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This study explores the feasibility of developing an EEG-based neural indicator of task

proficiency based on subject-independent mental state classification. Such a neural

indicator could be used in the development of a passive brain-computer interface to

potentially enhance training effectiveness and efficiency. A spatial knowledge acquisition

training protocol was used in this study. Fifteen participants acquired spatial knowledge

in a novel virtual environment via 60 navigation trials (divided into ten blocks). Task

performance (time required to complete trials), perceived task certainty, and EEG signal

data were collected. For each participant, 1 s epochs of EEG data were classified as

either from the “low proficiency, 0” or “high proficiency, 1” state using a support vector

machine classifier trained on data from the remaining 14 participants. The average

epoch classification per trial was used to calculate a neural indicator (NI) ranging

from 0 (“low proficiency”) to 1 (“high proficiency”). Trends in the NI throughout the

session—from the first to the last trial—were analyzed using a repeated measure mixed

model linear regression. There were nine participants for whom the neural indicator was

quite effective in tracking the progression from low to high proficiency. These participants

demonstrated a significant (p < 0.001) increase in the neural indicator throughout the

training from NI = 0.15 in block 1 to NI = 0.81 (on average) in block 10, with the

average NI reaching a plateau after block 7. For the remaining participants, the NI did

not effectively track the progression of task proficiency. The results support the potential

of a subject-independent EEG-based neural indicator of task proficiency and encourage

further research toward this objective.

Keywords: passive brain-computer interface, EEG, classification, spatial knowledge acquisition, cognitive state

prediction, subject-independent

INTRODUCTION

A passive brain-computer interface (pBCI) is a system that enriches human-machine interaction by
providing implicit information about a user’s mental state (e.g., cognitive, affective) and adapting
the environment accordingly (Brunner et al., 2015). Example applications include workload
estimation in the workplace, feedback of mental states to improve wellness or manage stress,
and enhanced product development (Baldwin and Penaranda, 2012). An example of the latter
is “Intelligent Tutoring Systems (ITS)” (Chaouachi et al., 2015), which provide the user with an
adapted and individualized learning environment. This adaptation can be operated with regards
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to several considerations (cognitive, emotional, etc.), and can be
related to different aspects of the system’s interaction strategy
(e.g., selection of the next learning step, providing individualized
feedback, etc.) (Zander and Kothe, 2011; Chaouachi et al.,
2015). A pBCI for learning/training would support, for example,
programs based on “mastery learning,” an effective method of
instruction where a trainee must achieve proficiency in more
fundamental, prerequisite knowledge prior to progressing to
subsequent tasks of increasing difficulty and complexity (Block
and Burns, 1976; Kulik et al., 1990). pBCIs would be useful
for any software-based training programs, including immersive,
experiential training based on simulation or virtual environments
(Lécuyer et al., 2008).

The novel value of a pBCI for training programs would lie
in its cognitive indicator of task proficiency. Traditionally, the
only indicators that have been available to assess a trainee’s task
proficiency are their performance measures. However, according
to the processing efficiency and attentional control theories,
there is a crucial distinction between performance effectiveness
(i.e., quality of performance) and processing efficiency [i.e.,
performance effectiveness divided by cognitive effort required to
perform a task at that level Eysenck and Calvo, 1992]. Therefore,
a trainee’s performance may reach acceptable levels as indicated
by performance measures alone before they are truly proficient in
a skill; that is, before they are able to achieve good performance
with little mental effort. Indeed, one aspect of expertise in a task
is the development of automaticity (Ayaz et al., 2012), related to
the idea that skill and mental workload are generally inversely
related (Gopher and Kimchi, 1989). Particularly in high-risk
or safety-critical occupations, it is crucial that personnel are
able to perform their required tasks not just effectively but also
as efficiently as possible, so that in a real-life scenario, where
there will almost certainly be additional strains on cognitive
resources vs. a simulated training condition, the individual will
have developed automaticity and remain able to perform the task
effectively. A truly effective training program would make use of
an assessment measure that could capture this information about
the trainee’s cognitive state.

A key component of the processing efficiency and attentional
control theories involves the relationship between anxiety,
cognition, and task performance (Eysenck and Calvo, 1992;
Derakshan and Eysenck, 2009). Anxiety in this context can be
considered as an induced cognitive state when an individual’s
goal is threatened. Therefore, while individuals are training,
the associated lack of confidence or certainty in their ability
during the early stages of training can evoke a high-anxiety state
which motivates individuals to improve their performance to
avoid future negative task outcomes. Conversely, the confidence
or certainty in task performance experienced by trainees late
in a training protocol can satisfy an individual’s desire to
achieve a certain performance. Once an individual’s desired task
performance has been achieved, anxiety is reduced along with
motivation to further improve task performance (Derakshan and
Eysenck, 2009). The concept that anxiety adversely affects the
attentional control of the working memory system is central
to the attentional control theory. There is individual variance
in the working memory system and thus individuals display

differences in anxiety, cognition, and task performance. Broadly
speaking, states of relative uncertainty are associated with the use
of bottom-up processing (i.e., low processing efficiency), while
states of relative certainty are associated with use of top-down
processing (i.e., high processing efficiency) (Klimesch, 1999,
2012; Klimesch et al., 2006; Benedek et al., 2011). A cognitive
measure capable of capturing this transition from an unskilled
to a proficient state during a training protocol could be used
to provide an optimized, personalized training experience for
individual trainees.

