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The EEG reflects mental processes, especially modulations in the alpha and theta

frequency bands are associated with attention and the allocation of mental resources.

EEG has also been used to study mental processes while driving, both in real

environments and in virtual reality. However, conventional EEGmethods are of limited use

outside of controlled laboratory settings. While modern EEG technologies offer hardly

any restrictions for the user, they often still have limitations in measurement reliability.

We recently showed that low-density EEG methods using film-based round the ear

electrodes (cEEGrids) are well-suited to map mental processes while driving a car in

a driving simulator. In the present follow-up study, we explored aspects of ecological

and internal validity of the cEEGrid measurements. We analyzed longitudinal data of 127

adults, who drove the same driving course in a virtual environment twice at intervals

of 12–15 months while the EEG was recorded. Modulations in the alpha and theta

frequency bands as well as within behavioral parameters (driving speed and steering

wheel angular velocity) which were highly consistent over the two measurement time

points were found to reflect the complexity of the driving task. At the intraindividual

level, small to moderate (albeit significant) correlations were observed in about 2/3 of

the participants, while other participants showed significant deviations between the two

measurements. Thus, the test-retest reliability at the intra-individual level was rather low

and challenges the value of the application for diagnostic purposes. However, across all

participants the reliability and ecological validity of cEEGrid electrodes were satisfactory

in the context of driving-related parameters.

Keywords: EEG, driving, mental work load, cEEGrids, test-retest reliability

INTRODUCTION

Neurophysiological research methods have a long tradition of deriving mental processes
both under laboratory conditions and in real-life environments. While in the first
case a high degree of experimental control and reliability of measurements is can be
assumed, measurements of neurophysiological parameters in the field (still) represent
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a challenge, but also an opportunity toward a higher ecological
validity (Engel et al., 2013; Parada, 2018; Parada and Rossi,
2020). Especially with regard to EEG, the development of
modern recording methods and analysis routines has opened
up completely new possibilities to map the work of the brain
under real conditions (for a recent review, Wascher et al.,
2021). In two recent studies, for example, we showed that
mental workload during the processing of cognitive tasks
while walking on differently challenging courses was not only
reflected in performance measures, but that it was also associated
with modulations in brain activity (Reiser et al., 2019, 2020).
While both studies clearly demonstrated the usability of EEG
measurements under out-of-laboratory everyday conditions,
conventional electrode caps have been used here, which offer
a good prerequisite for EEG recording, but are unfavorable in
real-life environments for many reasons: they are conspicuous,
time-consuming to apply, restrict the user’s mobility, and are of
limited use when high ecological validity is important – especially
when possible influence of the measurement method on the
measurement results should be minimized (e.g., Sterr et al., 2018;
Mikkelsen et al., 2019).

Alternative solutions are provided by new recording
technologies. The use of dry electrodes, for example, is such a
technology, which has proven to be very reliable, but easier to
apply and wear compared to conventional wet electrodes (Di
Flumeri et al., 2019). Even more inconspicuous is the cEEGrid
system, in which the EEG is recorded by only a few film-based
round the ear electrodes. The cEEGrids technology not only
avoids restrictions arising from conventional electrode setups
(Symeonidou et al., 2018), but is also easier and faster to apply
than conventional multichannel Cap-EEG. At the same time,
they offer a sufficient signal quality and allow for valid and
reliable measurements (Mirkovic et al., 2016; Bleichner and
Debener, 2017). Previous research has shown, for example,
that it is possible to derive neurophysiological correlates of
cognitive processes from the oscillatory brain activity recorded
via cEEGrid electrodes both in an auditory oddball task (Debener
et al., 2015) and a visual Simon task (Pacharra et al., 2017).

The good practicability of the cEEGrids technology was only
recently demonstrated in a large-scale study on driving abilities
of seniors, in which older adults drove an ∼1-h close-to-reality
driving simulator course, consisting of different road sections
with various challenges for the driver (Wascher et al., 2019).
Using behavioral (driving speed, steering wheel angular velocity)
and neurophysiological measures (EEG oscillatory power in the
theta and alpha band frequencies), it was possible to estimate
mental workload while driving, based only on characteristics
of the driving situation. They found that with increasing
track difficulty the steering angular velocity increased while
driving speed decreased. A similar pattern was found on the
electrophysiological level, whereas relative theta power increased
and relative alpha power decreased. Finally, using a track-
frequency analysis, it was possible to map modulations in EEG
spectral power to the difficulty of the traffic situation, which
highly corresponded with a priori expert ratings. This highlights
the connection of behavioral and electrophysiological measures,
as the findings are in line with the assumption that, firstly,

reduced alpha power is a correlate of increased mental workload
(Wascher et al., 2016) and attentional engagement (Pattyn et al.,
2008), and, secondly, increased theta power is related to mental
processing demands (Lal and Craig, 2001; Borghini et al., 2014)
and associated with higher workload (Wilson and Hankins,
1994; Gevins et al., 1997) or task engagement (Yamada, 1998;
Onton et al., 2005). However, the cognitive processes represented
by alpha and theta activity cannot be considered separately.
Especially in natural environments, for example, when driving
a car (Di Flumeri et al., 2018) and when multi-tasking is
required (Puma et al., 2018), numerous subtasks have to be
performed, which are represented differently in oscillatory brain
activity. It has been proposed that visual processing, information-
gathering, and early attention allocation seems to be represented
more by alpha activity, while higher cognitive processes such
as integration of information, problem solving, and executive
functions seem to be represented more by theta activity (Berka
et al., 2007). This is also reflected in the topography, with
alpha activity typically derived over parietal and theta activity
over fronto-central areas (e.g., Wang et al., 2018; for review,
Klimesch, 1999). Accordingly, by combining driving parameters
and oscillatory activity in the alpha and theta frequency bands
derived over parietal and frontal areas, respectively, it has
recently been demonstrated that the current workload of a driver
can reliably be determined using a mobile EEG system (Islam
et al., 2020). Taken together, both measures demonstrated the
flexible allocation of cognitive resources depending on the route
section and difficulty (Borghini et al., 2014; Karthaus et al., 2018;
for review, Lohani et al., 2019).

