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Clock genes, which are essential for suprachiasmatic nucleus (SCN) function, 
also play critical roles in other brain regions, and their expression have been the 
subject of various studies. An increasingly deeper understanding of the expression 
of these genes in different species contributes to our knowledge of their functions 
and the factors influencing their expression. Considering that most studies have 
been conducted in nocturnal rodents, in this study we investigated the presence 
of Per1, Per2 and Cry1 in neurons of the substantia nigra (SN) and subthalamic 
nucleus (STN) in a diurnal primate. The immunoreactivity of Per1, Per2, and Cry1 
was analyzed using immunohistochemistry, revealing significant Per1-IR, Per2-IR, 
and Cry1-IR in the SN. While Per1-IR and Per2-IR were also observed in the STN, 
no Cry1-IR staining was detected in the STN. These results confirm the presence of 
proteins that regulate circadian rhythms in areas associated with motor behavior.
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1 Introduction

Numerous cellular functions and behaviors exhibit temporal variations that are critical for 
adaptation to daily and seasonal environmental changes. These variations are governed by 
circadian rhythms that respond to environmental changes through the expression of clock 
genes (Hauber and Bareiss, 2001; Smarr et al., 2014; Hastings et al., 2019).

The temporal variations are modulated by a circadian timing system composed of 
oscillators, modulating structures and synchronizing pathways. In mammals, the main neural 
components of this system are the suprachiasmatic nucleus (SCN) of the hypothalamus, the 
dominant central circadian pacemaker, the retinohypothalamic, geniculohypothalamic (GHT) 
and raphe-SCN pathways. The GHT originates from the intergeniculate wing, which appears 
to be part of the pregeniculate nucleus in primates (Reuss, 1996; Cavalcante et al., 2002; Morin 
and Allen, 2006).
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Cells of the SCN express autonomous rhythmic gene activity 
driven by transcriptional regulation of clock genes, with CRY/PER 
heterodimers acting as transcriptional repressors of their own genes 
(Reppert and Weaver, 2001). Thus, the SCN operates through a self-
regulatory feedback mechanism that drives the rhythmic expression 
of these genes, including Bmal1, Per1, Per2, Per3, Cry1, Cry2, Clock, 
Arntl, and Nr1d1 (Lowrey and Takahashi, 2011).

The core circadian feedback loop formed by the interactions 
between these genes and proteins is as follows: CLOCK and BMAL1 
bind to the promoter regions of Per and Cry, initiating the 
transcription of these genes; the protein products, PER and CRY, form 
a complex that enters the nucleus and represses the transcriptional 
activity of CLOCK and BMAL1, subsequently stopping the 
transcription of Per and Cry (Lowrey and Takahashi, 2011; Mohawk 
et al., 2012). This loop repeats every 24 h.

While it is clear that the expression of clock genes determines 
various biological rhythms, it is also known that hormones and 
neurotransmitters can modulate these rhythms, likely through the 
regulation of these genes. Dopamine (DA), a neurotransmitter known 
for its roles in locomotion, reward, and learning, is emerging as an 
important neuromodulator of both central and peripheral circadian 
rhythms, potentially influencing the expression of clock proteins 
(Webb et al., 2009; Hood et al., 2010; Imbesi et al., 2009).

The relationship between dopaminergic neurons and clock genes 
appears to be bidirectional. DA is relevant to the SCN because the 
main SCN clock communicates timing information with other brain 
clocks to regulate DA activity, and DA also appears to have feedback 
effects on the SCN (Mendoza and Challet, 2014). A role for 
dopaminergic modulation of SCN-related circadian rhythmicity is 
suggested by the presence of D1 and D5 receptors in the SCN (Rivkees 
and Lachowicz, 1997).

In the dorsal striatum, dopaminergic input is required for proper 
modulation of PER2 (Hood et al., 2010), and DA receptors regulate 
clock gene expression in the striatum in vitro (Imbesi et al., 2009). 
There is evidence that the D1 receptor affects the PER2 protein in the 
retina (Ruan et al., 2008). Activation of the D2 receptor induces Per1 
transcription through recruitment of the CLOCK: BMAL1 
heterodimer, an effect that has been shown to be specific to neurons 
(Yujnovsky et al., 2006).

CRY expression is also required for nocturnal activity in mutants 
with high DA signaling. Increased DA signaling acts through CRY to 
drive the nocturnal behavior of Clk mutants. The higher levels of CRY 
are likely due to post-transcriptional regulation, as the expression of 
cry mRNA is unaltered (Kumar et al., 2012).