Physiological metrics are often sensitive to aspects of
a task that other metrics do not recognize (Baldwin and
Penaranda, 2012), and thus have great potential to provide this
important complementary information regarding a trainee’s task
proficiency. Indeed, current models of automaticity related to
the development of expertise in certain tasks suggest that there
are shifts in the functional neuroanatomy of task performance
(Gopher and Kimchi, 1989). As automaticity develops in various
tasks, attentional resources, largely associated with the prefrontal
cortex, become available and can be devoted to perform
other tasks (Ayaz et al., 2012). The development of expertise
has been studied across a wide range of motor, visuomotor,
perceptual, and cognitive tasks, and from diverse research
perspectives (Ericsson, 2006). Four main patterns of practice-
related activation change have been identified, including either
(1) increased or (2) decreased activation in the brain areas
involved in task performance, or (3) functional redistribution of
brain activity, in which some initial areas of activation increase
while others decrease, or (4) a functional reorganization of
brain activity, in which the pattern of increasing and decreasing
activation occurs across distinct brain areas in addition to the
initial areas (Kelly and Garavan, 2005).

EEG is a non-invasive neuroimaging modality that measures
transient electrical changes in the cortex associated with cognitive
activity. EEG has been the focus of much BCI research,
particularly for use in mental state prediction. A number of
recent studies have investigated the use of EEG-based pBCIs to
develop cognitive assessments of attention, workload, and fatigue
for such tasks as car driving, air traffic control, aircraft piloting,
helicopter piloting, laparoscopic surgery, and other cognitive
tasks (Borghini et al., 2012a,b, 2015, 2016a,b, 2017a,b; Appel
et al., 2019; Andreessen et al., 2020). A few EEG-based pBCI
studies have explored neural indicators of training (Borghini
et al., 2012b, 2016a,b, 2017a; Gerjets et al., 2014), but these
have focussed on inter-session changes. Very little focus has
been given to within-session indicators, which would be useful
to support the “mastery learning” paradigm mentioned earlier.
Furthermore, while multi-session training protocols certainly
make the most sense for many tasks (e.g., aircraft piloting, air
traffic control) since in practice these skills would be learned
over long periods, some tasks—for example, emergency response
procedures—must be learned much more quickly, often in a
single session.

A recent study completed by the authors observed changes
in cortical activity throughout a single-session spatial knowledge
acquisition training protocol using EEG (Kenny et al., 2019). This
task was selected because environmental familiarity is essential
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during safety training for high-risk environments (Stone et al.,
2009) so that individuals will be able to act autonomously in
the event of an emergency egress (Garling et al., 1983; Cliburn
and Rilea, 2008). In this study, 15 participants acquired spatial
knowledge via 60 navigation trials (divided into 10 blocks) in a
novel virtual environment. The participant’s time performance,
perceived task certainty, and EEG signal data were collected
for each trial. A machine learning approach in which the
classification accuracies of EEG data from block 1 vs. blocks
2–10 (individually) were calculated, and used as a measure of
how the data changed throughout the session—the higher the
classification accuracy, the more dissimilar the data from a given
block was from the initial block (i.e., when the individual’s
proficiency level was very low).We observed a significant upward
trend in the classification accuracy, which stabilized after block 7
when the trials were arranged in the order they were completed,
and after block 9 when arranged in increasing order of the
participant’s perceived task certainty (and secondarily, in order
of completion). The results suggested that the participants’ EEG
signals continued to change after both the time performance
and certainty ratings had plateaued, supporting the idea that
neural signals could provide additional information about task
proficiency that more conventional measures cannot.

These results were promising and provided insight into neural
activity patterns during a single training session. To be able to
use this within-subject, classification-based method as a neural
indicator in a real passive BCI system while a user completes
a training protocol, successive blocks of trials would have to
be classified against the initial block of trials, until a plateau
in accuracy is reached, which would indicate that the neural
signals have stabilized and, presumably, that no further training-
related changes are occurring. Given that blocks of multiple trials
are needed to perform the classification, this method could be
somewhat time-consuming, as the duration of blocks needed to
adequately train the classifiers could be relatively long, and results
from multiple blocks would be required to observe a plateau.

In this paper, we build on our previous work and explore a
potential neural indicator of task proficiency that is much more
time efficient. Specifically, we explore the possibility of classifying
mental states related to task certainty associated with low and
high task proficiency based on a subject-independent classifier
trained on a database of “previous” trainees.

METHODOLOGY

Participants
Eighteen healthy volunteers were recruited to participate in this
study. The data from three participants was not included in
the analysis due to a software error, participant sickness during
data collection, and excessive electromyographic (EMG) noise.
Ultimately, fifteen participants were included in the analysis:
nine male (27.9 ± 4.3 years, seven right-handed) and six female
(26.2± 4.4 years, all right-handed). Participant inclusion criteria
stipulated an age range of 18–65 years old, normal or corrected-
to-normal vision, normal hearing, no history of neurological
disease, disorder or injury, no cognitive impairment, no previous
exposure to an offshore oil and gas platform (as this was the

environment used in the experimental task), and significant
experience using XboxTM (or similar) controller. Participants
were asked not to consume alcohol or caffeine for a period of
4 h before the experimental session. Participants of this study
were recruited on a voluntary basis from theMemorial University
campus in St. John’s, NL, and self-selected based on the inclusion
criteria. This study was approved by the Interdisciplinary
Committee on Ethics in Human Research (ICEHR) board at
Memorial University of Newfoundland, and all participants
provided written informed consent prior to participating.