Results like these are overall promising, but lead toward
a still unanswered question: to what extent are these EEG
measurements reliable? This arising question of EEG test-retest
reliability is nothing new, as studies on resting-state EEG proved
that the normal EEG can be treated as an intraindividually rather
stable trait (e.g., Gasser et al., 1985; Van Albada et al., 2007;
Angelidis et al., 2016), with test-retest reliabilities in healthy
adults typically exceeding 0.80 over intervals of more than 1
year (Hatz et al., 2015). Adding to this, task-related EEG which
maps changes in cognitive states related to, for example, task
difficulty was also found to have a high test-retest reliability.
An exemplary study was conducted by McEvoy et al. (2000), in
which subjects performed cognitive tasks at intervals of 7 days,
resulting in high intraindividual correlations in oscillatory brain
activity in the theta and alpha frequency bands. Comparably high
reliabilities were also found in other works (e.g., Fernández et al.,
1993; Fallgatter et al., 2002; Näpflin et al., 2008). In the context
of driving, a study on the reproducibility of EEG modulations as
consequence of driver fatigue showed high test-retest reliability
as well (Lal and Craig, 2005). However, transient fluctuations
in mental states like alertness and vigilance are hard to control
especially under less structured experimental conditions and have
typically been associated with reduced test-retest reliabilities – a
pattern typically found in natural environments (Fernández et al.,
1993). For mobile EEG systems, only few findings are available so
far. A study in which the test-retest reliability of a single-channel,
wireless EEG system was tested in healthy individuals showed
reduced, but still satisfactory reliabilities over short (1-day) and
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longer (1-week and 1-month) retest-intervals, with Intra-Class
Correlations for a group of older adults ranging between 0.51
and 0.89 in an eyes-open condition (Rogers et al., 2016). A study
on cEEGrids demonstrated a sufficient test-retest reliability when
measuring resting-state and task-related EEG in an auditory
oddball paradigm over many hours (Debener et al., 2015).

The aim of the present study was to evaluate the test-
retest reliability of the cEEGrid technology under less favorable
recording conditions over an even longer time interval. For this
purpose, the data of the first measurement point of our driving
study presented in Wascher et al. (2019) were compared with
those of the second measurement more than 1 year later. All
data analyzed here were taken from a (still ongoing) large-scale
investigation of the driving abilities of older adults aged between
67 and 76 years, which is designed as a longitudinal study
with the same individuals being tested several times at intervals
of 12–15 months. In addition to several neuropsychological
tests, the project also comprises a simulated driving test during
which the EEG is recorded using cEEGrid technology. The
comparison between the two time points of measurement was
performed on the behavioral (i.e., driving speed and steering
wheel angular velocity) and EEG data (alpha and theta power)
as well as their dependencies on the characteristics of the driving
route. In addition, it was assessed to what extent interindividual
differences could be replicated regarding the allocation of mental
resources as a function of workload. Thus, while our former study
demonstrated that task-related modulations of driving behavior
and EEG—previously found in controlled lab settings—are also
observable in a naturalistic driving simulation and cEEGrids
measurements, now we focused on the following questions:
(1) How have the performance parameters assessed during the
driving course (i.e., driving speed and steering wheel angular
velocity) changed compared to the first measurement point? (2)
Can the previously found dependence of relative alpha and theta
power on track difficulty be replicated at a between-subject level?
(3) How strong is the intraindividual correspondence of the
oscillatory measures in dependence on the track difficulty?

METHODS

Participants
All participants were part of a large-scale longitudinal
investigation of the driving abilities of older adults which
started in 2016. One hundred twenty-seven participants took
also part in both measurement time points, completed the
required driving distance twice and provided a sufficient data
quality in the EEG (see below). These 127 participants (mean
age 72.2 years, age range 68–77 years; 22.0 % female) all had
a valid driving license and reported to be experienced drivers
with an average annual mileage between 5,000 and 10,000
km/year. They had normal or corrected to normal vision and
reported an overall good health status. They completed a
battery of neuropsychological tests which will not be reported
here. Before starting the experiment, all participants provided
written informed consent. The study was approved by the local
ethics committee of the Leibniz Research Centre for Working
Environment and Human Factors.

Task and Procedure
The task and the experimental procedure were exactly the same
for measurement points 1 and 2 (MP1 and MP2). Between MP1
and MP2, there was an average of 398.17 days (minimum 350,
maximum 580, SD 37.79; about 13 months). The test procedure
and data analysis have been described in detail in Wascher et al.
(2019). In brief: After completing various questionnaires and
performing a battery of neuropsychological followed by a vision
test, the participants completed a pre-test drive lasting about
15min. The driving route of the pre-test drive was not part
of the actual test drive and intended to familiarize the drivers
with the characteristics of the vehicle, its steering and braking
behavior, and the static driving simulator (ST Sim, St Software
B.V. Groningen, NL). Then the cEEGrid electrodes were attached
and the participants completed a driving course which resembled
a regular German driving test consisting of four different road
sections: a section of state road with several intersections,
roundabouts, and a foggy passage (SR1) was followed by a longer
freeway section including several roadwork sites and a freeway
parking area had to be passed (FW). This was followed by
another section of state road with several left and right turn
intersections (SR2), before the drivers entered the city where
traffic lights, pedestrians, and cyclists had to be attended to (CT).
Acoustic (verbal) and visual navigation information guided the
drivers through the ∼37-km driving course. Given that not all
participants finished the complete course, only the first 30 km
were analyzed here.

