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Neural mechanisms, such as enhanced neuroplasticity within the motor system,

underpin exercise-induced motor improvements. Being a key mediator of motor

plasticity, brain-derived neurotrophic factor (BDNF) is likely to play an important role

in mediating exercise positive effects on motor function. Difficulties in assessing brain

BDNF levels in humans have drawn attention to quantification of blood BDNF and

raise the question of whether peripheral BDNF contributes to exercise-related motor

improvements. Methodological and non-methodological factors influencemeasurements

of blood BDNF introducing a substantial variability that complicates result interpretation

and leads to inconsistencies among studies. Here, we discuss methodology-related

issues and approaches emerging from current findings to reduce variability and increase

result reproducibility.
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INTRODUCTION

A growing body of evidence shows that exercise helps attenuate disease-related motor impairments
(Stein, 2004; Marigold et al., 2005; Crizzle and Newhouse, 2006; Herman et al., 2007; Gobbi et al.,
2009; Quaney et al., 2009; Ridgel et al., 2009; Cooke et al., 2010; Hauer et al., 2012; Vreugdenhil
et al., 2012; Gomes de Melo Coelho et al., 2013b; Pitkälä et al., 2013; van der Kolk and King,
2013; Schwenk et al., 2014a,b; Duchesne et al., 2015; Dennett et al., 2016; Cugusi et al., 2019;
Gretebeck et al., 2019; Linder et al., 2019) and maintain motor function in aging adults (Rikli
and Edwards, 1991; Buckwalter, 1997; Campbell et al., 1999; Visser et al., 2002; Means et al., 2005;
Pahor et al., 2014; Bolandzadeh et al., 2015; Brach et al., 2017; Hsu et al., 2017a,b; Hübner et al.,
2018). Age- and disease-associated motor impairments include reduced balance, motor control,
gait speed and stride length, altered rhythm, rigidity, and slow movements and lead to a decline
in physical functioning and mobility, and consequently to falls and fall-related injuries, which
result in a loss of independence, morbidity, and mortality (Overstall et al., 1977; Winter et al.,
1990; Tinetti and Williams, 1998; Sterling et al., 2001; Jørgensen et al., 2002; Grimbergen et al.,
2004; Todd and Skelton, 2004; Weerdesteyn et al., 2008; Ioannidis et al., 2009; Blankevoort et al.,
2010; Deandrea et al., 2010; Tinetti and Kumar, 2010; Fasano et al., 2017; Lach et al., 2017; Xu
et al., 2018; Osoba et al., 2019; Zhang et al., 2019). Since exercise improves mobility, gait speed
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and rhythmicity, stride length, postural reflexes, balance, and
motor control in the elderly, stroke survivors, and individuals
with Parkinson’s, Alzheimer’s, or dementia (Marigold et al., 2005;
Crizzle and Newhouse, 2006; Herman et al., 2007; Goodwin et al.,
2008; Gobbi et al., 2009; Quaney et al., 2009; Blankevoort et al.,
2010; Brienesse and Emerson, 2013; van der Kolk and King,
2013; Schwenk et al., 2014b; Mehrholz et al., 2015), it appears
effective at prolonging the ability to perform daily activities
and at reducing injuries, morbidity, and mortality related to
falls. However, our understanding of how exercise improves
mobility, balance, motor control, and gait parameters such as
speed, rhythmicity, and stride length needs to be expanded
(Figure 1). It is now widely acknowledged that exercise benefits
mobility not just by improving physiological function, such
as muscle strength and balance (Robertson et al., 2002; Liu-
Ambrose et al., 2008, 2013), but also through neural mechanisms
(e.g., enhanced neuroplasticity, maintenance of white and gray
matter integrity and volume in motor brain areas) (Shepherd,
2001; Colcombe et al., 2003, 2006; Forrester et al., 2008; Quaney
et al., 2009; Petzinger et al., 2010, 2013; Mang et al., 2013;
Perrey, 2013; Duchesne et al., 2016; Hirsch et al., 2016; Nepveu
et al., 2017; Steib et al., 2018). Nevertheless, studies providing
direct evidence are few (Fisher et al., 2008; Skriver et al., 2014;
Bolandzadeh et al., 2015; Ostadan et al., 2016; Hsu et al., 2017a,b;
Dal Maso et al., 2018; Hübner et al., 2018; Lehmann et al.,
2020). Specifically, Hsu et al. (2017a,b) showed that exercise-
induced maintenance of functional connectivity within fronto-
parietal networks, which are involved in motor planning and
execution, was linked to improved mobility in elderly subjects
with mild subcortical ischemic vascular cognitive impairment.
Bolandzadeh et al. (2015) found that exercise-related reduction
in the progression of white matter lesions was associated with
gait speed maintenance in older women. Further, Fisher et al.
(2008) and Hübner et al. (2018) reported that exercise-induced
improvements in gait parameters (i.e., speed, step and stride
length, hip and ankle joint excursion) and fine motor control
(as measured by a precision grip force modulation task) were
accompanied with primary motor cortex excitability changes
(i.e., longer cortical silent period) in Parkinson’s patients and
enhanced frontal and sensorimotor cortex activity (i.e., decreases
in EEG task-related power in the beta band, 13–30Hz) in healthy,
elderly subjects, respectively. Last, greater motor skill acquisition
and retention as well as learning of a new motor task have
been shown to be associated with larger changes in neural
activity, corticospinal excitability, GABAA-mediated inhibition
(i.e., short-interval intracortical inhibition, SICI), white matter
microstructure, and brain-derived neurotrophic factor (BNDF)
levels in young, healthy adults following exercise (Skriver et al.,
2014; Ostadan et al., 2016; Stavrinos and Coxon, 2017; Dal
Maso et al., 2018; Lehmann et al., 2020). Of note, the ability
of exercise to promote motor skill learning and retention has
important implications during rehabilitation, for example post-
stroke, for the recovery of motor disabilities which hinder
independent living (Mang et al., 2013). Promisingly, Quaney
et al. (2009) reported that exercise lead to improvements in
motor learning which in turn, translated into improved fine
motor control (i.e., greater predictive force modulation to