Data Collection
The experimental protocol used in this study was previously
reported in Kenny et al. (2019). Data from participants were
collected on an individual basis during a single experiment
session, ∼2–3 h in duration. Three categories of data were
collected during each experiment: neural, behavioral, and self-
reported. The data were collected as participants performed 60
navigation trials within a virtual environment simulator in which
they had to travel, unguided, from a starting location to a target
location. Neural signals were collected throughout all trials via
a 64-channel EEG system. Behavioral data were recorded as the
time to complete each navigation trial. Self-reported data were
recorded as the participant’s perceived certainty of the target
room location at the beginning of the trial.

Virtual Environment—AVERT
Participants completed navigation trials using a desktop-
based virtual environment simulator created by researchers at
Memorial University. “AVERT: All-Hands Virtual Emergency
Response Trainer” was developed for the purposes of improving
safety training in the offshore oil industry (House et al., 2014).
Specifically, AVERT is a life-like digital rendering of an offshore
oil and gas platform that can be used to develop such skills
as spatial knowledge, alarm recognition, mustering procedures,
hazard avoidance, and emergency response (House et al., 2014;
Musharraf et al., 2016). The virtual environment is displayed to
participants via a desktop-user interface including a computer
monitor and XboxTM controller. The user has a first-person
perspective in the virtual environment and can control head
direction and translational movement via the XBoxTM controller.
The virtual environment is immersive and engaging; participants
can interact with objects such as doors, and audio provided by
two external speakers provides a realistic sense of space.

Neural Data
A 64-channel EEG system (ActiChamp, BrainProducts, GmbH)
was used to collect neural signals during the completion of
navigation trials. Electrodes were arranged in the international
10–20 placement system and sampled at 500Hz. The reference
electrode and ground electrode were assigned as FCz and FPz,
respectively. During the initial placement of the electrode cap
on each participant, impedances were lowered below 15 k�.
Subsequently, after every twelve trials, the electrode impedences
were checked and re-set below 15 k� as necessary. Equipment
setup procedures were accurately followed and participants
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received adequate education regarding data collection best
practices (e.g., limiting movement).

Behavioral Data
Participants’ behavioral performance data were recorded as
the time to complete each navigation trial. Two factors were
controlled to reduce variance due to individual controller
abilities and preferences. First, the walking/movement speed
within AVERT was fixed to a constant value regardless of
a participant’s desired speed. Second, an elevator was used
to travel between floors to simplify controls and to prevent
simulation sickness caused by traveling down winding staircases.
During pilot testing of this study, both of these factors were
found to negatively affect performance regardless of navigation
ability and spatial knowledge. Furthermore, participants were
given time to practice using the controller to navigate
through the virtual environment during a habituation phase,
described below.

Time performance per trial was calculated as the percent
difference from an “ideal” time performance. This normalized
measure was used rather than just the raw time to complete
the trial in order to account for different trial route lengths.
The “ideal” time for each trial was set to be the time taken by
one of the authors (who knew the locations of all rooms very
well and could navigate between them immediately and without
hesitation) less 15% to account for potential deficiencies of the
author in controller usage.

Perceived Task Certainty Data
Participants provided a self-reported task certainty rating by
responding to the following question at the end of each trial:
“At the beginning of the trial, did you know how to get to
the target room location? Please rate on the scale (1–10) below
how sure you were.” A rating of 1 indicated a low certainty
of how to navigate to the target room, and a rating of 10
indicated a high certainty of how to navigate to the target
room. The objective of this question was to gauge the level of
perceived task certainty each participant had at the beginning
of the trial, after being presented with the target room location.
Therefore, this question does not assert how well one thought
they performed in a given trial, but how certain they were at the
beginning of the trial of the target room’s location, regardless
of how they ultimately performed. Participants were specifically
asked to reflect on their level of certainty at the beginning of
the trial as this best represents their cognitive state during the
trial regardless of their behavioral performance. For example,
participants could indicate an uncertain state at the beginning of
the trial but correctly locate the target room, or conversely, they
could indicate a certain state but ultimately be wrong about the
target room location.

Experiment Protocol
The experiment session was divided into three phases:
habituation, introduction, and navigation. The results presented
in this paper are based on data collected in the navigation phase
of the session only.

TABLE 1 | The names and floor number of the twelve rooms used to complete

navigation trials in phase 3 of the experiment protocol.

Floor Room name

1 Laundry room Computer room

2 Quiet room Kitchen

3 Maintenance Fire room

4 Cabin IT room

5 Electrical room Office

6 Control room Medic office

Phase 1: Habituation
The first phase of the experiment was intended to expose
participants to the virtual environment interface and to
confirm controller skill level. Phase 1 was designed to reduce
controller motor learning within the experiment. Participants
were recruited who had significant previous experience using an
XboxTM controller. Additionally, controls to move through the
environment were simple and included two joysticks, one each
to control head and translational movement, and one button
to interact with objects in the environment. Participants were
introduced to AVERT and demonstrated their controller skill
in a part of the virtual environment which was different than
the environment used in phases 2 and 3. That is, participants
remained naïve to the environment used in the spatial knowledge
acquisition training protocol.