In order to test how the mental workload of the driver
was modulated by the characteristics of the driving route, the
driving scenario was a priori subdivided into three driving
profiles, being either simple (undisturbed ride on a free
route), complex (junctions with turning, roundabouts, left turns,
traffic lights, motorway entrances and exits), or interactive
(interactions with other traffic participants, like overtaking or
driving behind a vehicle ahead). In total, sections of simple,
complex, and interactive driving profiles comprised ∼13, 8, and
9 km, respectively. These driving profiles were classified by an
expert according to their assumed mental demands as of low,
medium, and high task load (cf. Pauzié, 2008; Rahman et al.,
2017). It should be noted, however, that this subdivision was
done across all road sections (i.e., state road, freeway, and city
sections), since the proportion of different route profiles was
distributed rather unevenly across the road sections. Since the
driving distance had to be limited to a reasonable level (also
in view of the background of the study and the age of the
participants), the data basis did not appear to be sufficient for a
more fine-grained differentiation.

Data Recording and Processing
EEG was recorded using cEEGrids, consisting of flex-printed,
C-shaped electrode arrays with 10 silver printed electrodes
(Debener et al., 2015; Bleichner et al., 2016; Mirkovic et al.,
2016; Pacharra et al., 2017). The cEEGrids are positioned
around the participant’s left and right ear using an adhesive
surface (Figure 1). In contrast to conventional electrode setups,
cEEGrids are barely visible, comfortable to wear, require only
a small amount of electrode gel, and are therefore fast and
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FIGURE 1 | cEEGrids technology, consisting of C-shaped electrode arrays

with 10 electrodes placed around the participant’s left and right ears (photo:

IfADo).

easy to apply and remove. The cEEGrids were connected to a
QuickAmp DC-amplifier with an on-line low-pass filtering at
280Hz. Data were sampled at 1 kHz with a resolution of 24 bits.
The two electrodes in the middle of the right cEEGrid served
as ground and online reference respectively (R4a, R4b). EEG
data were stored together with the driving simulator data from
which driving speed and steering wheel angular velocity were
derived offline. Driving speed was defined as the distance (in
meters) traveled per time (in seconds) over a distance of 10m
and converted in kilometers per hour (km/h). Steering wheel
angular velocity was defined as the angular speed at which the
drivers turned the steering wheel, averaged over a distance of
10m and converted in degrees per second (deg/s). In general,
steering wheel angular velocity is considered an indicator of task
load while driving (e.g., Antin et al., 1990; Verwey and Veltman,
1996).

The EEG analysis procedure is described in detail in Wascher
et al. (2019) and is therefore only outlined briefly here.
Firstly, data were checked for integrity, so that data sets with
either incomplete driving distance or corrupt transmission of
simulator data into the EEG recording files were discarded. After
resampling to 200Hz and band-pass filtering (1–40Hz) of the
EEG and simulator data, single EEG channels were checked
for integrity by using the EEGLAB implemented rej_channel
function (normed data; criterion: 4 standard deviations) to
detect and discard faulty channels. Only datasets with intact
reference channels after channel rejection were kept for further
analyses. They were re-referenced to the average of L4b and
R4b and entered into the artifact subspace reconstruction (ASR)
procedure (Mullen et al., 2014, 2017). ASR is a component-based
method and was proven in a number of studies (e.g., Plechawska-
Wojcik et al., 2019) including a driving simulator study (Chang
et al., 2019) to be highly effective in automatic filtering transient
or large-amplitude artifacts (like produced by eye blinks and
eye movements) from EEG data. Followingly, a time frequency
decomposition was performed on each channel by convolving
the data with complex Morlet wavelets. Spectral power estimates
were calculated as the squared absolute values of the complex

convolution result and were averaged across channels. Finally,
participants with total EEG power that deviated by more than
3 standard deviations from the median were discarded and the
complete data set was excluded. In total, the 127 participants
(described in section Participants) who had complete data sets at
both measurement points were included into the further analysis.

Data Analysis
We conducted two different approaches to assess the retest
reliability of the EEG data, first a task-load related analysis,
investigating whether the EEG measures at both measurement
points depended on the driving profile in the same way, and
second an (intra-individual) correlational analysis, comparing
the EEGmeasures along the route at MP1 andMP2 separately for
each subject. In addition to the spectral power in theta (3–6Hz)
and alpha (7–10Hz) frequency bands, behavioral data (driving
speed and steering wheel angle velocity) were analyzed to test
whether behavioral results reflect the same pattern as the EEG
results. It should be noted that we chose a lower than typical
frequency range for determining alpha activity. The reason for
this is the shift in alpha activity toward lower frequencies that
is often observed with increasing age (e.g., Van Albada et al.,
2010; Chiang et al., 2011). In our earlier analysis, we also
measured a mean alpha frequency of <9Hz and therefore chose
the frequency range of 7–10Hz (Wascher et al., 2019). For this
reason, and also for reasons of better comparability with our
previous study, we have maintained this frequency range here
as well.

In the task-load related analysis, behavioral and EEG data
were averaged across the driving course, separately for simple,
complex, and interactive driving profiles, and mean values
were entered into 2 × 3 ANOVAs with measurement point
(MP1, MP2) and driving profile (simple, complex, interactive) as
within-subjects factors. Effect size estimates (adj η2p) are reported
according to Mordkoff (2019). As in our former study, not only
raw power values of alpha and theta activity were analyzed, but
also relative power values, representing the percentage of the
power in a given frequency band relative to the total power.
We therefore calculated the contribution of each frequency to
the overall signal by applying a vector normalization across all
frequencies for each time point. The result were the so-called
alpha and theta fractions. The idea behind this normalization
is that high power and high variance in oscillatory activity
across all frequency ranges often masks effects in the alpha and
theta regions, which may become more prominent by forming
the relative power values. Thus, there is evidence that relative
power fluctuations are more related to experimental effects than
absolute power fluctuations (Klimesch, 1999; Kilner et al., 2005;
Labounek et al., 2015).

