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INTRODUCTION

Handedness is characterized as a lateral preference or advantage for one side of the body over the
other when performing sensory or motor tasks (Cochet and Byrne, 2013). Different hypotheses
have been formulated to explain this enigmatic human feature (Papadatou-Pastou et al., 2020).
Genetic background (Annett, 1978; Paracchini and Scerri, 2017) anatomical or physiological
asymmetries throughout the nervous system (NS) development or in adult life may contribute to
the framework of lateral preference in primates (Daligadu et al., 2013). Understanding the origin
of such asymmetries is crucial for the development of efficient patient-specific rehabilitation and
training programs. Previous studies using neuroimaging (Amunts et al., 2000; Hervé et al., 2005)
and neurophysiological techniques (Hammond et al., 2004; Souza et al., 2018) sought to quantify
peripheral and central NS anatomical asymmetries using cadavers, for instance (White et al., 1994).

Alternatively, Transcranial Magnetic Stimulation (TMS) is a powerful tool to probe the brain
function non-invasively in vivo. It has been used to unveil how the central NS drives the
lateralization of motor gestures under different body postures on active and resting conditions
(Triggs et al., 1994; Brouwer et al., 2001). TMS elicits motor evoked potentials (MEP) in a target
muscle when delivered over the primary motor cortex (M1). Thus, monitoring changes in the
MEP parameters provides a measure of corticospinal excitability (CSE) and relevant information
about the integrity of the corticospinal tract (CST), especially in clinical conditions (Rossini et al.,
2015). In the following topics, we describe recent findings and suitable recommendations for
a more in-depth analysis of how CSE has been used for evaluating neurophysiologic attributes
of handedness.

ANATOMICAL FEATURES UNDERLYING THE CSE AND

HANDEDNESS

According toWhite et al. (1994), “humans have more cortical (and presumably subcortical) circuitry
devoted to the representation of the right upper extremity than to the left.” Thus, one might
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hypothesize that the CST would be larger on the right side
of the spinal cord for right-handers. Likewise, the contrary
stands true for left-handers even though the low prevalence
limits the cadaveric approaches (9.3–18.1%, Peters et al., 2006;
Papadatou-Pastou et al., 2020). However, the reported results are
inconclusive due to the limited number of studies conducted on
cadavers. For instance, Yakovlev and Rakic (1966) and Melsbach
et al. (1996) reported larger tracts in the right side of spinal
cord of neonates and adult specimens. In contrast, Kertesz and
Geschwind (1971) and White et al. (1997) did not observe any
difference between both sides of medullae in 158 and 67 adult
specimens, respectively. If the dominant side exhibits a larger
CST, one might hypothesize that single-pulse TMS would recruit
larger neuronal populations and, therefore, lead to higher MEP
amplitudes in the dominant than the contralateral side. Indeed,
few studies observed different MEP responses between dominant
and non-dominant cerebral hemispheres (Triggs et al., 1994;
Matsunaga et al., 1998).

Interestingly, asymmetries in the CST in neuroimaging studies
(Ciccarelli et al., 2003; Westerhausen et al., 2007) or MEP
amplitudes (Garcia et al., 2020) between both sides of the human
body have been refuted. Alternatively, neuroimaging studies
support the hypothesis that asymmetries in the right- and left-
handers take place at the cellular microstructure level throughout
different NS regions, including the CST (Andersen and Siebner,
2018). Then humans are provided with more complex cortical
and subcortical circuits devoted to benefit one side in specific
motor tasks (Jang et al., 2017). Li et al. (2014) also suggest that
handedness manifests in local neural networks due to “high local
clustering and short paths between nodes” that can contribute
to more significant asymmetries for right- but not left-handers.
Their findings are partially supported by Hervé et al. (2005).
They observed a positive correlation between contralateral gray
matter volume and hand skills. It could be due to more
complex neural networks with greater functional capacity.
We might speculate that asymmetries in the CSE between
the dominant and non-dominant sides observed in precision
tasks (Triggs et al., 1994) were due to the extent of neural
networks recruitment.

Consequently, CSE might better assess the degree of
handedness when subjects are performing fine motor tasks,
suggesting that some singularities of “dominant” neural networks
recruited may be uncovered. Moreover, we should note that the
TMS pulse recruits polysynaptic circuits mediated by inhibitory
and excitatory interneurons and pyramidal neurons projecting
into the CST (Di Lazzaro et al., 2018). Thus, one can argue that
possible differences in MEP parameters from the dominant and
non-dominant sides reside in the complexity of these high-order
circuits engaged in performing motor tasks that do not require
efforts above ∼10% of the maximal strength (Triggs et al., 1994)
when compared the motor thresholds of different muscles from
both upper limbs in the right- and left-handers. It was conducted
during writing and under rest conditions. It is also suggested that
motor tasks that require contractions above the mentioned level
may normalize the cortical excitability and consequently mask
differences in CSE (van de Ruit and Grey, 2016).

METHODOLOGICAL APPROACHES ON

MEP RECORDING APPLIED TO

HANDEDNESS

Three distinct MEP parameters are widely used to evaluate the
CSE: latency, resting motor threshold (rMT) and peak-to-peak
amplitude. Latency defines the onset time of the myoelectric
activity evoked by the TMS pulse and may indicate pathological
conditions such as demyelination (Fernández et al., 2013).
Latency depends on the conduction velocity of the neural drive
in the CST (Kidgell and Pearce, 2011). In this case, possible
anatomical asymmetries associated with the ratio between fast
and slow fibers would lead to distinct latencies from the
dominant and non-dominant sides. Then, one may conjecture
that the size principle could explain the differences in motor
nerve latencies between both sides (Henneman et al., 1965).
It is based on the concept that motor units containing axons
with smaller diameters would have a lower conduction velocity
and longer latencies. Curiously, most TMS studies did not
report significant differences in MEP latencies in rest conditions
between dominant and non-dominant sides (Kallioniemi et al.,
2015), suggesting that latency in such condition may not be
affected by manual dominance. Latency is frequently calculated
by visual inspection and manually annotated in the surface
electromyography (sEMG) recording. The manual annotation
exhibits a high intrarater reliability (Livingston and Ingersoll,
2008) and the visual definition of onset time is subjective
(Brown et al., 2017). Therefore, one should carefully interpret the
physiological outcomes based on manually annotated latencies.
An automated method was recently proposed by Šoda et al.
(2020) and might be a better candidate to detect differences
between dominant and non-dominant sides.