Phase 2: Introduction
The second phase of the experiment introduced participants to
twelve rooms within the accommodations area of the virtual
offshore oil and gas platform. Phase 2 was designed to provide
participants with a single, brief exposure to each of these rooms
via guided navigation. Pilot testing indicated that without this
introduction, participants often spend an excessive amount of
time performing trial-and-error searching for the target room.
Additionally, such an introduction simulates a workplace “walk-
through” that commonly takes place during basic safety training.
Participants were told that the intention was not for them to
remember the locations of all rooms within this phase, and that
they would be given the opportunity to learn to navigate between
the rooms in the following phase. The twelve rooms were evenly
distributed across six floors of the accommodations area and
were representative of common rooms found on an oil and gas
platform (Table 1).

Phase 3: Navigation
The third phase of the experiment involved the collection of
data as participants acquired spatial knowledge in an unfamiliar
virtual environment. Participants completed sixty navigation
trials, which required navigation between a start location and a
target room. Note that all trials contained unique pairs of the
twelve rooms presented in phase 2, and that participants were
exposed to each room twice per twelve consecutive trials (once
as the starting room, and once as the target room). Participants
had a maximum of 3min to perform each trial in order to
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limit over-exposure to the environment and wayfinding behavior.
Phase 3 was designed such that through repeated exposures to
the environment, participants could acquire sufficient spatial
knowledge that by the end of the 60 trials, they could easily
and accurately navigate between any two room locations. Several
important design considerations were made in the third phase to
select the number of rooms, routes, and trials each participant
would perform. These design considerations are explained in
detail in Kenny et al. (2019).

Neural, behavioral, and task certainty data were recorded
during phase 3. EEG data were recorded during both navigation
and baseline trials. Baseline trials were 1-min periods of rest
during which the participant would sit quietly with their eyes
either open or closed. The eyes-open trials were performed prior
to each block of six navigation trials (for a total of ten eyes-open
trials), while eyes-closed trials were performed at the beginning
and end of the 60 trials (for a total of two eyes-closed trials). Each
navigation trial began with the participant appearing in one of the
twelve rooms, and the name of the target room was presented on
the screen after 3 s. EEG recording started with the presentation
of the target room location and ended when the participant
reached the target room location or reached the maximum trial
time limit (3min). The time to complete each navigation trial,
and the self-reported certainty data, were recorded at the end of
each navigation trial.

Data Analysis
Pre-processing
EEG signals of all participants were pre-processed identically, and
all signal processing operations were performed on a participant’s
cumulative set of data. The following pre-processing steps were
performed using the EEGLab Matlab toolbox (Delorme and
Makeig, 2004):

1. Manual removal of electromyographic (EMG) noise
2. Down sampling from 500 to 256 Hz
3. Bandpass filtering from 1 to 50 Hz
4. Independent component analysis (ICA) to remove

electrooculographic (EOG) artifacts.

Signal Power
The pre-processed EEG data were subsequently used to calculate
a set of signal power features to be used for the classification
analysis. First, pre-processed data were used to calculate a
baseline-normalized power time-series in four frequency bands:
theta, alpha-low1, alpha-low2, and alpha-high. The theta and
alpha frequency bands were selected as there is evidence
suggesting they reflect cognitive and memory performance
(Klimesch, 1999). In addition, previous related works have
found the theta and alpha frequency bands to be useful for
neural indicators of performance (Borghini et al., 2012a,b, 2015,
2016a,b, 2017a,b). The frequency bands were established on
an individual basis using each participants’ individual alpha
frequency (IAF) (Klimesch, 1999) defined as: theta band: (IAF
−6Hz) to (IAF −4Hz), alpha-low1 band: (IAF −4Hz) to (IAF
−2Hz), alpha-low2 band: (IAF −2Hz) to (IAF), and alpha-high
band: (IAF) to (IAF+2Hz). Each participant’s IAFwas calculated

as the average of the frequencies that had maximum power,
between 8 and 15Hz, in the two eyes-closed baseline trials from
the beginning and end of the sixty navigation trials (the average
of these two trials was used to help account for any drift in the
IAF that may have occurred throughout the session). The filter-
Hilbert method was used to obtain a power time-series for each
frequency band, and the data were z-score normalized using the
first eyes-open baseline trial of the session.

The features used in the classification analyses were calculated
using the normalized power time-series data from a subset of 41
EEG channels over the frontal, temporal, parietal, and occipital
regions (Figure 1). The electrodes around the central sulcus were
excluded tomaintain consistency with our previous study (Kenny
et al., 2019). The features were calculated as the average power in
non-overlapping, 1 s windows (epochs), in each EEG channel and
frequency band.

Classification
Based on the processing efficiency and attentional control
theories discussed previously, we aimed to capture a neural
indicator that would provide information about the trainee’s
processing efficiency. In practice, such a measure could then
be used along with the trainee’s performance effectiveness (as
reflected by their behavioral performance measures) to get a
more complete picture of their task proficiency. Based on our
previous discussion of the processing efficiency and attentional
control theories, we felt that the neural indicator should reflect
how certain or confident a participant felt in their task execution.
Our approach was therefore based on the classification of
mental states associated with task certainty in the low and high
proficiency states.