For the correlational analysis, we conducted the track-
frequency analysis (as detailed in Wascher et al., 2019), in which
the time period of the EEG recording was mapped onto the
30-km driving route using 43 predefined landmarks for each
participant. The landmarks consisted of defined route points to
which a trigger was written into the EEG recording as soon
as the vehicle passed this point. For the sections between the
landmarks, the waypoints were estimated from the current speed
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of the vehicle at that point. Thus, we achieved a temporal-spatial
assignment, in which each time point of the EEG measurement
was assigned to a track section by stretching and compressing
the EEG data in the temporal domain. For the track-frequency
analysis, 3,000 10-meter track segments were generated, covering
the entire 30-km driving route. To determine the alpha and
theta power along the track, first a time-frequency analysis was
performed over all time points. Based on this analysis, the mean
power fraction for alpha and theta power was calculated for
each of the 10-meter track segments, then z-transformed across
all the 3,000 data points and low-pass filtered by a ± 40m
moving average. The 95% confidence intervals were calculated
and are shown in Figure 4 for MP1 and MP2. In order to
determine the relationships of oscillatory power measured at the
two measurement points on an intraindividual level, correlations
between MP1 and MP2 were computed across the entire 30-
km driving course. That is, Pearson’s r correlations between
the alpha and theta power values measured at MP1 and MP2
were computed across the 3,000 10-meter track segments for
each participant. Associations between the two measurement
points were regarded as weak, moderate, or high for correlation
coefficients of 0.10, 0.30, or 0.50 or larger, respectively, according
to the interpretation of effect sizes proposed by Cohen (2013).
Since effects of the driving course should rather appear on relative
(than on absolute) power values (see above), the correlation
analysis was exclusively performed for alpha and theta fractions.

The track-frequency analysis was completed by a simple
classifying algorithm intended to estimate the track-specific task
load based on the EEG data. Here, it was assumed that high
theta activity is associated with increased mental effort and high
alpha activity with reduced attentional allocation. Therefore, as in
our previous analysis (Wascher et al., 2019), the algorithm tested
theta and alpha fraction against each other using a paired-sample
t-test for each data point (i.e., for each 10-meter track segment),
and assigned low task load to track segments with significantly
higher alpha than theta fraction, and high task load to segments
with significantly higher theta than alpha fraction. If theta and
alpha fraction did not differ significantly, a median task load was
assigned to this track segment. This classification procedure was
performed equally for MP1 and MP2, and it was determined
how many road sections were rated as equally difficult at both
measurement times (suggesting a reliable estimation of task load
from the EEG) or were rated as easier or more difficult in MP1
and MP2. Finally, for each participant the correlation of EEG-
based task load estimates at MP1 and MP2 was computed across
the entire 30-km driving course (i.e., across the each 10-meter
track segment), using Pearson’s r correlations.

RESULTS

Behavior
The track-based analyses of the driving parameters showed
that both driving speed and steering wheel angular velocity
profoundly varied along the driving course (Figure 2). In
particular, while the freeway section (FW) was characterized by
high driving speed and low steering angular velocity (apart from
passing through a freeway parking area at kilometer 15), the

second state road section (SR2) and especially the city traffic drive
(CT) were characterized by lower and highly varying driving
speed as well as increased and higher steering angular velocities.
More importantly, however, it is to notice that the driving
speed increased overall, while the steering wheel angular velocity
decreased at MP2 relative to MP1. Also, the mean drive time for
the entire course went from 51.6min (SD 9.0) to 46.7min (SD
8.3), t(126) = 5.65, p < 0.001.

These differences were even more evident in the task-load
related analysis, analyzing the driving parameters separately for
passages with simple, complex, and interactive driving profiles
(Figure 3). The mean driving speed significantly increased from
MP1 to MP2, F(1, 126) = 25.60, p < 0.001, adj η

2
p = 0.162, while

the mean steering wheel angular velocity decreased, F(1, 126) =
20.15, p < 0.001, adj η

2
p = 0.131. There were no interactions

of measurement time and driving profile, neither for driving
speed, F(2, 252) = 0.35, p = 0.71, adj η2p = 0.005, nor for steering

wheel angular velocity, F(2, 252) = 1.36, p = 0.26, adj η2p = 0.003,
indicating that the effects of driving profile on driving speed,
F(2, 252) = 4,402.95, p < 0.001, adj η

2
p = 0.972, and steering

angular velocity, F(2, 252) = 2,118.03, p < 0.001, adj η
2
p = 0.944,

did not depend on measurement time. Thus, the participants
drove at highest speed in simple passages and significantly
reduced the speed in complex passages, F(1, 126) = 5,488.40, p
< 0.001, adj η2p = 0.977. Relative to complex passages, they also
drove faster when there were interactions with other road users,
F(1, 126) = 1,369.34, p < 0.001, adj η

2
p = 0.915. The steering

angular velocity increased from simple to complex passages,
F(1, 126) = 5,919.92, p < 0.001, adj η2p = 0.979, and further from
complex to interactive passages, F(1, 126) = 169.92, p < 0.001, adj
η
2
p = 0.571.

Alpha and Theta Power Analysis
The track-based analysis of brain oscillatory power demonstrated
that both alpha and theta power fractions varied substantially
over the driving route (Figure 4): Phases of high alpha
fraction alternated with short sections in which alpha fraction
was strongly reduced. For example, the freeway passage was
characterized by high alpha fraction values, while these were
reduced at the beginning of the fog passage at kilometer 3, when
driving through the freeway parking area at kilometer 15, and
during city driving after kilometer 27. The theta values, on the
other hand, showed a rather inverse pattern.

The task-load related analysis indicated that raw alpha power
significantly increased from MP1 to MP2, F(1, 126) = 10.02, p
< 0.005, adj η

2
p = 0.066, while differences for raw theta power

and alpha and theta fraction power were not significant, all Fs
< 2.13, all ps > 0.14 (Figure 5). There were effects of driving
profile on raw theta power, F(2, 252) = 24.75, p < 0.001, adj η

2
p

= 0.158, as well as alpha fraction power, F(2, 252) = 11.89, p <

0.001, adj η2p = 0.079, and theta fraction power, F(2, 252) = 66.38,

p < 0.001, adj η
2
p = 0.340, but not raw alpha power, F(2, 252) =

0.15, p= 0.86, adj η2p = 0.007. Also, there were no interactions of
measurement time and driving profile, all Fs< 2.76, all ps> 0.06.
Further comparisons of the different driving profiles indicated
that alpha fraction decreased from simple to complex passages,
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FIGURE 2 | Track-based analyses of driving parameter. Mean driving speed (upper row) and steering wheel angular velocity (lower row) as function of driving route,

shown separately for MP1 (black), MP2 (red), and MP1 – MP2 differences (blue). Note that for each time point individual values of each participant were assigned to fix

waypoints and then averaged 10-meter wise. SR1, first state road; FW, freeway; SR2, second state road; CT, city traffic.