grasp and lift an object) in chronic stroke survivors. Despite
these promising findings supporting the notion that neural
substrates (e.g., enhanced neuroplasticity within motor networks
promoting motor learning) mediate exercise positive effects on
mobility, gait, balance, and motor control, the mechanistic links
between exercise and motor improvements largely remains to
be unraveled (Figure 1). Indeed, as exercise-induced structural
and functional brain changes as well as motor outcomes have
been mainly assessed in separate studies, it is pivotal for shedding
light onto the neural correlates of exercise-induced motor
improvements that these different levels of analysis (i.e., systemic,
cellular, molecular, and behavioral) are carried out within the
same study in future research.

Approaches used to garner evidence of exercise-linked
systemic, cellular, and molecular changes include quantification
of molecular markers (e.g., BDNF, osteocalcin, and irisin) in
blood using enzyme-linked immunosorbent assays (ELISAs),
assessment of corticospinal excitability using single-pulse
transcranial magnetic stimulation (TMS), evaluation of
GABAergic [i.e., short-interval intracortical inhibition, SICI,
and long-interval intracortical inhibition, LICI, reflecting
GABAA-mediated inhibition and GABAB-mediated inhibition,
respectively (Rossini et al., 2015; Ziemann et al., 2015)] and
glutamatergic (i.e., intracortical facilitation, ICF, and short-
interval intracortical facilitation, SICF) motor circuits via
paired-pulse TMS paradigms, and measurement of white matter
(WM) tract integrity and neurometabolite concentrations
[e.g., inhibitory neurotransmitter γ-aminobutyric acid (GABA)
and excitatory neurotransmitter glutamate] with magnetic
resonance techniques such as diffusion tensor imaging (DTI)
and magnetic resonance spectroscopy (MRS). Here, we focus on
brain-derived neurotrophic factor, likely a key mediator of the
positive effects of exercise on mobility, gait, balance, and motor
control by promoting neuroplasticity within motor brain circuits
which, in turn, facilitates motor learning (Figure 2). We discuss
limitations and future avenues for the investigation of BDNF
contribution to exercise-related motor outcomes. Understanding
the mechanisms through which aerobic exercise promotes brain
plasticity and ultimately leads to motor benefits is critical for
the design of exercise protocols effective in the prevention,
delay, attenuation, and recovery of age- and disease-related
motor impairments.

BRAIN-DERIVED NEUROTROPHIC
FACTOR

Themolecular mediators of exercise-induced brain changes, such
as enhanced neuroplasticity, which by facilitating motor learning
likely contributes to exercise-related motor improvements (i.e.,
mobility, gait, balance, and motor control), are still largely
unknown. Molecular markers that have been identified as likely
candidates include the neurotrophin brain-derived neurotrophic
factor (BDNF), the growth factor insulin-like growth factor 1
(IGF-1), the bone-derived hormone osteocalcin (OCN), and
lastly myokines cathepsin B and irisin. In this review, special
attention is paid to BDNF, a member of the neurotrophin family
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FIGURE 1 | Effects of age, illness, and exercise on motor outcomes and brain mechanisms underpinning exercise-related motor benefits. BDNF, brain-derived

neurotrophic factor; CSE, corticospinal excitability; GM, gray matter; SICI, short-interval intracortical inhibition; WM, white matter; ?, knowledge gaps to be addressed

and filled by future research.

FIGURE 2 | Potential neural mechanisms by which brain-derived neurotrophic factor mediates exercise-related motor improvements. BDNF, brain-derived

neurotrophic factor; CSE, corticospinal excitability; GM, gray matter; SICI, short-interval intracortical inhibition; WM, white matter; ?, knowledge gaps to be addressed