Training data were divided into classes reflecting “low task
proficiency” and “high task proficiency” on a per participant
basis by first arranging trials in order of increasing self-
reported task certainty (secondarily, in order of completion). The
bottom and top 10% of trials (i.e., 6 trials) were selected per
participant to represent states of low and high task proficiency,
respectively. Note that this approach to ordering the trials was
taken rather than ordering simply by trial number to account
for the possibility that an individual could by chance be (or
feel) very proficient in a particular trial early in the session
(e.g., if they happened to remember a room location from
the habituation phase) or struggle with a trial late in the
session. For each of the 15 participants, a classifier was trained
on the data from the other 14 participants and tested using
that participant’s data. The minimum-redundancy maximum-
relevance (mRMR) feature selection method (Peng et al., 2005),
which is commonly used in EEG-based BCI studies (Lotte
et al., 2018), was used to choose an optimal 10-dimensional
feature set to perform classification using a support vector
machine (SVM) classifier with a linear kernel. No data from
the “test participant” were used in either feature selection or
classifier training.

Note that because there were generally more samples (epochs)
available in the “low proficiency” than the “high proficiency”
state (due to participants taking longer to complete these
trials), the number of samples per class that a given participant
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FIGURE 1 | Electrode placement map with electrode names and cortical region labels (frontal, temporal, parietal, and occipital). Adapted from (Kenny et al., 2019).

contributed to the training set were balanced via random
sampling of the larger class (e.g., if there were 300 samples
from the “low proficiency” class, but only 120 samples from
the “high proficiency” class, then 120 samples from the “low
proficiency” class were selected by random sampling for use
in the classification analysis). However, the amount of data
contributed by each participant to the training set was not
necessarily equal. To minimize variance due to the random
sampling of the larger class, 100 runs of the classification was
performed for each participant, and the average classification
accuracy was calculated over these 100 runs. Note that in each
run the test data remained the same (i.e., all data from the “test
participant”) while a new training set was selected via random
sampling (to balance the classes within participants). The average

number of samples per class per participant was 132 ± 28. The
minimum was 80 samples/class.

Neural Indicator
A “neural indicator (NI)” (Equation 1) was calculated for each
trial to indicate the degree to which a trial’s epoched data was
predicted as coming from a “low proficiency (0)” or “high
proficiency (1)” cognitive state based on the classifier using the
other participants’ data. Specifically, for each trial, the average of
the predicted class (i.e., 0 or 1) was calculated over all trial epochs.
This would result in a value close to 0 if most epochs in a trial
were classified as “low proficiency,” and a value close to 1 if most
epochs in a trial were classified as “high proficiency.” We hoped
to observe an increasing trend in this indicator from close to 0 in
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the early trials when the participant is not proficient in the task
to close to 1 in later trials, as the participant became proficient in
the task. The neural indicator, NI, was calculated for each trial, t
according to:

NIt =

∑i= nt
i= 1 ci

nt
(1)

where ci is the predicted class of the ith epoch of the trial, and nt
is the number of epochs in the trial.

Statistical Analysis
To determine if the neural indicator changed significantly over
the course of the training session as expected, a repeated measure
mixed model linear regression with one within-subject factor
(i.e., block #) was performed.

Furthermore, to determine if the neural indicator correlates
with (1) the perceived certainty rating, and (2) the time
performance, Pearson correlation coefficients were calculated for
each participant. This was done over the entire session, as well
as on data from just the beginning and end of the session (first
and last 20% of data) where we expect the neural indicator to be
most reliable.

RESULTS

Perceived Certainty and Time Performance
Data
Figures 2, 3 show plots of time performance vs. trial and
perceived certainty rating vs. trial for all participants.

EEG Classification-Based Neural Indicator
(NI)
For each participant, a plot of the “neural indicator (NI)” (derived
from the classification of each EEG signal epoch as representing a
“low proficiency” or “high proficiency” state) across the 60 trials
of the training session is shown in Figure 4. A plot of NI averaged
across all participants, and across blocks of six consecutive trials,
is shown in Figure 5.

Across all fifteen participants, the proposed “neural indicator”
increased from NI = 0.13 in the first block to NI = 0.53 in the
final block, as participants progressed from a “low proficiency”
to a “high proficiency” state. A repeated measure mixed model
linear regression analysis indicated a significant effect of block on
neural indicator (βBlock = 0.029, t(134) = 4.12, p < 0.001) across
all participants.

However, based on the plots shown in Figure 4, there appears
to be a division into two rather distinct groups—for nine out
of fifteen participants (participants 5–6, 8–13, 15), the proposed
measure follows the expected trend from “low proficiency” to
“high proficiency” across the session blocks quite well, while
for the remaining six participants (participants 1–4, 7, 14), no
such trend exists and the NI remains relatively flat across the
whole session. Plots of the average NI for each of these two
distinct subgroups are also shown in Figure 5. For the group
of participants for whom the measure appeared effective, the
average NI increases significantly (repeated measures mixed

model linear regression: βBlock = 0.065, t(80) = 19.12, p <

0.001) from NI = 0.15 in the first block to NI = 0.81 in the
final block. This means that on average 85% of epochs were
classified as “low proficiency” in the first block, and 81% as “high
proficiency” in the final block, for an overall accuracy of 83% in
these two blocks. For the other subgroup, there was no significant
increase inNI across the session (repeatedmeasuresmixedmodel
linear regression: βBlock = 0.006, t(53) = 1.48, p = 0.14), and
the consistently low value of the NI indicates that a majority
of epochs from a majority of trials across the session were
classified as “low proficiency” for these participants. To assess
the significance of our results, a non-parametric permutation
test was applied to the overall classification accuracy of EEG
epochs from Blocks 1 and 10 for each participant (Hajra et al.,
2018). Specifically, we randomly redistributed the class labels
for all EEG epochs for each participant, and then performed an
identical classification procedure as we did with the correctly
labeled data. This process was repeated 1,000 times, and the
resulting accuracies were used to create a null distribution for
each participant against which their true classification accuracy
was compared. P-values were calculated as the proportion of
accuracies from the null distribution that were greater than or
equal to the true classification accuracy obtained. For each of
the 9 participants from the “NI effective” group, classification
accuracies were significantly greater than chance (p < 0.001)
while for the other 6 participants they were not (p > 0.12).

