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For many years, manufacturers have focused on improving their productivity. Production

scheduling operations are critical for this objective. However, in modern manufacturing

systems, the original schedule must be regularly updated as it takes places in a dynamic

and uncertain environment. The modern manufacturing environment is therefore very

stressful for themanagers in charge of the production process because they have to cope

with many disruptions and uncertainties. To help them in their decision-making process,

several decision support systems (DSSs) have been developed. A recent and enormous

challenge is the implementation of DSSs to efficiently manage the aforementioned issues.

Nowadays, these DSSs are assumed to reduce the users’ stress and workload because

they automatically (re)schedule the production by applying algorithms. However, to the

best of our knowledge, the reciprocal influence of users’ mental state (i.e., cognitive

and affective states) and the use of these DSSs have received limited attention in the

literature. Particularly, the influence of users’ unrelated emotions has received even less

attention. However, these influences are of particular interest because they can account

for explaining the efficiency of DSSs, especially in modulating DSS feedback processing.

As a result, we assumed that investigating the reciprocal influences of DSSs and users’

mental states could provide useful avenues of investigation. The intention of this article

is then to provide recommendations for future research on scheduling and rescheduling

operations by suggesting the investigation of users’ mental state and encouraging to

conduct such research within the neuroergonomic approach.

Keywords: scheduling, rescheduling, decision support systems, incidental emotions, uncertainty,

decision-making, modern manufacturing environment

INTRODUCTION

Establishing production schedules demands a detailed description and knowledge of the
production process and requires handling a large amount of information (Rossit et al., 2019).
Indeed, scheduling decisions are “a complex cognitive process that comprises a considerable
number of interrelated subtasks” (Dimopoulos et al., 2012; p. 8–9; see Cegarra, 2008, for a
cognitive typology of scheduling situations). In the modern manufacturing environment, the
original schedule must be regularly updated because it takes place in a very dynamic and uncertain
environment. In such an environment, it is not possible to create procedures for every disruption
that might occur. Unexpected events inevitably happen and affect the original schedule requiring a
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time-pressured response (Battaïa et al., 2019). For example,
taking too long to deal with unexpected events can lead
to a significant decrease in the manufacturing system
performance (Jepson et al., 2017). Production scheduling
and rescheduling operations are crucial to maintain and increase
the manufacturing productivity and effectiveness (Vossing,
2017), especially in identifying conflicts in production lines and
anticipating the occurrence of unexpected events (Vieira et al.,
2003; Rossit et al., 2019; see also Larco Martinelli et al., 2019 for
a sequence of schedulers’ action).

Decision support systems (DSSs) have been developed to
support managers and more generally any kind of operators in
charge of scheduling activities in their decision-making process
(Manzey et al., 2012; Zikos et al., 2018; Onnasch and Hösterey,
2019). DSSs could help users in their analysis of the situation
to reach an optimal and effective solution (Riveiro et al., 2014).
Huge interest has been demonstrated in investigating the effect
of DSSs on user performance (e.g., Ferris et al., 2010). DSSs
could be useful for managers and operators in improving on-
time delivery, increasing their responsivity (Herrmann, 2006) by
providing information that may release users’ cognitive demands
(Lee and Seong, 2009; Onnasch and Hösterey, 2019). For
instance, when using DSSs, individuals might understand and
identify potential mistakes more easily (Lee and Seong, 2009).
DSSs are also supposed to reduce the mental workload as they
automatically reschedule the production planning (e.g., Onnasch
and Hösterey, 2019). For example, Navarro et al. (2018) have
shown that the subjective workload increased when participants
performed all tasks exclusively by themselves compared to
when they used fully automated tasks (see also Röttger et al.,
2009).