and filled by future research.
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which includes nerve growth factor (NGF), neurotrophin 3,
and neurotrophin 4/5 (Barde, 1994; Lewin and Barde, 1996;
Hallböök, 1999). Since its discovery in 1982 (Barde et al.,
1982), BDNF has been demonstrated to be essential for normal
brain development and adult brain function with alterations in
its levels accompanying neurological and psychiatric disorders
(McAllister et al., 1995; Huang and Reichardt, 2001; McAllister,
2002; Tyler et al., 2002; Binder and Scharfman, 2004; Bramham
and Messaoudi, 2005; Kuipers and Bramham, 2006; Brunoni
et al., 2008; Chapleau et al., 2009; Fahnestock, 2011; Fernandes
et al., 2011; Green et al., 2011; Carlino et al., 2013; Park and
Poo, 2013; Molendijk et al., 2014; Fahnestock and Nicolini,
2015; Hempstead, 2015; Armeanu et al., 2017; Illarioshkin et al.,
2018; Mohammadi et al., 2018; Numakawa et al., 2018; Di Carlo
et al., 2019; Huang et al., 2019; Lima Giacobbo et al., 2019; Ng
et al., 2019). BDNF is synthesized as a 32-kDa precursor, called
proBDNF, which is subsequently cleaved, either intracellularly
(e.g., by serine protease furin and prohormone convertases)
or extracellularly (e.g., by matrix metalloproteases or serine
protease plasmin), into a 14-kDa mature form (Seidah et al.,
1996; Lee et al., 2001; Mowla et al., 2001; Pang et al., 2004,
2016). ProBDNF is not an inactive precursor but has distinct
and opposite functions from mature BDNF (Lu et al., 2005).
Specifically, proBDNF reduces neuronal survival, neurite growth,
and dendritic spine formation and induces neuronal apoptosis
and long-term depression via p75 neurotrophin receptor
(p75NTR) (Teng et al., 2005; Woo et al., 2005; Koshimizu
et al., 2009). Mature BDNF promotes neuronal differentiation
and survival, neurite growth, neural circuit formation, function,
and maintenance, synaptogenesis, and synaptic plasticity, both
during development and throughout adulthood, via tyrosine
kinase receptor tropomyosin-related kinase B (TrkB) (McAllister
et al., 1999; Schinder and Poo, 2000; Huang and Reichardt,
2001; Poo, 2001; McAllister, 2002; Binder and Scharfman, 2004;
Waterhouse and Xu, 2009; Park and Poo, 2013; Leal et al.,
2014, 2017; Lu et al., 2014; Gibon and Barker, 2017; Kowiański
et al., 2018). Through a different cleavage site, proBDNF can
be converted into a 28-kDa protein (truncated BDNF) (Seidah
et al., 1999; Mowla et al., 2001), which is not an intermediate
product in the proteolytic processing of proBDNF into mature
BDNF, but whose biological activities are still unknown. Of
note, an altered balance of the three BDNF proteolytic isoforms
(i.e., pro, truncated, mature) has been observed in patients with
schizophrenia and idiopathic autism (Carlino et al., 2011; Garcia
et al., 2012), suggesting that all three isoforms play important
roles for normal brain function.

Brain-Derived Neurotrophic Factor and
Exercise
A number of studies have shown that exercise elevates peripheral
BDNF concentrations (Gold et al., 2003; Ferris et al., 2007;
Goekint et al., 2008; Tang et al., 2008; Zoladz et al., 2008;
Rasmussen et al., 2009; Knaepen et al., 2010; Seifert et al., 2010;
Yarrow et al., 2010; Zoladz and Pilc, 2010; Bos et al., 2011;
Griffin et al., 2011; Rojas Vega et al., 2011; Cho et al., 2012;
Heyman et al., 2012; Schmidt-Kassow et al., 2012; Gomes deMelo

Coelho et al., 2013a, 2014; Pereira et al., 2013; Schmolesky et al.,
2013; Huang et al., 2014; Leckie et al., 2014; Mang et al., 2014;
Skriver et al., 2014; Saucedo Marquez et al., 2015; Szuhany et al.,
2015; Dinoff et al., 2017; Helm et al., 2017; Mackay et al., 2017;
Marinus et al., 2019; de Azevedo et al., 2020; Nicolini et al., 2020).
Specifically, acute endurance exercise protocols encompassing
graded maximal, moderate-to-high-intensity continuous (∼60–
80% of age-predicted maximal heart rate or heart rate reserve;
∼55–75% of maximal power output as measured with a maximal
oxygen uptake test), and high-intensity intermittent (90% of
maximal power output) exercise result in a transient increase
in blood BDNF in both healthy and clinical populations (Gold
et al., 2003; Ferris et al., 2007; Winter et al., 2007; Goekint et al.,
2008; Tang et al., 2008; Gustafsson et al., 2009; Laske et al.,
2010; Bos et al., 2011; Cho et al., 2012; Heyman et al., 2012;
Schmolesky et al., 2013; Mang et al., 2014; Skriver et al., 2014;
Saucedo Marquez et al., 2015; Nicolini et al., 2020). Contrary to
acute endurance exercise protocols, endurance exercise training
programs have yielded inconsistent results. Indeed, while most
studies have found that exercise training does not result in
permanently elevated basal, peripheral BDNF levels (Schulz
et al., 2004; Schiffer et al., 2009; Baker et al., 2010; Erickson
et al., 2011; Ruscheweyh et al., 2011; Voss et al., 2013a; Maass
et al., 2016; Goldfield et al., 2018, 2019; Gourgouvelis et al.,
2018; Nicolini et al., 2019), Zoladz et al. (2008) and Jeon and
Ha (2017) determined that a five-week, moderate- and twelve-
week, moderate-to-high-intensity, endurance training increased
BDNF in physically active, male subjects and adolescent males,
respectively. Zoladz et al. (2008) also showed that athletes had
higher basal BDNF concentrations than untrained individuals.
Leckie et al. (2014) reported thatmoderate-intensity walking over
a year lead to enhanced BDNF levels, but only in individuals
older than 65 years of age. Further, Heisz et al. (2017), albeit
finding no group differences in BDNF levels between healthy,
low-active subjects who underwent training and those who did
not, observed that high responders to exercise (i.e., individuals
with greater cardiorespiratory fitness gains) had larger BDNF
increases following 6 weeks of high-intensity interval training.
Lastly, Seifert et al. (2010) found that 3 months of endurance
training increased basal, internal jugular venous BDNF in
sedentary, healthy males, pointing to an elevated release of
BDNF from the brain following exercise training. Based on these
findings, it appears that (1) intense and prolonged training (i.e.,
athletes) lastingly increases basal, peripheral BDNF (Zoladz et al.,
2008); that (2) moderate-intensity training might be sufficient
to increase basal, peripheral BDNF in physically active (Zoladz
et al., 2008) and older (Leckie et al., 2014) individuals but not
in low-active individuals (Gourgouvelis et al., 2018); that (3) to
enhance basal, peripheral BDNF levels in low-active subjects, the
duration of training should be longer than 6 weeks (Heisz et al.,
2017; Nicolini et al., 2019); that (4) even though exercise training
might not result in an increase in basal, peripheral BDNF, it
facilitates increases in blood BDNF after an acute exercise bout
(i.e., BDNF increase following a single exercise session is greater
after a period of training compared to BDNF increase after a
single exercise session prior to training) (Zoladz et al., 2008; Bansi
et al., 2013; Szuhany et al., 2015); that (5) training augments the