F(1, 126) = 14.36, p < 0.001, adj η2p = 0.095, but did not differ in
complex and interactive passages, F(1, 126) = 0.06, p = 0.82, adj
η
2
p = 0.007. Raw theta power increased from simple to complex

passages, F(1, 126) = 44.27, p < 0.001, adj η
2
p = 0.254, but did

not differ in complex and interactive passages, F(1, 126) = 0.04;
p = 0.85, adj η

2
p = 0.008. Theta fraction power also increased

from simple to complex passages, F(1, 126) = 52.53, p < 0.001,
adj η2p = 0.289, and was stronger in interactive than in complex

passages, F(1, 126) = 10.95, p < 0.005, adj η2p = 0.073.

Correlational Alpha and Theta Power
Analysis
In order to estimate the degree to which alpha and theta fraction
power remained stable between the two measurement points at
an intraindividual level, correlations have been computed across
the entire 30-km driving course (i.e., across the 3,000 10-meter
track segments) for each participant. Individual analyses revealed
that the correlation coefficients were quite evenly distributed and
ranged from low to medium (Figure 6). There were significant
positive correlations (p < 0.05) in 73.2% of the participants for
alpha fraction, r = 0.57–0.04, and in 80.3% for theta fraction,
r = 0.59–0.04. Of these significant positive correlations, 53.8%
(alpha fraction) and 68.6% (theta fraction) were in a low range,
r > 0.1, and 7.5% (alpha fraction) and 13.7% (theta fraction)
were in a medium range, r > 0.3. Also, significant negative

correlations were found in 6.3% of the participants for alpha
fraction, r = −0.10 to −0.04, and in 6.3% for theta fraction,
r =−0.13 to−0.04.

EEG-Based Estimation of Task Load
The EEG-based estimation of the track-specific task load revealed
a pronounced variance of load ratings along the driving course
(Figure 7). High load ratings were mainly found at the beginning
of the drive and of the fog passage (at kilometer 3), during the
state road sections (SR1 and SR2) as well as during the city traffic
drive (CT). Low load ratings were found during the freeway
section (FW), apart from passing through a freeway parking area
(at kilometer 15). This pattern was overall quite similar at MP1
and MP2, r = 0.729. There were, however, some differences in
task load ratings: Higher ratings were found at the beginning and
the end of the fog passage (at kilometer 3 and 5), while passing
through the freeway parking area (at kilometer 15), and at the
end of the freeway section. In contrast, lower ratings were found
during the fog passage, during the freeway section (FW), and the
second state road section (SR2). Overall, of the 3,000 (10-meter)
track segments assessed, 72.23% were rated the same in terms of
task load, 14.66 % were rated as easier and 13.11% were rated as
more difficult. Not a single road section that was rated as easy
(difficult) in one of the two measurements was rated as difficult
(easy) in the other measurement (Figure 8).
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FIGURE 3 | Task-load related analysis of driving parameters. Average driving speed (left) and steering angle velocity (right) as function of driving profile (simple,

complex, interactive), shown separately for MP1 (black) and MP2 (red). Error bars indicate standard errors.

Finally, in order to test to what extent the EEG-based
estimates of task load are consistent at the first and second
measurement time points at an intraindividual level, correlations
were computed across the 3,000 (10-meter) track segments for
each participant. There were significant positive correlations in
81.9% of the participants, r = 0.44–0.04, of which 61.5% were
in a low range, r > 0.1, and 4.8% in a medium range, r >

0.3. Significant negative correlations occurred in 7.1% of the
participants, r =−0.11 to−0.04 (all p < 0.05).

DISCUSSION

The aim of the present study was to evaluate the reliability of the
cEEGrid technology in a longitudinal investigation of the driving
abilities of older adults. Behavioral and electrophysiological
parameters of mental load measured while driving in a driving
simulator at two time points more than 1 year apart were
compared and related to characteristics of the driving course.
With a high reliability of the measurement, comparable effects
of task difficulty on the EEG parameters should appear
(independent of the time of measurement), which should
also be related to the behavioral measures. In addition, a
high correspondence of the oscillatory measures between the
first and the second measurement time should occur on an

intra-individual level. The analyses indicated a number of specific
effects of measurement time point and driving profile on
behavioral driving parameters and brain oscillatory activity that
are discussed in detail in the following.

Driving Parameters: Speed and Steering
Wheel Angular Velocity
Overall, the average speed increased while the steering wheel
angular velocity decreased from MP1 to MP2. Given that the
driving speed in our scenario could be freely chosen by the driver
within themaximum speed limits, the increase in driving speed at
the second measurement time point could indicate an increase in
perceived safety whenmanaging the driving task at a second time.
On the one hand, this could result from a higher familiarity with
the route. Especially in elderly drivers, a reduction of speed is a
frequently observed strategy when driving an unknown route or
when the driving situation becomes more complex so that drivers
feel unsafe (Trick et al., 2010). In extreme cases, this can lead to
dangerous driving situations, for example, if other road users are
hindered and forced to make unnecessary and risky overtaking
maneuvers. On the other hand, driving speed is usually increased
with decreasing workload (Harms, 1986; Verwey and Veltman,
1996), which would also suggest that the second drive was less
challenging to the participants than the first one.
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FIGURE 4 | Track-based analyses of EEG parameter. Mean z-transformed alpha (middle row) and theta (lower row) power fractions as function of driving route for

MP1 (black) and MP2 (red), shaded by their 95% confidence intervals. For comparison, mean driving speed (upper row) is also shown. Note that for each time point

individual alpha and theta values of each participant were assigned to fix waypoints and then averaged separately for 10-meter track segments. SR1, first state road;

FW, freeway; SR2, second state road; CT, city traffic.