Feature Selection
EEG signal features were selected and recorded for each run of
the classification analyses for each participant. In each case, a
total of 1,000 features were selected from the training data (10
dimentional feature set per run x 100 runs). The size of the feature
pool was equal to the number of electrodes under consideration
times the number of frequency bands (41 electrodes × 4
frequency bands= 164 features). The plots are organized by brain
region (frontal, parietal, temporal, and occipital) and each plot
contains the data from all 15 × 100 runs. The selected features
were almost exclusively from the alpha-high frequency band and
therefore only these results are presented, in Figure 6.

DISCUSSION

This study explored a potential neural indicator of task
proficiency based on subject-independent EEG signal
classification. The motivation of this work is to move toward
the development of a neural indicator that could be used as a
complementary assessment measure to enhance computer- or
simulation-based training programs. The approach could be
applied to a passive BCI in which a subject-independent classifier
is trained on data from a group of “previous trainees” to track the
transition from states of “low proficiency” to “high proficiency”
of a “new trainee” whose data does not appear in the training set.

The results showed a division of the participants into two
rather distinct groups—for nine out of fifteen participants,
the proposed measure follows the expected trend from “low
proficiency” to “high proficiency” across the session trials quite
well, while for the remaining six participants, no such trend
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FIGURE 2 | Time performance (%) per trial for each participant, calculated as the percent difference from an “ideal” time performance.
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FIGURE 3 | Perceived certainty rating (1–10) per trial for each participant.
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FIGURE 4 | Mean neural indicator (NI) per trial for each participant. Dotted lines represent the 95% confidence interval. NI = 0 (“low proficiency”), NI = 1 (“high

proficiency”). *Participants for which the NI was effective.

Frontiers in Neuroergonomics | www.frontiersin.org 10 January 2021 | Volume 1 | Article 618632

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Kenny and Power EEG Neural Indicator of Task Proficiency

FIGURE 5 | Mean neural indicator (NI) per block distinguishing the two subgroups for which the NI was effective and ineffective, as well as for all participants

combined. NI = 0 (“low proficiency”), NI = 1 (“high proficiency”).

exists. This is supported by both the linear regression and
correlation analyses (Table 2). There are some potential causes of
the disparity in the results between the two groups. First, though,
it is worth pointing out that variation in task performance and
perceived task certainty among individual participants can be
ruled out as a potential cause. All participants were naïve to the
virtual environment prior to completing the training protocol,
and all progressed through the session such that by the final
block of trials, time performance and self-reported task certainty
ratings were equivalent to that of a trained individual navigating
the environment (see Figures 2, 3). Furthermore, our previously
published results suggest that on average the cognitive activity of
participants plateaued before the final block of trials (Kenny et al.,
2019).

The present findings suggest that some of the participants
demonstrated similar patterns of EEG activity as they
transitioned through the training, allowing the classifier
trained on the other participants’ data to be effective for those

individuals. On the other hand, for several other participants,
it seems that their patterns of EEG activity must have been
different from the majority and thus the classifier trained on the
other participants was ineffective. Generalizability of a method
based on a subject-independent classifier to all users could
potentially be achieved if it incorporated a means of identifying
and including only the subset of the training database that is
sufficiently similar to that of the user to be classified. This may
be difficult in this particular application, however, due to the fact
that sample data from the user in the “high proficiency” state
would not be available for comparison a priori. Future work
should investigate whether data collected during training of a
different task might be useful for this purpose.

Results from the authors’ previous work (Kenny et al., 2019),
which focused on subject-specific data analysis, provide some
insight into the present results. In summary, the results of the
authors’ previous work noted several trends of average EEG
signal power in the four frequency bands in consideration.
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FIGURE 6 | Histogram of features selected during classification. Each plot

displays the absolute frequency of feature selection for features in the

alpha-high frequency band organized by brain region (frontal, parietal,

temporal, and occipital).

Relevant to this study, on average, alpha-high power increased
throughout the training session within multiple brain regions
and was the dominant frequency band selected in feature
selection and classification. Interestingly, the increase in alpha-
high power was most significant with trials arranged in order
of perceived task certainty rating as compared to in order of
completion and in order of time performance. In that study,
eleven participants demonstrated an increase in alpha-high
power, while four participants demonstrated a decrease in alpha-
high power, throughout the training (Kenny et al., 2019). A
noteworthy finding was that of the six participants for whom
the subject-independent classification method explored in the
present study was not effective, three of them (participants 1,
2, and 4) demonstrated this decreasing alpha-high power trend,
while of the nine participants for whom the method was effective,
only one (participant 5) did.