Frontiers in Neuroergonomics | www.frontiersin.org 4 May 2021 | Volume 2 | Article 678541

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Nicolini and Nelson BDNF to Study Exercise Plasticity

release of BDNF from the brain, although this increase might
not be sufficiently large to be detected in peripheral, venous
blood collected from the arm (e.g., cubital vein) (Schiffer et al.,
2009; Erickson et al., 2011; Ruscheweyh et al., 2011; Voss et al.,
2013b; Maass et al., 2016; Heisz et al., 2017; Gourgouvelis et al.,
2018; Nicolini et al., 2019). Of note, in healthy individuals,
exercise intensity influences the magnitude of BDNF increase,
with high-intensity exercise being more effective than low-to-
moderate-intensity exercise in elevating BDNF levels (Ferris
et al., 2007; Winter et al., 2007; Schmidt-Kassow et al., 2012;
Schmolesky et al., 2013; Saucedo Marquez et al., 2015; Enette
et al., 2017; Jeon and Ha, 2017; Antunes et al., 2020). Conversely,
in clinical populations, even low-to-moderate intensity exercise
enhances blood BDNF (Gold et al., 2003; Gustafsson et al.,
2009; Laske et al., 2010). Findings from studies investigating
whether resistance exercise elevates peripheral BDNF, acutely
(i.e., after a single session) or lastingly (i.e., following a training
program), are mixed. Goekint et al. (2010) and Correia et al.
(2010) found that acute resistance exercise was not effective in
elevating peripheral BDNF in healthy subjects, while Yarrow
et al. (2010) reported a significant increase in peripheral BDNF
following a single session of resistance exercise in a similar
cohort. More recently, Marston et al. (2017) also observed that
acute resistance exercise transiently elevated blood BDNF levels
in healthy subjects. Notably, these authors, however, found that
the increase in BDNF was significant only in the resistance-
exercise-to-fatigue (i.e., hypertrophy) group involving three sets
of ten repetitions with a 60-s recovery between each set (Marston
et al., 2017), suggesting that similar to acute endurance exercise,
the effect of acute resistance exercise is intensity dependent.
Lastly, based on the evidence garnered thus far, resistance
training appears to be ineffective in augmenting basal, peripheral
BDNF. Specifically, Schiffer et al. (2009) and Goekint et al. (2010)
reported no changes in basal, peripheral BDNF levels following
resistance training (12 vs. 10 weeks) in healthy individuals.
Further, Levinger et al. (2008) and Goldfield et al. (2018, 2019)
observed similar results in middle-aged subjects with high or
low metabolic risk factors and obese and overweight adolescents,
respectively. Nonetheless, despite being unable to elevate basal,
peripheral BDNF concentrations, resistance training similar to
endurance training (Zoladz et al., 2008; Bansi et al., 2013;
Szuhany et al., 2015) leads to a robust increase in peripheral
BDNF following an acute bout of resistance exercise (i.e., primes
BDNF response to acute resistance exercise) (Yarrow et al., 2010).