This is also supported by the decrease in steering wheel
angular velocity as this measure is also considered to be an
indicator of task load while driving (e.g., Antin et al., 1990;
Verwey and Veltman, 1996). Here, high angular velocities are
associated with high load whereas low angular velocities are
associated with low load. Accordingly, repeatedly driving the
same route would be less stressful than maneuvering on a
completely unfamiliar route. It is remarkable that there was more
than 1 year between the measurements, which means that the
participants seem to have memorized the requirements of the
route very well. In addition, long-term learning effects could play
a role by which the participants benefit from a more and more
experienced anticipation of steering behavior of the car. In a
previous driving simulator study, in which younger and older
participants had to keep a virtual car on track on a curvy road,
we also observed learning effects in form of a decrease in steering
variability during the∼1-h drive (Getzmann et al., 2018).

With regard to the reliability of the measurements, it is
also remarkable that the influences of the driving profile on
driving speed and steering wheel angular velocity did not differ
at MP1 and MP2. The driving course was subdivided into
simple, complex, and interactive driving profiles, which were
related to different levels of task load, based on known factors
of mental load in driving situations (Pauzié, 2008; Engström
et al., 2017; Rahman et al., 2017). Thus, passages with an

undisturbed ride on a free route were rated as of low task
load, passages with junctions with turning, roundabouts, and
left turns as of medium task load, and interactions with other
traffic participants as of high task load (for a critical discussion,
see Wascher et al., 2019). The increase in steering angular
velocity with increasing task load corresponds well with the
assumption that this measure is associated with the demands
of driving, which, as expected, is lower for a simple driving
profile than for a complex one (involving intersections and
traffic lights) as well as interactions with other road users. A
limiting factor here could be that the driving profiles were
not evenly distributed over the route sections. For example,
complex driving profiles (with intersections and give way signs)
are more common in the city, while freeway sections are more
characterized by simple driving profiles. This might also explain
the (unexpectedly) higher driving speed with interactive than
complex driving profiles: Interactions with other road users are
also common on state roads and freeways (where driving speed
is on average higher than in the city), whereas complex driving
profiles (and lower driving speed) are more common in the city.
An interaction of driving profile and route section can therefore
not be completely ruled out. Nevertheless, the replication of this
general pattern suggests that overall demands decreased relative
to the first test drive, but did not depend on the route profiles
passed through.
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FIGURE 5 | Task-load related analysis of EEG parameters. Raw (upper row) and fractional (lower row) average power in the alpha (left) and theta (right) frequency

bands as function of driving profile (simple, complex, interactive), shown separately for MP1 (black) and MP2 (red). Error bars indicate standard errors.

EEG Parameters: Alpha and Theta Power
Comparable patterns to the behavioral data were also found in
the derived EEG measures: Overall, raw alpha activity increases
from the first to the second measurement time point. In addition,
and independently of the time of measurement, relative alpha
power (power fraction) varied with the driving profiles and was
higher at simple compared to complex and interactive passages.
In general, decreases in alpha power are usually associated
with the allocation of attention (Herrmann and Knight, 2001),
while increases in alpha power is assumed to reflect mental
fatigue, but also attentional withdrawal and disengagement
(Hanslmayr et al., 2012; Wascher et al., 2014, 2016) as typically
observed when tasks are perceived as monotonous and boring
(Borghini et al., 2014). In the driving context, increased alpha
power has thus been observed during monotonous driving
situations, probably reflecting periods of inattention and mind-
wandering (Lin et al., 2016). Assuming increases in alpha
activity to be associated with reduced attentional engagement,
the present findings would argue for a withdrawal of attentional
resources, both in longitudinal and route-related terms: The
participants seemed to pay less attention to the driving task
when they drove the same route for a second time. However,
they continued to flexibly adapt their mental resources to the
task demands and increased their attention when the traffic
situation became more complex. Interestingly, effects of driving

profile were only found on alpha fraction power, but not raw
alpha power. This discrepancy could be due to a relatively
high power in oscillatory activity in low frequency bands (as
has been observed in Wascher et al., 2019), which could have
masked experimental effects in the higher frequency alpha band.
In line with this assumption, it has been shown that weak
effects in higher frequency bands tend to become evident in
relative power measures rather than in absolute (raw) measures,
where low-frequency power is dominant (Labounek et al.,
2019).

Activity in theta power is generally associated with cognitive
control (Cavanagh and Frank, 2014; Cavanagh and Shackman,
2015) and typically increased with higher workload (Wilson
and Hankins, 1994; Gevins et al., 1997) and task demands (Lal
and Craig, 2001; Jensen and Tesche, 2002; Onton et al., 2005;
Borghini et al., 2014). Theta power also increases with higher
task engagement (Yamada, 1998; Onton et al., 2005) and with the
effort to keep task performance high (Wascher et al., 2014; Arnau
et al., 2017). In line with this assumption, both raw and relative
(fractional) theta power values were increased in the present
driving task at more complex route sections, such as at the
beginning of the fog passage and during city driving. However,
independently of these demand-related modulations, there was
rather an (albeit not significant) increase in raw theta power at the
second measurement time point (cf. Figure 4), suggesting that

Frontiers in Neuroergonomics | www.frontiersin.org 9 September 2021 | Volume 2 | Article 729197

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Getzmann et al. Retesting cEEGrids and Driving

FIGURE 6 | Frequency distribution of individual (significant) Pearson’s correlation coefficients for alpha (upper row) and theta (lower row) fraction power measured at

MP1 and MP2.

the task demands and/or task engagement increased (or at least
did not differ) at MP2 compared to MP1.