However, DSSs do not necessarily imply an improvement
in individuals’ performance. It has been shown that they take
more time to intervene when using DSSs because they have
to recover situation awareness (Lee and Seong, 2009; van
der Kleij et al., 2018). Although there is a strong interest in
human factors within the scheduling and rescheduling literature
(see, e.g., Sanderson, 1989; Crawford and Wiers, 2001; for
reviews), there is also a need to deepen the understanding
of operators’ cognitive processes and performance (see also
Smith and Geddes, 2003). This issue could be resolved
by bridging the gap between laboratory and field studies.
Hence, neuroergonomics, a recent field at the crossroads
of several fields of study such as neuroscience, cognitive
engineering, and human factors, proposes to examine
the brain mechanisms that underlie human–technology
interaction. Especially, this approach aims to investigate the
cognitive and neural processes in the context of carrying
out various real-world tasks under investigation, rather
than under reduced isolated conditions that occur only in
the laboratory (Callan and Dehais, 2019). In light of this
statement, perspectives on overlooked factors are presented
in the following section. We therefore highlight how the
neuroergonomic approach can substantially improve the
understanding of operators’ mental states and performance
during DSS use while reducing the gap between laboratory and
field studies.

FIGURE 1 | Representation of the reciprocal influence of DSSs and users’

mental state during (re)scheduling production operations. Line A: influence of

users’ mental state (i.e., cognitive and affective state) on DSS use. Line B:

influence of DSSs on users’ mental state (i.e., cognitive and affective state).

PERSPECTIVES AND DISCUSSION

DSS efficiency could depend on both situational and
environmental factors (Lee and Seong, 2009). We therefore
assume that investigating the reciprocal influence of DSSs
and operators’ mental state (Figure 1) could provide useful
avenues of investigation. Strong interest has been devoted to
investigate technical, social, and cognitive factors influencing
the adoption and use of systems (Stein et al., 2015). However,
less interest has been devoted to the role of emotional factors in
user behavior (Thüring and Mahlke, 2007; Stein et al., 2015). We
will discuss some of the key findings in usability research aiming
to understand how individuals and their mental state influence
their engagement with information systems. We then aim to
highlight the relative importance of investigating the influence
of operators’ emotional state on (re)scheduling decision-making.
Particularly, we believe that the influence of unrelated emotions
(i.e., incidental emotions) on feedback processing can account
for the non-systematic improvement in operators’ performance
when using DSSs. Investigating the relative influence of DSSs and
operators’ mental state also involves characterizing the influence
of DSSs on users’ mental state. As a result, we will highlight how
neuroergonomics can improve this latter line of investigation
(Figure 1).

Emotional Influences on DSS Use
Although research on usability is not new (e.g., Sagar and Saha,
2017 for a review), the interest to understand users’ subjective
experience while they interact with technological artifacts is more
recent (e.g., Stein et al., 2015; Jung et al., 2017). It is then
widely acknowledged that taking into account the feelings of
users’ experience is of crucial importance. Particularly, emotion
could be one of the main dimensions of user experience (e.g.,
Thüring and Mahlke, 2007; Bargas-Avila and Hornbæk, 2011;
Saariluomaand and Jokinen, 2014; Jeon, 2017). Studies looking
at information technologies (e.g., DSSs) as an affect-inducing
stimulus and influencing behavior (Figure 1, Line B) have to
be distinguished from the ones looking at how affect influences
information technology use (Figure 1, Line A; Stein et al.,
2015). Subjective emotional experience shaped by the interaction
with technologies depends on various factors related to the
relationship between individuals’ differences (e.g., coping, task
events, and design) and emotions (Jokinen, 2015; Stein et al.,
2015). A well-designed system is experienced as more positive,
less arousing, more pleasant, goal conductive, and less novel
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(Thüring and Mahlke, 2007). According to Jokinen (2015), users
appraise a significant task event and respond to it with coping
strategies, which in return influence their performance (Jokinen,
2015).