BDNF is a well-established key regulator of synaptic plasticity
(Bramham and Messaoudi, 2005; Kleim et al., 2006; Kuipers and
Bramham, 2006; Bekinschtein et al., 2008; Waterhouse and Xu,
2009; Fritsch et al., 2010; Yoshii and Constantine-Paton, 2010; Lu
et al., 2014; Gibon and Barker, 2017; Leal et al., 2017; Kowiański
et al., 2018), a neural substrate of cognitive function and motor
behavior (Rioult-Pedotti et al., 2000; Muellbacher et al., 2002;
Doyon and Benali, 2005; Monfils et al., 2005; McConnell et al.,
2009; Dayan and Cohen, 2011; Cantarero et al., 2013). As such, it
is likely that exercise-induced upregulation of BDNF contributes
to enhanced plasticity within the motor system (Gómez-Pinilla
et al., 2002), which, in turn, facilitates motor learning and
translates into motor improvements such as increased fine motor

control (Quaney et al., 2009) (Figure 2). In mice, long-term
exercise increases BDNF levels in brain motor areas, such
as the primary motor cortex and cerebellum, and improves
motor coordination (Inoue et al., 2018). However, in humans, it
remains to be determined whether increases in peripheral BDNF
following exercise are mechanistically linked to exercise-induced
increases in motor plasticity and ultimately to exercise-induced
motor gains (e.g., improved mobility, gait, balance, and fine
motor control). To date, few studies, all in healthy individuals,
have investigated whether elevated blood BDNF is associated
with improved motor learning following acute exercise (Mang
et al., 2014; Skriver et al., 2014; Helm et al., 2017; Baird et al.,
2018). Only Skriver et al. (2014) found a positive correlation.
Of note, Baird et al. (2018) did not observe a significant rise
in plasma BDNF concentrations following exercise. Lastly, an
association between increased serum BDNF and increased motor
plasticity (i.e., enhanced TMS-probed corticospinal excitability)
after a single bout of exercise has yet to be found (Mang et al.,
2014; Nicolini et al., 2020). To determine BDNF contribution to
exercise-induced motor improvements, it is thus important that
future studies investigate further whether a correlation between
exercise-induced changes in BDNF and exercise-induced changes
in motor outcomes, encompassing mobility, gait, balance, and
motor control, exists following both acute exercise and training
in healthy and clinical populations. In addition, it should be
established whether, after exercise, there is an association between
increases in peripheral BDNF, increases in motor plasticity
(e.g., enhanced TMS-probed corticospinal excitability and motor
learning), and motor improvements. Findings from these studies
are critical to expand our understanding of blood BDNF role in
mediating exercise motor benefits via neural mechanisms (i.e.,
enhanced synaptic plasticity within the motor system).

Peripheral Brain-Derived Neurotrophic
Factor: Caveats and Limitations
BDNF is present in most human tissues including brain and
blood (Pruunsild et al., 2007; Serra-Millàs, 2016). The majority
of blood BDNF is stored in platelet granules, from which it
is released (degranulation) upon platelet activation (Yamamoto
and Gurney, 1990; Fujimura et al., 2002). Non-neural sources
of platelet-stored BDNF include vascular human endothelial
cells, activated T and B cells and monocytes (Donovan et al.,
1995, 2000; Kerschensteiner et al., 1999; Leventhal et al., 1999;
Nakahashi et al., 2000). Also, more recently, Chacón-Fernández
et al. (2016) found that platelet progenitors, megakaryocytes,
express BDNF mRNA transcripts in a pattern similar to neurons.
BDNF release from platelets takes place during clotting as
supported by reports of a strong correlation between serum
BDNF and serum serotonin, which is an indicator of platelet
activation (Radka et al., 1996; Fujimura et al., 2002). Notably,
shear stress, such as that caused by the syringe needle during
blood collection, also induces BDNF release from platelet
granules, particularly platelet release of BDNF due to shear stress
is proportional to the strength of the stress (Fujimura et al.,
2002). Peripheral BDNF can bemeasured in whole blood, plasma,
and serum, however, its levels are between 100 and 200 fold
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higher in serum than plasma (Rosenfeld et al., 1995; Radka et al.,
1996; Fujimura et al., 2002; Gejl et al., 2019). Given the difficulty
of assessing brain BDNF concentrations in living humans, the
presence of BDNF in blood has attracted considerable interest.
Yet, quantification of peripheral BDNF levels is complicated by
a number of methodological and non-methodological factors
which introduce intra- and inter-individual variability in blood
BDNF measures, impacting their reliability and reproducibility
across studies (Figure 3). In particular, methodological and non-
methodological factors such as different anti-coagulants (e.g.,
ethylenediaminetetraacetic acid (EDTA) vs. heparin vs. citrate),
temperature and length of time interval between collection
of blood samples and their centrifugation, storage duration
and temperature, body mass index, and age strongly affect
plasma BDNF levels (Lommatzsch et al., 2005; Bus et al., 2011;
Tsuchimine et al., 2014; Polyakova et al., 2017). Diurnal changes
in plasma BDNF have also been reported with highest levels in
the morning (i.e., 8:00A.M.) and lowest at night (i.e., 12:00A.M.)
(Begliuomini et al., 2008; Piccinni et al., 2008; Pluchino
et al., 2009). Similarly, serum BDNF levels are influenced by
temperature during the time interval between collection of blood
samples and their centrifugation as well as storage duration and
temperature (Trajkovska et al., 2007; Bus et al., 2011; Elfving
et al., 2012; Amadio et al., 2017). Another important determinant
of serum BDNF levels is clotting duration as supported by
the evidence that longer clotting duration is associated with
higher serum BDNF levels with the lowest concentration being
measured after 10min of clotting and a plateau being reached
at ∼1 h (Maffioletti et al., 2014; Gejl et al., 2019). Non-technical
factors that affect serum BDNF levels include non-fasting state
at blood collection, smoking, alcohol intake, medications, such
as antidepressant venlafaxine and the antiplatelet medication
clopidogrel (Aydemir et al., 2005; Sen et al., 2008; Bus et al.,
2011; Stoll et al., 2011). Lastly, ELISA kits contribute to
the intra- and inter-individual variability seen in peripheral
BDNF concentrations. Indeed, Polacchini et al. (2015) showed
that among five, commercially available, sandwich ELISA kits
(i.e., Aviscera-Bioscience, Biosensis, Millipore-ChemiKineTM,
Promega-Emax R©, and R&D System-Quantikine R©) for BDNF
quantification, only one (Biosensis) had minimal inter-assay
variability, thereby drawing attention to the need of using
the same ELISA kit to measure BDNF across studies to limit
result discrepancies.