The basal ganglia motor areas, including the striatum, 
pallidum, subthalamic nucleus (STN) and substantia nigra (SN), 
are involved in a number of parallel, functionally segregated 
cortical–subcortical circuits (Groenewegen, 2003). A major role 
of the SN, the major DA producing center, has been shown to play 
a regulatory role in both central and peripheral circadian rhythms 
(Hood et  al., 2010; Korshunov et  al., 2017). In addition, DA 
synthesis, release, and signaling are regulated in a circadian 
manner (Doyle et  al., 2002; Chung et  al., 2014; Radwan 
et al., 2018).

The SN, along with the STN, are key brain areas implicated in 
Parkinson’s disease (PD) and progressive supranuclear palsy, both of 
which are associated with dysregulation of the dopaminergic system 

and subsequent disruption of circadian rhythms (Witting et al., 1990; 
Barrot, 2014).

The characterization of clock genes in these regions in diurnal 
species, which are evolutionarily closer to humans, may help to 
functionally correlate circadian signals with motor circuits involved 
in motor control under both normal and pathological conditions. A 
deeper understanding of the relationship between motor areas and the 
presence of these proteins could contribute to the development of new 
chronotherapeutic strategies for psychiatric and neurodegenerative 
disorders. Therefore, the aim of this study was to characterize the 
expression of Per1, Per2 and Cry1 in the SN and STN of a diurnal 
primate species.

2 Materials and methods

2.1 Sapajus apella

In the present study, brain slices from six adult male tufted 
capuchin monkeys (Sapajus apella) (2 to 3 kg) of the same age and 
weight, without visible motor changes, without history of previous 
diseases, in physiological condition, were obtained from the Tufted 
Capuchin Monkey Breeding Center of the State University of São 
Paulo (UNESP), Araçatuba, SP, Brazil. All procedures in this study 
followed the “Guidelines for the Care and Use of Mammals in 
Neuroscience and Behavioral Research (2003)” and were approved by 
the local ethics committees no. 538/2019. The local ethics committees 
(11/2022, CIAEP-01.0218.2014) approved the use of encephalic slices 
from capuchin monkeys (Sapajus apella). These animals were housed 
in natural light and fed a controlled diet, with water was provided ad 
libitum. Sunrise at 06:00 AM was considered time 0 (ZT0) and sunset 
at 18:00 PM (ZT12). Animals were anesthetized with sodium 
thiopental (30 mg/kg, i.p.) and sacrificed at two different times (ZT10 
and ZT19, n = 3 per ZT). Perfusion was performed with a sequence of 
saline (0.9%) and paraformaldehyde (4%) in 0.1 M sodium acetate 
buffer and paraformaldehyde (4%) in 0.1 M sodium borate buffer. 
Brains were cryoprotected, cryosectioned into 30 μm coronal slices, 
and stored in 10 series in an antifreeze solution at −20°C until 
immunohistochemistry and Nissl staining were performed.

2.2 Immunofluorescence staining

For immunofluorescence staining, encephalic sections were 
incubated separately with the primary antibodies Per1 (1:500, Santa 
Cruz, United States), Per2 (1:500, Santa Cruz, USA), and Cry1 (1:500, 
Santa Cruz, United States). The secondary fluorescent antibody Alexa 
488 (1:200, Jackson ImmunoResearch) was then used. To determine 
cytoarchitecture, sections were stained with Nissl or 4′,6′-diamidino-
2-phenylindole (DAPI) stain (Sigma Chemical, cod. D9542 Sigma, 
St. Louis MO, United  States). Negative staining controls were 
performed by adding Per1 (E-8) blocking peptide (Santa Cruz 
Biotechnology, sc-398890 P, TX, United States) and Per2 control/
blocking peptide #1 Per2 (1-P) (Alpha Diagnostic International, Inc., 
TX, United States) to the primary incubation solution of Per1 and 
Per2 antibodies, which blocked Per1 and Per2 staining. For Cry1, the 
negative antibody control lacked primary antibody. Under these 
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conditions, staining was completely abolished. To ensure that  
sample differences did not reflect different efficiencies of 
immunohistochemical labeling, brain sections from the two different 
Zeitgeber times (ZTs) were processed and incubated in the same 
solution at the same time. Slides were analyzed under an Olympus 
BX50 microscope and images were captured using CellSens software 
(United States). The demarcation of the analyzed areas was made 
using “A Stereotaxic Atlas of the Brain of Cebus Monkey (Cebus 
apella)” (Manocha et al., 1968) and “The Rhesus Monkey Brain in 
Stereotaxic Coordinates” (Paxinos et al., 1999). Cell quantification 
was performed using Image J software in three similar coronal 
sections for all animals as representative of the anteroposterior extent 
of the SN and STN.