Individuals’ performance could also be affected by emotions
induced prior to the interaction with information technologies.
Although a large body of work investigates how information
technologies induce emotions and how they influence subsequent
behavior, little has been done in determining how incidental
emotions (e.g., induced prior to the interaction) shape users’
performance. A positive mood (or emotion) could be positively
associated with a perceived ease of use (Cenfetelli, 2004), habit
formation in technology use (Lankton et al., 2010), and appealing
stimulus detection speed (Reppa et al., 2020). Aesthetic appeal
could even counterbalance the effects of negative mood (Reppa
et al., 2020). These results are in line with the fact that the
emotional state under which individuals perform decision-
making tasks modulates their performance (e.g., Blanchette and
Richards, 2010). Users’ affective state is largely ignored in the
current DSS literature even if it has been demonstrated that
individuals in a positive mood use their DSSs significantly
more efficiently (Figure 1, Line A) than individuals in a neutral
mood (Djamasbi, 2007). However, the authors take a valence-
based approach (as the majority of usability research). This
approach holds that all types of positive mood (or positive
emotions) have the same influence, which differs from the
performance triggered by all types of negative mood (or negative
emotions; see Blanchette and Richards, 2010 for a review). The
valence-based approach has been challenged by the seminal
work of Lerner and Keltner (2000, 2001), who demonstrated
that two emotions unrelated to the decision-making process,
i.e., incidental emotions (e.g., induced prior to the decision-
making tasks), and sharing the same valence could lead to
different decisions.

This emotion-specific framework [i.e., The Appraisal
Tendency Framework (ATF); Lerner and Keltner, 2001; see
also Han et al., 2007] assumes that each incidental emotion
can be defined by its score for a set of appraisals (pleasantness,
anticipated effort, control, responsibility, attentional activity, and
certainty, according to Smith and Ellsworth, 1985). For example,
anger is defined by a high degree of certainty (i.e., the extent to
which individuals understand what is happening and are able
to predict future events; Smith and Ellsworth, 1985) and by
individual control. By contrast, fear is defined by a low degree of
certainty and situational control. These features could activate “a
predisposition to appraise future events in line with the central
appraisal dimensions that triggered the emotion” (Han et al.,
2007, p. 160). A series of experiments showed that the appraisal
of control associated with incidental emotions could mediate
the link between emotions and decisions. Consequently, we
posit that investigating the effect of incidental specific emotions
could represent a fruitful avenue to deepen the understanding
of operators’ (re)scheduling decisions and the use of DSSs
(Figure 1, Line A). It can therefore be expected that incidental-
specific emotions influence the use of DSSs. For example, it can
be hypothesized that incidental happiness leads to better DSS
use than incidental hope, especially due to the different feedback

processing triggered by those two incidental emotions (Mailliez
et al., 2020).

Emotional Influences and Feedback
Processing
An explanation of why specific emotions could lead to different
feedback processing—and thus performance—may stem from
the type of information processing triggered by the appraisal of
certainty (i.e., heuristic or deliberative processing). It has been
shown that incidental negative emotions are associated with
opposite patterns of performance (Bagneux et al., 2012, 2013;
Bollon and Bagneux, 2013). Better performance is observed with
emotions associated with a high degree of certainty (Bagneux
et al., 2012, 2013; Bollon and Bagneux, 2013; Iyilikci and Amado,
2018). Particularly, incidental emotions associated with a high
degree of certainty may trigger a heuristic feedback processing,
whereas incidental emotions associated with a low degree of
certainty might trigger a deliberative one (Tiedens and Linton,
2001).

When feedback is deliberatively processed, the number of
times that a decision leads to a positive or negative outcome
is used in controlled cognitive processes such as rethinking the
decision strategy (Schiebener and Brand, 2015). Deliberative
processing is strongly dependent on the individuals’ available
cognitive resources (Evans and Stanovich, 2013). Scheduling
decisions are cognitively demanding and complex (Berglund
and Karltun, 2007; Larsen and Pranzo, 2019). However,
individuals’ cognitive resources may be limited (Bechara and
Damasio, 2005); hence, it could be impossible to define which
decision is better than another. In contrast to deliberative
processing, the heuristic processing of feedback might allow the
processing of emotional cues shaped by the association between
feedback (positive vs. negative outcomes) and the elicited
emotions (Bechara and Damasio, 2005). Heuristic processing
might enable the individuals to process emotionally charged
information via the automaticity of emotions (Kahneman
and Frederick, 2007). Heuristic processing is therefore less
cognitively demanding and allows processing a greater amount
of information. Consequently, the heuristic feedback processing
might be more effective than deliberative processing to achieve
better performance in sequential decision-making, such as (re-)
scheduling ones.