Serum and plasma BDNF concentrations appear to reflect
different pools of BDNF. BDNF in serum comes from platelet
storage granules from which it is released during clotting
(Fujimura et al., 2002; Maffioletti et al., 2014; Gejl et al., 2019).
BDNF in plasma is thought to represent the small amount of free
circulating BDNF, as plasma contains few platelets (Radka et al.,
1996). During blood collection, however, platelets can release
BDNF due to shear stress caused by the syringe needle and
increase BDNF levels in plasma (Fujimura et al., 2002). Also, an
increase in plasma BDNF can be due to release of BDNF from
platelets occurring during the time interval between collection
and centrifugation of blood samples (Elfving et al., 2010;
Tsuchimine et al., 2014), as some degree of platelet activation
and degranulation has been observed even in the presence of

anticoagulants (e.g., EDTA-coated tubes) (Engstad et al., 1997;
Ahnadi et al., 2003). These methodology-related sources of
platelet-derived BDNF contribute to the considerable intra- and
inter-individual variability of plasma BDNF measures (∼100–
7,000 pg/ml), impacting their reliability and reproducibility
(Bocchio-Chiavetto et al., 2010; Polacchini et al., 2015; Gejl
et al., 2019). Indeed, BDNF quantification in plasma appears
to be heavily affected by methodological factors (e.g., shear
stress at blood draw, temperature and length of time interval
between collection of blood samples and their centrifugation,
anticoagulants, storage temperature, and duration), to be greatly
dependent on the experimenter, and thus, to ultimately be
less reliable than serum BDNF measurements (Elfving et al.,
2010; Tsuchimine et al., 2014; Polacchini et al., 2015; Polyakova
et al., 2017). Stability of BDNF serum levels over a year and
reliability of their measurements have been recently confirmed
by Naegelin et al. (2018), who, however, emphasized the need,
given individual variations, to examine large cohorts. Taken
together, evidence from these studies encourages the use of serum
over plasma when measuring peripheral BDNF to evaluate its
contribution to exercise-induced motor benefits.

As direct measurements of brain BDNF levels cannot easily
be performed in humans, quantification of peripheral BDNF
concentrations has been used as a proxy. Animal studies have
shown that BDNF crosses the blood-brain barrier (Poduslo and
Curran, 1996; Pan et al., 1998; Alcalá-Barraza et al., 2010) and
that there is a positive correlation between blood and brain
BDNF levels, suggesting that changes in peripheral BDNF might
reflect changes in brain BDNF (Karege et al., 2002; Sartorius
et al., 2009; Klein et al., 2011). Nevertheless, it currently remains
mostly speculative whether, in humans, changes in peripheral
BDNF, e.g., following acute exercise, are a reliable proxy of
changes in central (brain) BDNF.Measurement of the arterial-to-
internal jugular venous concentration difference (a-v difference),
as an indicator of cerebral outflow, has been used to test
whether release of BDNF from the brain contributes to blood
BDNF levels. Promisingly, using this approach, three studies
have provided evidence for BDNF being released from the
brain into the circulation both at rest (Dawood et al., 2007;
Krabbe et al., 2007; Rasmussen et al., 2009) and during exercise
(Rasmussen et al., 2009). In particular, Krabbe et al. (2007)
showed cerebral BDNF output into circulation in healthy men
at rest defined as the mean area under the curve for the a-v
difference being different from zero. Similarly, Dawood et al.
(2007) reported a positive internal jugular veno-arterial BDNF
plasma concentration gradient as well as higher BDNF levels
in plasma obtained from internal jugular venous blood than
in plasma obtained from brachial arterial blood, indicating
that efflux of BDNF from the brain contributes to peripheral
BDNF concentrations at rest in patients with major depressive
disorder. Lastly, Rasmussen et al. (2009) confirmed cerebral
output of BDNF into circulation via the internal jugular vein
at rest in healthy men as indicated by the a-v difference being
different from zero and showed a two- to three-fold increase in
the a-v difference (i.e., increased central BDNF outflow) with
prolonged exercise (i.e., 4 h of ergometer rowing). Collectively,
these findings support the hypothesis that blood BDNF levels
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FIGURE 3 | Methodological and non-methodological factors introducing intra- and inter-variability in peripheral brain-derived neurotrophic factor quantification. BDNF,

brain-derived neurotrophic factor; EDTA, ethylenediaminetetraacetic acid; ELISA, enzyme-linked immunosorbent assay.

reflect brain BDNF levels and the use of peripheral BDNF
measures to expand our understanding of the neural mechanisms
behind exercise benefits.