Likewise, asymmetries in the rMT have been used to
understand how handedness manifests itself. The rMT represents
the minimal TMS intensity delivered to M1 to elicit MEPs higher
than a defined amplitude, e.g., 50 µV (Rossini et al., 2015).
Macdonell et al. (1991) reported lower rMT for the dominant
cerebral hemispheres of right-handers. In contrast, Davidson
and Tremblay (2013) recorded higher rMT in the dominant
hemisphere of left-handed individuals. Remarkably, many other
studies did not observe any significant rMT difference between
both cerebral hemispheres (Livingston et al., 2010; Cueva et al.,
2016; Garcia et al., 2020), refuting the previous findings. Even
though Brouwer et al. (2001) also reported similar rMT between
hands in right and left-handers, MEPs were higher when stronger
hand muscles were recruited. It was hypothetically associated
with the dominant side. Their findings also reinforce that MEP
parameters related to the degree of handedness might be accessed
when performing a motor task, as previously hypothesized.

Interestingly, a few authors reported other variables such as
gender and age as possible intervening factors in handedness
(Sala et al., 2017). In this respect, Amunts et al. (2000) reported
anatomical asymmetries between cerebral hemispheres for right-
handed males, but not females. In turn, Livingston et al.
(2010) did not observe differences in MEP parameters when
comparing both genders and right- and left-handers. According
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to Matsunaga et al. (1998), MEP parameters seem to be even less
pronounced in older than young people.

MEP amplitude is associated with the level of motor unit
recruitment. It may be affected by several factors such as
postural adjustments (Sasaki et al., 2018), the type of task
(rest vs. active) (Semmler and Nordstrom, 1998; Brouwer
et al., 2001), and muscle length (Chye et al., 2010). Thus,
methodological issues such as surface electrodes placement and
the type of task performed, e.g., rest vs. active, may explain
conflicting findings on CSE asymmetries between dominant
and non-dominant sides (Triggs et al., 1994). For instance,
Daligadu et al. (2013) observed an asymmetrical pattern on
the stimulus-response curve between the dominant and non-
dominant cerebral hemispheres when TMS intensity was 90–
150% of rMT. Interestingly, they found a lower rMT for the
non-dominant side in right and left-handers, mainly for TMS
intensities above 120% of rMT. This observation contrasts to
the conventional idea that the dominant hand presents a lower
level of excitability. The underlying mechanisms related to
handedness under resting or active conditions may pose different
views from the CSE and its anatomical and neurophysiological
substrates. Souza et al. (2018) observed differences in MEP
spatial distributions when using high-density sEMG, which were
significantly shifted toward the lateral border of the thenar
region on the dominant hand and might offer some advantage
in generating torque in the metacarpal phalangeal joint. They
suggest a biomechanical background on handedness according
to the MEP spatial distribution and not solely on the amplitude.
Therefore, alternative methodological approaches might provide
additional insights into the effect of manual dominance on the
CSE measures.

THE MEASUREMENT OF THE DEGREE OF

HANDEDNESS

Questionnaires have been widely used to evaluate the degree
of handedness (Oldfield, 1971). For instance, the Edinburgh
Handedness Inventory (Oldfield, 1971) estimates the manual
preference by a laterality quotient (LQ). Davidson and Tremblay
(2013) observed that the LQ correlates with the degree of manual
dexterity. Manual dexterity may also be associated with MEP
parameters (Souza et al., 2018), which is postulated as derived
from the degree of handedness. Nonetheless, there have been
various adaptations on the original questionnaire (Edlin et al.,
2015), which might have negatively impacted the agreement
between different studies. Thus, the lack of uniformity or
consensus in the use of Oldfield’s and other questionnaires to
determine the degree of laterality entangles the standardization
of measurements and, consequently, the comparison between
multiple studies. Flindall and Gonzalez (2019) go further on
these issues, suggesting that many participants may report
differences in the preferred hand for a task when asked on
separate days for only a few weeks. Therefore, active motor

tasks to quantify the degree of handedness seem to be a viable
alternative (Cavill and Bryden, 2003; Flindall and Gonzalez,
2019). Indeed, a task-oriented evaluation may contribute to
obtaining more clear discrimination of the degree of handedness,
besides being correlated with anatomical and neurophysiology
mechanisms. Registering the MEP while performing the motor
tasks addressed by these questionnaires could contribute to
evaluating the hypothetical relationship between the observed
scores and the corticomotor pathway excitability.

CONCLUSION

The CSE might reveal underlying mechanisms that contribute
to assess the degree of handedness, especially in active tasks.
Moreover, MEPs might decode the central NS effort to
drive a motor task, including biomechanical features, and,
therefore, on differentiating degrees of handedness. Alternative
methodological approaches combined with TMS, such as high-
density sEMG,might also contribute to discriminate handedness.
Finally, the CSE might be a relevant measure to evaluate
handedness while performing motor tasks but should be
interpreted carefully due to the amount of variables involved.
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