While studies on feedback processing have largely
demonstrated their influence on sequential decision-making
(e.g., Brand et al., 2007; Schiebener and Brand, 2015), the effect
of feedback processing on (re)scheduling has received little
interest. Moreover, it has been stated that DSSs can replace or
automate certain cognitive processes, leading to an increase
in individuals’ information processing capacities (Djamasbi,
2007). While DSS feedback studies highlight the effect of
feedback on the use of DSSs (e.g., Lim et al., 2005; Djamasbi
and Loiacono, 2008), they do not include the potential influence
of specific emotions on feedback processing. Including such an
incidental influence is particularly important as it can mediate
the operators’ performance. Particularly, emotional influences
on feedback processing (Figure 1, interaction between Lines
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A and B) could be one of the factors explaining both better
performance in (re)scheduling decisions and DSS efficiency,
especially because emotional influences may trigger different
information processing strategies (i.e., deliberative vs. heuristic).

To summarize, previous research on usability focused on
how information technologies induce emotions and how these
emotions influence the subsequent behavior (Figure 1, Line B).
Influences of emotions that are not shaped by the interaction
(i.e., incidental emotions) are less investigated (Figure 1, Line
A), and interactions between these emotional influences even
less so (Figure 1, interaction between Lines A and B). Scholars
seem to focus on a specific period (e.g., during or before
the interaction). It could be the consequence of a reluctance
to theorize and operationalize the users’ emotional experience
(Jokinen, 2015). This reluctance might stem from the fact
that user experience is considered as holistic (Boehner et al.,
2007; Jokinen, 2015). This consideration and the valence-
based approach taken by studies do not help to deepen the
understanding of why and how users’ emotional state and
generally users’ mental state influence the interaction with
information technologies. We argued that taking an emotion-
specific framework as forecasted by the ATF (and more recently,
the emotion-imbued choice; Lerner et al., 2015) could provide an
interesting path to consider both the contextual complexity (e.g.,
users’ and technologies’ characteristics) while taking into account
the different emotional influences and their interaction. Beyond
the theorization, operationalization could have everything to gain
from being set in a neuroergonomic perspective.

Toward Physiology-Based Mental State
Assessment for DSS Use Characterization
Users’ subjective experience can be thought of as private and
immediate. The use of questionnaires to elicit users’ emotional
state has been widely debated (Schorr, 2001). One may argue that
individuals are reporting their general knowledge concerning
emotions, not their current emotional states (Jokinen, 2015). It
could therefore be very difficult to put user experience into words
(Dennett, 1988). Emotions (especially their associated appraisals)
would be responsible for changes in individuals’ physiology
(Scherer, 2009). The investigation of emotional influences on
(re)scheduling decisions can therefore take place within the
larger context of deepening our understanding of DSS users’
mental state through the lens of neuroergonomics.

Results about the effect of DSSs on users’ mental state,
especially their workload, remain equivocal, as it was mainly
demonstrated at a subjective level. As Charles and Nixon
(2019) highlighted in their systematic literature review, there
is no single measure that discriminates mental workload, but
there is a variety of physiological and behavioral data. A
deeper understanding of the relationship between operators’
mental workload using DSSs, as well as the reciprocal influence
between DSSs and operators’ mental state, will therefore be
improved by the neuroergonomic approach. This approach is
of particular interest as it allows going further than the classical
approach based on subjective and behavioral measures by using
physiological measures such as cardiac and cerebral activity

markers. Indeed, behavioral metrics, although objective ones,
might not reflect all mental processes that take place as illustrated
by the inverted U-shaped performance curve observed under
varying levels of arousal and task demands (VaezMousavi et al.,
2009), as well as by the absence of difference reported between
several difficulty levels for very low or very high task demands
(Mehler et al., 2009). Hence, individuals may perform adequately
but at a great cognitive cost, which might harm them in the
long term, and impede their capability to deal with other
task-external solicitations.