2.3 Data analysis

Coronal sections from each animal that were similar across 
animals (representing the same rostrocaudal level) were then 
processed for each antibody. Each coronal section (from all six 
animals) was analyzed under a light field (Olympus BX50 microscope) 
and images were captured using cellSens software (United States). The 
images were then analyzed and all visible Per1-IR, Per2-IR, Cry-IR 
neurons of the SN and STN were counted in each image. Only cells 
with visible nuclei were counted. The number of cells counted in the 
coronal sections was representative of the anteroposterior extent (at 
the rostral level, mid and caudal) of the SN and STN of each animal 
was used. Data were analyzed using SPSS Statistics 28.0 (SPSS Inc., 
Chicago, IL, USA). Normal distribution of the data was checked using 
the Shapiro–Wilk test. Data were expressed as median (interquartile 
range 25–75%) due to the non-normal distribution found in the vast 
majority of variables. Comparisons between groups were made using 
the Kruskal-Wallis test followed by Dunn’s multiple comparison test.

3 Results

3.1 SN and STN

The characterization of the SN and STN in the primate Sapajus 
apella (Figure 1A), using the Nissl staining technique (Figure 1B), 
revealed that the SN is located in the posterior (dorsal) mesencephalon 
at an oblique angle, anterior (ventral) to the midbrain tegmentum. 
Nissl staining predominantly highlighted the magnocellular neurons 
within the SN (Figure 1C, SN). The STN was found superior to the SN 
and the midbrain tegmentum, and caudal to the hypothalamus. Most 
neurons in this region displayed an ovoid cell body morphology 
(Figure 1C, STN).

3.2 SN

The results showed Per1, Per2, and Cry1 labeling in SN neurons 
at both ZTs. Immunoreactivity (IR) was observed in the nuclear and 
cytoplasmic regions of SN neurons, with no labeling detected in 
dendrites or axons. Specific Per1, Per2, and Cry1 labeling was 
observed at the level of the SN, while adjacent areas showed no 

labeling, providing clear anatomical delimitation of this region across 
the different animals analyzed. This indicates the specificity of Per1, 
Per2, and Cry1-IR within this neuronal population at this level of the 
anteroposterior axis of the brain (Figure 2).

Considering the number of cells in the representative sections of 
the anteroposterior axis of the SN, there was a higher number 
(p = 0.0001) of Per1-IR cells [337.0 (292.8–371.0)] and Per2-IR cells 
[294.0 (240.0–333.5)] when comparing with Cry1-IR [156.5 (129.8-
163.3)] in the ZT10 (Figure 2).

3.3 STN

The analyses revealed immunoexpression of Per1 and Per2 in the 
STN at both ZTs. Per1 and Per2 labeling was observed in both oval 
and polygonal cell bodies. There was no significant difference in the 
number of cells expressing Per1 compared to those expressing Per2 at 
either ZT. Cry1-IR labeling was absent in the STN and the areas 
adjacent to the nucleus at both ZTs, indicating a higher specificity of 
Per1 and Per2 in this neuronal population (Figure 3).

4 Discussion

It is increasingly understood that the presence of circadian clock 
genes in areas related to motor behavior, such as the basal ganglia, 
indicates a possible relationship between the circadian system and the 
dopaminergic system (Hood et al., 2010; Verwey et al., 2016). These 
areas have implications for many functional and behavioral aspects, 
ranging from motor control and endocrine release to higher order 
processing such as cognitive processes (Wise, 2004).

In this study, we investigated whether the clock proteins Per1, 
Per2 and Cry1 are present in the SN and STN along the anteroposterior 
extent of these nuclei in the primate Sapajus apella.

The observed immunoexpression of Per1, Per2, and Cry1-IR in 
the nuclear and cytoplasmic regions of SN neurons, with no labeling 
in dendrites or axons, along with similar findings in the STN where 
labeling was present in oval and polygonal neuronal cell bodies, is 
consistent with expectations based on the literature. This intracellular 
localization supports the development of the negative feedback loop 
in the transcriptional control of clock genes, indicating the presence 
of these proteins in both the nucleus and cytoplasm, as reported by 
Vielhaber et al. (2001) and Hirayama and Sassone-Corsi (2005).

The observed expression of Per1-IR, Per2-IR, and Cry1-IR in the 
SN of the primate Sapajus apella highlights a potential bidirectional 
relationship between clock genes and neuronal activity of the 
dopaminergic system in this diurnal species (Guissoni Campos 
et al., 2015).

Per1 and Per2 were also expressed in the STN at both analyzed 
ZTs. In contrast, no Cry1-IR staining was observed in the STN at 
either ZT, which differs from findings in Drosophila melanogaster, 
which is generally diurnal, where Cry1 expression correlates with 
nocturnal activity (Kumar et al., 2012).

When comparing clock gene expression between mice and 
baboons, Bmal1 and Per1 showed peaks of expression in the 
baboon in the evening and morning, respectively, whereas in mice 
the peaks occurred in the morning and evening, respectively. 
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However, in the case of Cry1 expression in the baboon, the median 
phase of Cry1 expression was in the late afternoon, whereas in 
mice its expression is delayed by only 7 h, peaking after midnight 
(Mure et al., 2018).