The different individual alpha-high power trends as well
as the individual subject-independent classification results are
suggestive of individual differences in cognition and cognitive
strategy exhibited to complete the training protocol. First, as
previously discussed, according to the Processing Efficiency
Theory, there is individual variation in workingmemory and task
anxiety, which ultimately influences an individual’s processing
efficiency. For example, high anxiety individuals are more likely
to increase their on-task effort (i.e., increase usage of cognitive
processing resources) to avoid adverse outcomes (i.e., failure to
locate the target room) as compared to low anxiety individuals
(Eysenck and Calvo, 1992). The observed individual alpha-high
power trends are also consistent with past studies that have
explored the preferential use of different navigation strategies
and thus, development of different representations of space
(Hegarty et al., 2005). For example, egocentric and allocentric
representations of space refer to procedural knowledge (turn-
by-turn), and survey knowledge, respectively, which are often
used when navigating an environment (Siegel and White, 1975;
Montello, 1998; Ishikawa and Montello, 2006). Furthermore,
egocentric and allocentric representations of space are also
conceptually related to external (bottom-up) and internal (top-
down) processing methods, as discussed above (Klimesch,
1999, 2012; Klimesch et al., 2006; Benedek et al., 2011).
Individual differences in working memory and task anxiety
and/or associated cognitive strategies are potential explanations
for the different neural signals observed among participants
throughout the training protocol.

A deeper look into the features selected via the automatic
feature selection algorithm to perform the subject-independent
classification analyses provides insight into some of the neural
features that are common across many of the participants.
Interestingly, the majority of features which were selected to
be used for classification came from the alpha-high frequency
band. Alpha-high power features were selected from the frontal
(Fp2, AF7, and AFz), parietal (P7, P3, Pz, and P4), and occipital
regions (O1 and Oz). No power features were selected from the
temporal region in the alpha-high frequency band. This finding
is consistent with the features selected to perform subject-specific
classification as reported in Kenny et al. (2019). The selection
of alpha-high features to perform the subject-independent
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TABLE 2 | Pearson correlation coefficient (r) between the neural indicator (NI) and (a) perceived certainty rating, and (b) time performance using the data from all trials, and

the first and last 20% of trials.

Participant (a) Perceived certainty rating (b) Time performance

All trials First & Last 20% of trials All trials First & Last 20% of trials

1 0.23 (p = 0.08) −0.02 (p = 0.94) 0.05 (p = 0.70) −0.04 (p = 0.87)

2 −0.19 (p = 0.14) −0.02 (p = 0.94) 0.30 (p = 0.02) 0.04 (p = 0.85)

3 0.21 (p = 0.11) 0.27 (p = 0.25) −0.06 (p = 0.67) −0.20 (p = 0.40)

4 0.40 (p = 0.001) −0.17 (p = 0.50) 0.35 (p = 0.01) 0.28 (p = 0.26)

5* 0.63 (p < 0.001) 0.51 (p = 0.01) −0.30 (p = 0.02) −0.54 (p = 0.01)

6* 0.52 (p < 0.001) 0.64 (p < 0.001) −0.22 (p = 0.09) −0.49 (p = 0.02)

7 0.32 (p = 0.01) 0.09 (p = 0.69) −0.04 (p = 0.76) 0.04 (p = 0.86)

8* 0.69 (p < 0.001) 0.71 (p < 0.001) −0.47 (p < 0.001) −0.70 (p < 0.001)

9* 0.52 (p < 0.001) 0.62 (p = 0.001) −0.51 (p < 0.001) −0.64 (p = 0.001)

10* 0.61 (p < 0.001) 0.88 (p < 0.001) −0.37 (p = 0.004) −0.70 (p < 0.001)

11* 0.40 (p = 0.002) 0.59 (p = 0.003) −0.47 (p < 0.001) −0.60 (p = 0.002)

12* 0.32 (p = 0.01) 0.62 (p = 0.002) −0.23 (p = 0.07) −0.46 (p = 0.03)

13* 0.66 (p < 0.001) 0.75 (p < 0.001) −0.35 (p = 0.01) −0.66 (p = 0.001)

14 0.10 (p = 0.45) 0.30 (p = 0.16) −0.06 (p = 0.64) −0.21 (p = 0.32)

15* 0.51 (p < 0.001) 0.74 (p < 0.001) −0.23 (p = 0.08) −0.59 (p = 0.003)

Mean (all participants) 0.40 ± 0.24 0.43 ± 0.33 −0.17 ±0.26 −0.36 ± 0.32

Mean (“NI Effective”) 0.54 ± 0.12 0.67 ± 0.11 −0.35 ± 0.11 −0.60 ± 0.09

Mean (“NI Ineffective”) 0.18 ± 0.21 0.08 ± 0.18 0.09 ± 0.19 −0.01 ± 0.18

“NI effective” participants are indicated by*.

classification supports the involvement of alpha oscillations
in identifying the transition from bottom-up to top-down
processing comparing trials of low and high proficiency states.
Specifically, as reviewed by Klimesch (2012), there is great
supporting evidence across multiple tasks that suggests increased
alpha oscillations support the inhibition of other non-essential
processes, including processing of task-irrelevant visual stimuli,
which results in an increase in cognitive efficiency (i.e., top-
down processing).

