.

CONCLUDING REMARKS

This review aimed to provide context onto the relevance of
trust-related findings in interpersonal and automation domains
in addition to context about the generalizability of trust
between various automation domains. Due to the novelty of
the neural correlates of trust in technology, there is a dearth
of works outside cyber aid technologies. There is still need to
understanding trust in other automation domains beyond cyber
aid technologies and beyond trust influencers like “reliability”
such as investigating how the impacts of “new age” trust
influencers [i.e., team autonomy and fluency; (Chiou and
Lee, 2021)] affect trust perceptions and corresponding neural
correlates. For the studies that consider agent type (namely,
human or anthropomorphic agents against technology agents),
there were observable differences in the neural correlates of
trust. Future research is warred to investigate the similarities or
differences between automation levels and interpersonal relation

levels as pertaining to trust and its corresponding neural activity.
The use of neural activity can provide unique insights other
bioinstrumentations may be unable to capture due to its spatial
resolution and location-based functionality. Beyond the use of
traditional subjective measures, objective correlates of trust can
provide high resolution into the temporal aspects of trust and
provide a real-time measure for use in trust-sensitive technology.
In doing so, automation can be sensitive to physiological
indicators of trust and respond accordingly. In short, a neuro
ergonomics approach may prove promising to better understand
and model human-automation trust.
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