The neuroergonomic approach therefore allows assessing
operators’ mental state during operations (e.g., manufacturing
ones) rather than afterward or by interrupting the task such as
done with subjective measures acquired through questionnaires.
Particularly, by using psychophysiological measures such as
cardiac and cerebral activity ones, one could monitor operators’
stress and workload level during (re)scheduling operations, as
well as other cognitive and affective mental states as already
studied in the ground and aerial transportation domains (see
Borghini et al., 2014; Dehais and Callan, 2019 for reviews).
Usual metrics for workload and stress assessment include heart
rate and heart rate variability, as well as the power in various
frequency bands (e.g., alpha power at parietal sites) recorded
through electroencephalography (EEG; e.g., alpha [8 12] Hz)
(Roy et al., 2013, 2020; Roy and Frey, 2016). Regarding affective
state assessment, the same cardiac features (i.e., heart rate and
heart rate variability), as well as the power in various EEG
frequency bands and connectivity between electrodes (e.g., in the
gamma band, >30Hz), are metrics known to reflect arousal and
valence (Wu et al., 2010; Chen et al., 2015). Usability studies
that include physiological measurements have also started to be
run (Hu et al., 2000; Brocke et al., 2013; Bhatt et al., 2019). It
should be noted that physiological activity associated withmental
processes can be recorded during operations (e.g., scheduling and
rescheduling operations) and analyzed offline. However, themost
striking advantage of this approach is that physiological measures
can also be recorded and analyzed in an online manner.

Indeed, the use of such an online analysis approach has
enabled researchers to deepen their mental states assessment
in ecological settings, as well as to design better interfaces and
support tools. Particularly, the use of machine learning tools has
recently allowed researchers and engineers to develop adaptive
systems that take physiological data as inputs. Such systems
that enable cognitive and affective computing are often called
biocybernetics systems or passive brain–computer interfaces
(Fairclough, 2009; Zander and Kothe, 2011). By enabling the
estimation of certain mental states (e.g., mental workload,
fatigue, attentional level, emotional state) and modifying the
interaction with the user, such bioadaptive or neuroadaptive
systems provide a new means to increase safety and performance
in operational environments (Lotte and Roy, 2019). Examples
of countermeasures that could be implemented to deal with
inadequate stress or mental workload levels are a modification of
the interface, as performed in the Air Traffic Controller context
(Aricò et al., 2016; Saint-Lot et al., 2020). Other solutions from
the Human-Unmanned Aerial Systems interaction domain are
to dynamically modify the automation level of the (re)scheduling
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task (Ruff et al., 2002) or even to dynamically reallocate the load
between teammates (Walters and Barnes, 2002). To put in a
nutshell, the neuroergonomic approach seems a fruitful avenue
of investigation to deepen the understanding of the reciprocal
influence between DSSs and users’ mental state (Figure 1, Lines
A and B).

CONCLUSION

Although the complementary strength of DSSs and individuals
has been demonstrated in previous work (see MacCarthy
et al., 2001 for a review), to date there has been little work
on characterizing the reciprocal influence of their mental
state from an emotional perspective. Besides characterizing
the influence of DSSs on users’ mental state, factors such as
the influence of incidental emotions and its interaction with
feedback processing have received even less attention. However,
they are of particular interest as they could represent factors
that can improve individuals’ and managers’ performance. We
argue that incidental emotions could mediate the effect of DSSs
on users’ mental state. This investigation cannot be carried
out without considering the reciprocal influence of DSSs on
mental (cognitive and emotional) state (and vice versa). As a
perspective, the neuroergonomic approach is introduced. This
approach is of particular interest for the human factors and the
engineering communities that can benefit from new tools to
better characterize (re)scheduling-induced mental states during

DSS use. The striking advantage of this emerging approach is that
it allows a psychophysiological assessment in both an offline and
online manner.
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