One could argue that the theta power findings partly
contradict the interpretation of the alpha power, suggesting a
decrease in task engagement. Selection effects in the way that
drivers with low task engagement left the study after MP1
and did not participate in MP2 can be excluded, as the same
drivers were examined at both measurement time points. A
more plausible interpretation could be that the participants
had a higher motivation to perform well in the driving task,
perhaps even better than at the first time. Given that the
current study is designed to detect age-related deteriorations
in driving ability, the participants’ motivation to counteract
these by increasing effort may be particularly pronounced, as
reflected by undiminished theta activity. This interpretation
is supported by findings of a previous study on age-related
differences in pro-active driving behavior (Getzmann et al.,
2018): Better performance in proactive driving (i.e., more alert
steering behavior, better anticipation and active use of driving-
relevant information and more proactive planning of driving
manoeuvers) was associated with increased mental effort in the
older group, as reflected by higher theta power. Moreover, only
in the older group a relationship between steering variability and
theta power was found, with better steering performance being
associated with higher theta power. Taken together, the EEG

findings suggest that the drivers were more relaxed, but remained
motivated to perform the driving task well at the second time.

Another relevant aspect to be discussed here are task-specific
differences between alpha and theta activity, which are also
reflected in differences in the brain areas over which they are
usually derived. While alpha power is most prominent over
occipital-parietal areas of visual cortex, theta power is measured
over frontal areas associated with higher cognitive executive
functions (for review, Klimesch, 1999). In a realistic driving task,
in which complex and monotonous driving passages alternate,
and in which multiple subtasks such as visual information
uptaking and processing, attention allocation, spatial navigation
have to be performed, alpha and theta activity should therefore
be differently involved (Di Flumeri et al., 2018; Puma et al.,
2018; Wang et al., 2018). In particular, alpha activity (i.e., its
suppression) seems to be rather associated with task engagement,
while theta activity seems to be associated with task workload
(Berka et al., 2007; Wang et al., 2018). This could explain,
for example, differences in the dependence of alpha and
theta power on the driving profile. For example, the track-
based analysis indicated an increase in theta activity at the
beginning of the second state road section at kilometer 21
(which was characterized by demanding passages), which was not
accompanied by a suppression of alpha activity (cf. Figure 4).
Also, theta fraction power was higher in interactive than in
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FIGURE 7 | EEG-based estimation of task load. Task load (low, medium, high) as function of driving route for MP1 (black) and MP2 (red), and MP1 – MP2 differences

(blue). For each time point individual task load estimations of each participant were assigned to fix waypoints and then averaged separately for 10-meter track

segments. For comparison, mean driving speed (upper row) is also shown. SR1, first state road; FW, freeway; SR2, second state road; CT, city traffic.

FIGURE 8 | Heatmap of EEG-based estimation of task load at MP1 and MP2. The figure shows the number of road sections that were rated as equally difficult at

both measurement times, as well as the number of sections that were rated as easier (outlined in green) or more difficult (outlined in red) in MP2 than in MP1, averaged

across all participants. A total of 3,000 (10-meter) track segments were classified as of low, medium, or high task load.
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complex driving profiles, whereas alpha fraction power did not
differ in either condition. This could suggest that interaction with
other road users and driving on a demanding but empty route
account for differences in task load, while task engagement is
hardly affected.

A limiting factor which complicates the interpretation of
the results, and which has to be noted here is the reduced
spatial resolution of the cEEGrid technology. The electrodes are
located largely over temporal areas, making a clear differentiation
of oscillatory activity into frontal and parieto-occipital parts
difficult. Traditionally, theta activity is derived over frontal areas
and alpha activity over posterior areas, where the power in
these frequency bands is usually most prominent (for review,
Klimesch, 1999). Thus, only very few studies have considered
theta and alpha activity measured over temporal areas as
potential indices of mental workload and task engagement. In
studies on simulated driving (Diaz-Piedra et al., 2020) and multi-
tasking (Puma et al., 2018), workload-induced modulations of
theta activity (with higher workload being associated with higher
theta activity) were not only observed over frontal and occipital
regions, but also over temporal regions. A combined EEG-
fMRI study showed that workload-induced modulations of theta
activity were most pronounced over frontal and posterior areas
(Sammer et al., 2007). However, an additional EEG-constrained
fMRI analysis revealed that the generators of these effects were
not primarily localized frontally, but form a network including
temporal and hippocampal hemodynamic activation, cingulate
activation, frontal superior, and cerebellar activation. The authors
thus concluded that theta band activity reflects a binding process
of widely distributed cortical areas, which all contribute to the
EEG activity derived at the scalp. The same could be true for
alpha band activity, which appears to reflect a network-binding
mechanism, supporting the interplay within thalamo-cortical
networks relevant for sensory gating and the control of vigilance
and attention (Lopes da Silva, 2013; for review, Nishida et al.,
2015). Significant effects of task difficulty on alpha power (with
easier task conditions being associated with larger power) have
been observed over temporal areas (Brookings et al., 1996),
while other studies failed to find effects of performance (Çiçek
and Nalçaci, 2001) and relaxation (Scholz et al., 2018) on alpha
activity over temporal areas, which were observed over parietal
areas. Thus, it appears that theta effects could be more reliably
derived over temporal areas than alpha effects. This could also
explain why in the present study (as well as in our previous study,
Wascher et al., 2019) discrepancies between raw and fractional
power occurred in the alpha band, but not in the theta band:
Given that fractional power was corrected for total power in the
signal, alpha effects could be more pronounced (independent
of their topography) in fractional power. However, since no
conventional multi-channel EEG cap has been employed here
for a direct comparison of the signals measured with cEEGrids,
especially the interpretation of the alpha activity should be
treated with caution.

Test-Retest Reliability Considerations
Two different approaches have been chosen to determine the
retest reliability of the EEG results, first a task-load related

analysis, investigating whether the EEG measures at both
measurement points depended on the driving profile in the same
way, and second an (intra-individual) correlational analysis,
comparing the EEG measures along the route (subdivided
into 3,000 10-m track segments) at MP1 and MP2 separately
for each subject. The task-load related analysis showed a
high correspondence of the EEG patterns between the two
measurement times across all participants: That is, independent
of the measurement time, challenging traffic situations are
accompanied by a reduction of alpha and an increase of theta
(e.g., as can be seen at the beginning of the city drive), whereas
monotonous traffic situations (e.g., the foggy passage or the
undisturbed highway drive) showed the opposite pattern. Thus,
the effect of driving profile on alpha and theta activity was reliably
found at both measurement times, indicating a high reliability of
the measurement, especially for fraction values.