FUTURE AVENUES

Although exercise upregulates peripheral BDNF (Knaepen et al.,
2010; Zoladz and Pilc, 2010; Gomes de Melo Coelho et al.,
2013a; Huang et al., 2014; Szuhany et al., 2015; Dinoff et al.,
2017; Mackay et al., 2017; Marinus et al., 2019; de Azevedo
et al., 2020), it is still unclear whether increases in peripheral
BDNF mediate exercise effects on mobility, gait, balance, and
motor control. To date, findings are few and conflicting (Mang
et al., 2014; Skriver et al., 2014; Helm et al., 2017). Evaluation of
exercise-induced increases in peripheral BDNF, motor plasticity
(e.g., enhanced TMS-probed corticospinal excitability and motor
learning), and motor outcomes (i.e., improved mobility, gait,
balance, and motor control) within a single study is key to
advancing our understanding. It is indeed essential to garner
evidence at different levels of analysis (i.e., systemic, molecular,
behavioral) within the same study to unveil the mechanistic link
between exercise and motor improvements, and to thus, gain
the knowledge needed to successfully employ exercise protocols
in preventing, delaying, and off-setting age- and disease-related
motor deficits.

A single nucleotide polymorphism (Val66Met, rs6265) in
the BDNF gene, causing a valine-to-methionine substitution,
reduces activity-dependent release of BDNF (Egan et al., 2003)
and could, thereby, attenuate BNDF-driven, priming effects of
exercise on neuroplasticity, motor learning, and, ultimately,

on motor outcomes (i.e., mobility, gait, balance, and motor
control). Current evidence is limited and mixed. Andrews et al.
(2020) showed that BDNF Val66Met polymorphism reduced
exercise priming effects on plasticity within the primary motor
cortex, while McDonnell et al. (2013) and Singh et al. (2014)
reported no effect. However, Singh et al. (2014) might not have
been adequately powered (n = 6, Met carriers; n = 6, Val/Val)
to detect whether BDNF genotype impacts exercise effects on
motor plasticity, measured using different repetitive transcranial
magnetic stimulation paradigms. Of note, Met carriers showed
a trend toward a stronger reduction in GABAA-mediated
inhibition (i.e., lower short-interval intracortical inhibition)
than Val/Val homozygotes and no change in GABAB-mediated
inhibition (i.e., long-interval intracortical inhibition) (Singh
et al., 2014), underlining the need to investigate further the effects
of BDNF Val66Met polymorphism on exercise priming of motor
plasticity. Lastly, although there are two reports that BDNF
genotype does not affect exercise effects onmotor learning (Helm
et al., 2017; Mang et al., 2017), it remains to be assessed whether
it attenuates exercise-induced motor improvements in healthy,
aging, or clinical populations. Identifying potential determinants
of individual variation, such as BDNF Val66Met polymorphism,
is important for the design of personalized exercise
strategies aimed at maximizing priming of neuroplasticity
and thus motor improvements in both physiological and
rehabilitative settings.

As methodological and non-methodological factors influence
quantification of peripheral BDNF concentrations (Aydemir
et al., 2005; Lommatzsch et al., 2005; Trajkovska et al., 2007;
Begliuomini et al., 2008; Piccinni et al., 2008; Sen et al., 2008;
Pluchino et al., 2009; Bus et al., 2011; Choi et al., 2011; Stoll
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TABLE 1 | Recommendations based on current evidence to reduce intra- and

inter-variability in peripheral brain-derived neurotrophic factor quantification.

Best practice Reference

Serum over plasma Elfving et al., 2010

Polacchini et al., 2015

Polyakova et al., 2017

Naegelin et al., 2018

Clotting time from 30min to 1 h Maffioletti et al., 2014

Gejl et al., 2019

Biosensis ELISA kit Polacchini et al., 2015

Blood collection time between 7:00A.M. and 8:00A.M. Begliuomini et al., 2008

Piccinni et al., 2008

Pluchino et al., 2009

Choi et al., 2011

12-h fast prior to blood collection Bus et al., 2011

et al., 2011; Maffioletti et al., 2014; Tsuchimine et al., 2014;
Polacchini et al., 2015; Amadio et al., 2017; Polyakova et al.,
2017; Naegelin et al., 2018; Gejl et al., 2019), the lack of a
standardized protocol currently hinders result interpretation and
comparison and leads to discrepancies among studies. To limit
variability in blood BDNF measures and reduce inconsistencies,
future studies should aim at developing a standardized, reliable
protocol for peripheral BDNF quantification. By increasing
result reproducibility, such a protocol would help draw reliable
conclusions on whether peripheral BDNF mediates exercise-
related motor benefits.