There have been a relatively small number of previous
pBCI studies investigating neural indicators of task proficiency
(Borghini et al., 2012a,b, 2015, 2016a,b, 2017a,b; Gerjets et al.,
2014; Appel et al., 2019; Andreessen et al., 2020), and they
have predominantly focused on complex tasks that are typically
learned over long periods of time (e.g., aircraft flight tasks).
Therefore, these studies have used methods to track proficiency
across multiple sessions, making it impossible to compare these
results to our study which is based on within-session analysis. For
example, Borghini et al. (2017a) calculated a neural metric based
on the stability of task-related brain activity across consecutive
training sessions. Their results indicated that across the training
sessions, cognitive stability and task performance improved
and were highly correlated. To the best of our knowledge,
the only other pBCI study investigating a neural indicator of
task proficiency for use within a single training session was
by our group (Biswas et al., 2020), in which the metric was
based on a similar concept of cognitive stability. While results
from this study were promising, with significant trends in the
neural indicator observed over the course of the training session
on average, issues with the appropriateness of the task used

(specifically, that the task was too difficult for the majority of
subjects to reach a sufficient level of task proficiency within
a single session) made it difficult to confidently assess the
effectiveness on an individual level. Note also that the other
previous pBCI studies in this area have been based on subject-
specific classification methods, and thus have the disadvantage
of requiring calibration if used in a real scenario. The results of
the present study add to the relatively limited body of literature
regarding neural indicators of task proficiency by demonstrating
that, at least for some participants, the transition from the low
to high task proficiency states can be tracked quite effectively
within a single, relatively short, training session using a subject-
independent analysis.

A subject-independent neural indicator of task proficiency
in training would have an important advantage over a subject-
specific approach (either classification-based, or simply based on
tracking alpha-high power, for example). Due to the inevitable
correlation with time in the training application, in a subject-
specific approach there is always the possibility that any observed
trends are not training-related, but rather just due to other
time-dependent changes in neural activity (e.g., frustration and
fatigue). By using a classifier trained with data from a group of
other individuals, such individual effects would be suppressed.
The fact that we observed the expected trend in the proposed
neural indicator based on a subject-independent classifier for a
majority of the participants is encouraging. This could lead to a
reliable cognitive indicator of task proficiency, by revealing when
neural activity changes associated with training plateau. Since the
neural indicator was based on classification of epochs into one
of just two states, i.e., “low proficiency” and “high proficiency,”
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currently the value of this measure in the middle of the training
session is likely unreliable to be used as an absolute measure
of proficiency, and should only be used to indicate trends in
the neural activity. This is supported by the correlation analysis,
which show higher correlation values of the NI with both the
perceived certainty rating at the extreme ends of the session
as compared to across the whole session (for the “NI effective”
group). Future work should involve increasing the reliability,
accuracy, and precision of the measure throughout the session by
incorporating a higher resolution prediction of proficiency. This
would then facilitate further validation of the neural indicator.
Also, further work must be done to improve the generalizability
of the approach to all users.

Study Limitations
The authors put forth considerable care and effort in the design
and implementation of this study, however, there are limitations
that should be noted. Firstly, while compelling results were
obtained, the relatively small sample size limits the general
applicability of the results to a larger population.

Secondly, the perceived task certainty rating was collected at
the end of the trial, which could introduce participant response
bias. Unfortunately, it was not possible to gather this data at the
beginning of, or throughout, the trial without interrupting the
participant’s cognitive state. In addition, because there is just a
single rating of certainty for each trial, all 1-s epochs within a
given trial are given the same certainty label, though it is likely
that the cognitive state of participants varied to some degree
during each trial. Since the data was divided into two classes
based on the perceived certainty rating, this means that the
classification was based on somewhat uncertain labels. However,
the trends in perceived certainty shown in Figure 3 make us
quite confident in the division of data into low and high task
proficiency samples for each individual.

Also, as mentioned above, the inter-subject variability
observed in the results could have been influenced by potential
differences in participant anxiety levels, which effects relevant
cognitive processes. Though we indirectly measured each
participant’s task-related anxiety across trials through the
“perceived certainty rating,” this information cannot be used
to compare anxiety levels across participants. In future studies,
having participants complete Form Y-2 of the State-Trait Anxiety
Inventory (STAI) or similar, which assesses “trait anxiety” or
anxiety-proneness, would be prudent to aid in interpretation
of results.

The method of exposure to the spatial environment limits the
generalizability of the results. Participants in this study acquired
spatial knowledge via repeated route exposures in a novel virtual
environment. These results could be different as compared to
a method using other navigation methods, such as completely
naïve wayfinding. Furthermore, it is not clear how these results
would translate to different tasks.

Given the relatively small number of participants (n = 15), it
is possible that over-fitting may have occurred, and in future the
method should be verified on a larger sample.

Finally, the neuroimaging time window included EEG data
collected during the completion of the single-session training

protocol only. Previous studies have indicated that neural signals
can continue to change over a period of hours/days following
task practice.

CONCLUSION

The long-term objective of this research is to develop a passive
brain-computer interface to improve training outcomes through
the incorporation of a cognitive metric of task proficiency to
supplement existing behavioral and self-reported performance
measures. Using a spatial knowledge acquisition task, we
explored the feasibility of tracking a trainee’s task proficiency
throughout a training protocol using EEG data. The results
of individual participants suggest that the use of a subject-
independent classifier in this context is feasible, though further
work is required to validate the method, and to increase
reliability and generalizability. The application of this result could
provide an improved training experience in computer-based and
simulated training environments that is tailored to the individual
needs of the trainee.
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