The same is true for the high correspondence in the estimation
of task load from the alpha and theta values between the two
measurement time points. The track-based analysis indicated
that passages that were estimated to be easy (or hard) at MP1
were also easy (or hard) at MP2. In particular, averaged across all
participants, the analysis showed that not a single road section
that was rated as easy (difficult) in MP1 or MP2 was rated
as difficult (easy) in the other measurement (cf. heatmap in
Figure 8), which indicates a reliable estimation of task load. On
the other hand, this also means that road sections overall were
not estimated to be easier at MP2. Thus, a higher familiarity
with the route (suggested by a higher average speed and lower
steering wheel angular velocity) was not associated with a
reduced difficulty (estimated from the alpha and theta ratio).
In other words: a difficult passage (associated with high theta
and low alpha activity) may well be passed more quickly due to
familiarity with the route, without it becoming less challenging.
Still, a few changes emerged that can be plausibly explained
(as can the driving parameters). For example, the patterns of
alpha/theta values at the secondmeasurement time point indicate
an increased task load at the beginning and end of the fog passage,
whereas during the fog passage the task load was estimated to be
lower. Both effects can be explained by an increasing familiarity
of the participants with the route. This interpretation is in line
with the so-called “route-familiarity effect,” in which greater
route familiarity can lead to increased inattention and mind-
wandering and, as a consequence, to driving impairments (e.g.,
Martens and Fox, 2007; Yanko and Spalek, 2013). The same
was true for undisturbed country road passages, which appeared
to be driven with a higher routine and lower task load. This
and the overall high correspondence of the EEG patterns with
the behavioral data suggest high content test-retest reliability of
the cEEGrids technology used for the sample of participants as
a whole.

On an intraindividual level, significant positive correlations
were found for most of the participants, both for alpha and theta
activity as well as for the derived EEG-based estimation of task
load. Participants who showed a high alpha or theta activity at
the first measurement time and a high mental workload did so
again at the second measurement time, which indicates a certain
degree of temporal stability of the measurements. However, it has
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to be noted that the vast majority of the individual correlations
were (although mostly highly significant) in a low range. Usually,
higher reliabilities are found in more structured EEG conditions
(McEvoy et al., 2000), i.e., in demanding cognitive tasks, since
fluctuations in cognitively engaging tasks are generally lower. At
least in complex road sections and in interaction with other road
users, an increased cognitive load can also be assumed.

Regarding an individual (possibly diagnostic) evaluation, the
small correlations make the interpretation in terms of a change
from MP 1 to MP 2 difficult. The same applies to the prediction
of future values based on previous values. In addition, it is
remarkable that some (few) participants also showed negative
correlations, suggesting that the pattern of oscillatory power over
the driving distance has (at least partly) reversed. This could
indicate a change in the mental resources that some subjects
invested in the driving task, with a high task engagement at MP1
changing to an attentional disengagement at MP2 (or vice versa).
In this context, it should be pointed out that the data come from
an ongoing study on the development of traffic safety parameters
in older drivers, and that changes in mental abilities are to be
expected in the age range considered.

In summary, however, it must be stated that the correlations
within the participants are rather low, i.e., that the alpha/theta
activity in track segments at MP1 is poorly associated with the
alpha/theta activity in the same segment at MP2. This suggests
high fluctuations in oscillatory activity between measurement
time points that are not related to the task load of the track
segments themselves. It is difficult to assess whether this is
due, for example, to transient fluctuations in mental states like
alertness and vigilance during the drive, or changes within
participants over the relatively long time period between MP1
and MP2, or demonstrates limitations of the EEG methodology
used. Further insights may be provided by the investigation
of possible correlations between changes in individual driving
performance (and its changes over time) and EEG parameters,
which are planned at a later stage of the still ongoing project. The
age range of the test group, which is clearly not representative for
the entire population of drivers, may also be a potentially limiting
factor with regard to the generalizability of the results. Age-
related decreases in cognitive performance as well as increases
in interindividual variation both can lead to a conflict with the
determination of the reliability of the EEG method. Another
problem specific to the cEEGrid technology is that the electrodes
on older skin, which is often drier and more wrinkled, may
have increased resistances, resulting in poorer and fluctuating
conduction of the EEG. Future comparative studies with younger
subjects therefore seem appropriate.

CONCLUSIONS

Taken together, the present test-retest analysis demonstrated
changes in behavioral and brain oscillatory parameters between
the first and second measurement time point across all
participants, which can be characterized by an increase in
driving speed and decrease in steering angular velocity as well
as an increase in alpha power, while theta power remained
rather stable. These changes suggest a reduced overall task load

which appears plausible with regards to learning and memory
effects. At both measurement points, the EEG parameters (like
the behavioral parameters) were similarly modulated by track
difficulty and—as a consequence—task demands, indicating a
high reliability and ecological validity of the EEG application
via cEEGrid technology. At the intra-individual level, positive
correlations of the oscillatory measures and its dependence on
track difficulty were found in the majority of the participants.
On the other hand, intra-individual correlations were (although
significant) rather low, raising the question of the individual-
diagnostic value of the chosen method. Further analysis of the
reasons why some participants showed significant differences
compared to the first measurement will be necessary to determine
if this was due to the EEG recording or if the causes may be
found in the participants themselves (e.g., cognitive decline).
However, in the context of task-related EEG parameters which
maps changes in cognitive states related to, for example, task
difficulty, the reliability and ecological validity of cEEGrid
electrodes appear satisfactory. Overall and in combination with
the findings of our previous study (Wascher et al., 2019), the
results provide further evidence for the usability of portable
low-density EEG methods like cEEGrids as an alternative to
conventional lab-based recording systems for mapping mental
processes in natural environments.
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