Exercise might not only increase total levels of BDNF, but
also the speed of BDNF release. In other words, BDNF might
be released faster into serum during clotting after exercise than
following a period of rest of comparable length. Interestingly,
Gejl et al. (2019), despite failing to find a significant correlation
between cardiorespiratory fitness and serum BDNF levels,
observed a switch from a positive correlation at 30min of
clotting to a negative one at 60min and at longer clotting
times (180, 240, and 300min) as well as a negative correlation
between cardiorespiratory fitness and the difference in serum
BDNF measured at 30 and at 60min of clotting. These findings
suggest that greater cardiorespiratory fitness is associated with
a faster initial release of BDNF into serum during clotting and
with less BDNF being released at 60min and at longer clotting
times (Gejl et al., 2019). Effects of exercise (i.e., acute and
training) on the rate of BDNF should be further assessed in
future studies.

DISCUSSION

Being a key mediator of neuroplasticity (Lu et al., 2014; Gibon
and Barker, 2017; Leal et al., 2017; Kowiański et al., 2018),
which has been shown to underpin motor learning (Rioult-
Pedotti et al., 2000; Muellbacher et al., 2002; Doyon and Benali,

2005; Monfils et al., 2005; McConnell et al., 2009; Dayan and
Cohen, 2011; Cantarero et al., 2013), BDNF is likely to play an
important role in mediating the beneficial effects of exercise on
mobility, gait, balance, and motor control. Currently, however,
only two studies have investigated whether BDNF contributes
to exercise-induced motor improvements (Mang et al., 2014;
Skriver et al., 2014). Skriver et al. (2014) reported a relationship
between BDNF increases and gains in motor skill acquisition
and retention following exercise, while Mang et al. (2014) failed
to find one. It is thereby clear that it needs to be further
investigated whether BDNF is mechanistically linked to exercise-
induced motor benefits. To this end, given the difficulties of
obtaining direct measures of brain BDNF concentrations in
humans, it is crucial to be able to reliably measure peripheral
BDNF levels so that results are reproducible and can be
compared among studies. Intra- and inter-individual variability
in peripheral BDNF concentrations (Bocchio-Chiavetto et al.,
2010; Fernandes et al., 2011; Suliman et al., 2013) currently
hinders interpretation of findings, result comparisons, and the
ability to draw reliable conclusions, impeding our understanding
of how exercise promotes neuroplasticity and thus improves
mobility, gait, balance, and motor control. Methodological and
non-methodological (e.g., sociodemographic, lifestyle) factors
that affect quantification of BDNF blood levels and are a
source of discrepancies among studies include temperature
and length of time between collection of blood samples and
their centrifugation, centrifugation speed and duration, storage
temperature and duration, number of freeze/thaw cycles, ELISA
kits used for quantification, non-fasting state at blood draw, time
of day at which blood samples are collected, medications, age,
body mass index, menstrual cycle phase, smoking, and alcohol
intake (Aydemir et al., 2005; Lommatzsch et al., 2005; Trajkovska
et al., 2007; Begliuomini et al., 2008; Piccinni et al., 2008; Sen
et al., 2008; Pluchino et al., 2009; Elfving et al., 2010, 2012; Bus
et al., 2011; Choi et al., 2011; Stoll et al., 2011; Maffioletti et al.,
2014; Tsuchimine et al., 2014; Polacchini et al., 2015; Amadio
et al., 2017; Polyakova et al., 2017; Naegelin et al., 2018; Gejl
et al., 2019). The evidence thatmethodological factors profoundly
influence quantification of peripheral BDNF calls attention to
the importance of exercising caution in the methodology used to
measure blood BDNF concentrations and to the pressing need
for a standardized protocol across studies. Indeed, a standardized
protocol encompassing all steps of peripheral BDNF detection,
including participant selection criteria (e.g., body mass index,
age, medications, smoking, alcohol intake), blood collection (e.g.,
time of day, fasting state, time interval between collection and
processing, temperature during this interval), processing (e.g.,
clotting duration, centrifugation speed, and duration), storage
(e.g., temperature, duration), and BDNF quantification (i.e.,
ELISA kit used), should be developed and used for quantification
of peripheral BDNF concentrations across studies. Based on
findings garnered thus far, it appears that to reduce intra- and
inter-variability in peripheral BDNF measures serum should be
preferred over plasma (Elfving et al., 2010; Polacchini et al., 2015;
Polyakova et al., 2017; Naegelin et al., 2018), serum samples
should be allowed to clot a minimum of 30min up to 1 h
(Maffioletti et al., 2014; Gejl et al., 2019), Biosensis ELISA kit
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should be used for BDNF quantification (Polacchini et al., 2015),
and blood should be collected in the morning (i.e., 8:00A.M.)
(Begliuomini et al., 2008; Piccinni et al., 2008; Pluchino et al.,
2009; Choi et al., 2011) from fasting participants (Table 1; Bus
et al., 2011). In addition, medications, body mass index, age,
menstrual cycle phase, smoking, and alcohol intake should
be taken into account when recruiting participants (Aydemir
et al., 2005; Lommatzsch et al., 2005; El-Gharbawy et al., 2006;
Ziegenhorn et al., 2007; Sen et al., 2008; Pluchino et al., 2009;
Bus et al., 2011; Stoll et al., 2011; Cho et al., 2012; Elfving
et al., 2012; Jamal et al., 2015). By reducing the considerable
result variability in blood BDNF concentrations and thus
providing reproducible results, such a protocol is highly valuable
in expanding our understanding of how exercise improves

mobility, gait, balance, and motor control in physiological and
rehabilitative settings.
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