Based on these data, the lack of Cry1 expression observed in 
Sapajus apella may indicate potential limitations or artifacts associated 
with Cry1 in the STN, or that its expression may be dependent on 
other times of day. These results should be examined at other times of 
day to confirm this.

The relationship between clock genes and circadian rhythms has 
been suggested by studies showing circadian patterns in neural activity 
disturbances within the globus pallidus internus and STN in 
individuals with PD, with fluctuations occurring during different sleep 
stages (van Rheede et al., 2022).

In rodents, Per2 exhibits day/night variations in dorsal striatal 
neurons, with higher expression during the light phase (Hood et al., 
2010), and increased expression in the SN during the night (Bussi 
et al., 2014). The discrepancies between our findings and those in 

FIGURE 1

(A) Illustrative drawing of the primate Sapajus apella. (B) Representative diagram of a frontal section showing the location of the SN and STN with Nissl 
staining. (C) Photomicrographs of the coronal section of the SN and STN showing neurons with Nissl staining in Sapajus apella.
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other species may be due to the specific ZTs analyzed or interspecific 
differences, highlighting the importance of conducting studies in 
diurnal species, especially primates.

Circadian rhythmicity in rodent motor areas is thought to result 
from the influence of DA on clock protein expression, which may also 
affect DA synthesis, release, and signaling (Doyle et al., 2002; Chung 
et al., 2014; Korshunov et al., 2017). These findings contribute to the 
understanding of regulation of the sleep–wake cycle by DA action in 
the hypothalamic and mesolimbic pathways (Oishi and 
Lazarus, 2017).

The characterization of clock genes and the correlation between 
daily fluctuations in DA function and circadian activity have been 
demonstrated in various areas, including the retina, olfactory bulb, 
striatum, midbrain, and hypothalamus (Yujnovsky et al., 2006; Hood 
et al., 2010; Chung et al., 2014; Mendoza and Challet, 2014), suggesting 

a bidirectional relationship between circadian rhythms and motor 
areas (Kafka et al., 1986; Golombek et al., 2014).

These associations are also implicated in pathological 
conditions, particularly neurodegenerative diseases in which sleep 
disturbances and circadian dysfunction are prominent, such as PD, 
Huntington’s disease, and Alzheimer’s disease (Mattis and Sehgal, 
2016; Herzog-Krzywoszanska and Krzywoszanski, 2019; Leng 
et al., 2019).

Circadian disruption in PD has been associated with a wide 
range of symptoms, including sleep–wake disturbances, autonomic 
dysregulation, temperature imbalance, and motor fluctuations 
(Zuzuárregui and During, 2020). Under normal conditions, changes 
in STN neuronal activity can be observed during the day and night. 
STN neurons switch from a random discharge pattern during 
wakefulness to a burst pattern during slow-wave sleep (SWS) 

FIGURE 2

Distribution of Per1, Per2, and Cry1-IR cells in the SN of encephalic slices of the primate Sapajus apella. Immunofluorescence photomicrographs of the 
coronal section of the SN showing Per1-IR the ZT10 (A–C) counterstained with DAPI (blue) (C) and in the ZT19 (D–F) counterstained with DAPI (blue) 
(F); Per2-IR in the ZT10 (G–I,) counterstained with DAPI (blue) (I), and in the ZT19 (J–L) counterstained with DAPI (blue) (L); Cry1-IR cells in the ZT10 
(M–O) counterstained with DAPI (blue) (O), and in the ZT19 (P–R) counterstained with DAPI (blue) (R). In S, delimitation of the SN. In T, the graph shows 
the median with interquartile range of the number of cells IR for each clock gene, * means that in the ZT10, Cry1  ≠  Per1, p <  0.0001 and Cry1  ≠  Per2, 
p <  0.01 (N =  3 per ZT). Bar  =  100  μm.
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without changing their average firing rate. This discharge pattern 
appears to depend on coincident cortical activity (Urbain 
et al., 2000).

The presence of Per1, Per2 and Cry1 in the SN, together with Per1 
and Per2 in the STN, may suggest a circadian influence on local motor 
functions. The expression of clock genes in the caudate and putamen 
nuclei of rats has already been correlated with locomotor activity 
(Masubuchi et al., 2000), which may be relevant to locomotor and 
reward mechanisms in a diurnal species (Yujnovsky et  al., 2006; 
Hampp et al., 2008).

5 Conclusion

The presence of clock proteins in the SN and STN of diurnal 
primates suggests a relationship between clock gene proteins, the 
dopaminergic system, and areas associated with motor behavior.
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