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Nissl histology underpins our understanding of brain anatomy and architecture.
Despite its importance, no high-resolution datasets are currently available in the
literature for 14-day-old rats. To remedy this issue and demonstrate the utility of
such a dataset, we have acquired over 2000 high-resolution images (0.346 µm
per pixel) from eight juvenile rat brains stained with cresyl violet. To analyze this
dataset, we developed a semi-automated pipeline using open-source software
to perform cell density quantification in the primary somatosensory hindlimb
(S1HL) cortical column. In addition, we performed cortical layer annotations
both manually and using a machine learning model to expand the number of
annotated samples. After training the model, we applied it to 262 images of the
S1HL, retroactively assigning segmented cells to specific cortical layers, enabling
cell density quantification per layer rather than just for entire brain regions.
The pipeline improved the e�ciency and reliability of cell density quantification
while accurately assigning cortical layer boundaries. Furthermore, the method
is adaptable to di�erent brain regions and cell morphologies. The full dataset,
annotations, and analysis tools are made publicly available for further research
and applications.

KEYWORDS
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1 Introduction

Cell density and brain cytoarchitecture are important for many reasons. The spatial
arrangement and density of specific cell types are essential for the function of neuronal
microcircuits (Neurohr and Amon, 2020). Proper characterization of cell densities
facilitates investigation of pathologies such as neurodegenerative diseases that result in
the loss of selective cell populations. Cell density and layer information are also useful
for construction of detailed cortical microcircuit models (Markram et al., 2015), though
quantitative literature remains sparse (Keller et al., 2018). In this study, we used postnatal
age 14 days (P14) animals to compare the data with previous electrophysiological studies.
Electrophysiology recordings on P14 animals are easier to perform as juvenile cells are less
myelinated.

The Nissl stain is widely used in neuroscience to count the total number of cells, yet
data for the juvenile rat Wistar Han at age 14 days is lacking. Our review of available rat
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atlas revealed no existing resources for this age group. Additionally,
no adult-age atlases provide sufficient image resolution or
magnification to enable accurate cell counting and delineation of
cortical layer boundaries in the specific region of interest (S1HL).
While several adult rat atlases exist for different strains, including
the Wistar Han (Paxinos and Watson, 2014; Blixhavn et al., 2023;
Johnson et al., 2012), the Sprague Dawley (Papp et al., 2014) and the
Fischer 344 (Goerzen et al., 2020), none offer adequate histological
data for the Wistar Han strain.

For adult Wistar Han rats, histological data is limited to the
reference atlas by Paxinos and Watson (2014) and the Nissl-
Thionine dataset by Blixhavn et al. (2023). However, the image
resolution in Paxinos andWatson (2014) is unspecified, the dataset
is not publicly available, and the images are presented in PDF
format, which is not suitable for cell counting. Although the
Blixhavn et al. (2023) atlas includes higher-resolution images from
a single adult animal, the publicly available files appear to be
down-sampled, further limiting their utility.

In contrast, the mouse atlases from the Allen Institute for Brain
Science (2004) cover both juvenile and adult (P56) ages. However,
these atlases also present limitations: the image resolution is three
times lower than our study and thus insufficient for reliable cell
counting and the images are not consecutive, with a 200 µm

gap between samples. Moreover, while these atlases define brain
regions, they do not provide cell counts, and most datasets are
derived from a single animal.

The cerebral cortex is known for its distinct cytoarchitecture,
with variations in the size and subdivisions of its cortical layers
across different brain areas and species (Palomero-Gallagher and
Zilles, 2019). The primary somatosensory hind limb area (S1HL)
exhibits a characteristic six-layer structure, including a well-
developed layer IV, comparable to that of primates (García-Cabezas
et al., 2022; Briggs, 2010). Accurate quantification of cell densities
in these cortical layers is essential for understanding cortical
organization.

Manual stereology remains the most rigorous method for
cell density quantification, but it is both time-consuming and
susceptible to observer bias, as subjective differences in cell
counting can lead to inconsistencies (West, 1999). From a
standpoint of consistency and efficiency, automatic or semi-
automatic methods represent a significant improvement over
manual approaches.

In this study, we compiled a robust dataset of eight
rodent brains stained with cresyl violet, a conventional Nissl
stain commonly used for visualizing cell bodies via bright-
field microscopy, which provides an accurate estimate of total
cell numbers (García-Cabezas et al., 2016; Gurr, 1960; Nestor,
2008; Warr et al., 1981). To streamline the analysis, we
enhanced an open-source cell detector for improved segmentation
accuracy and developed a semi-automated pipeline for cell
segmentation, stereological exclusion, and cell density analysis.
These advancements significantly reduced the time required for
traditionally laborious tasks.

Machine learning (ML) methods have been previously
employed for layer discrimination in the isocortex (Li et al., 2019;
Štajduhar et al., 2023; Wagstyl et al., 2020). Building on these
approaches, we developed a pipeline that uses similar ML methods

to provide a detailed laminar description of the somatosensory
cortex in juvenile rats. This method allows for the retroactive
assignment of segmented cells to specific layers, enabling the
quantification of cell densities within individual layers, not just
across broader brain regions.

By utilizing the same strain and age groupe as previously
published studies (Keller et al., 2019), our dataset can be
directly compared and incorporated into larger studies. Although
the pipeline was primarily developed for the analysis of the
somatosensory cortex, we tested it on another cortical region.

To our knowledge, this is the first time such a large dataset has
been made publicly available, even though it does not qualify as
an atlas due to the slicing angle used. Additionally, this is the first
instance in which a complete pipeline—from histology processing
to cortical layer identification—has been made available to the
public. Finally, this works represents the first application of ML
techniques to define cortical layer boundaries in the somatosensory
cortex of the rat.

2 Materials and methods

2.1 Animals

All animal procedures were approved by the Veterinary
Authorities and the Cantonal Commission for Animal
Experimentation of the Canton of Vaud, according to the
Swiss animal protection laws, under authorization number
VD3516. The animals originated from the same provider and from
three different litters. Each litter was processed individually on
different experimental days.

2.2 Sample preparation

On postnatal day fourteen, rats were transferred to the
experimental room in the morning to acclimate. The described
procedure was conducted within a consistent 3-h window of the
day (09:00–12:00). Initially, the rats were deeply anesthetized using
pentobarbital (intraperitoneal dose of 150 mg/kg; concentration
of 150 mg/mL). This was succeeded by transcardial perfusion
with ice cold 0.1 M phosphate buffer (PB; pH 7.4), followed by
cold 4% paraformaldehyde (PFA) in 0.1 M PB. Subsequently, the
brain was carefully removed from the skull, post fixed at 4◦C
in 4% PFA overnight, and then rinsed in 0.1 M PB. The brains
underwent a sequential storage process: first in a 15% sucrose
solution (in 0.1 M PB) at 4◦C for∼24 h, followed by a 30% sucrose
solution at 4◦C for an additional 24 h. The hemispheres were
carefully divided along the midline, after which both right and left
hemispheres were precisely sliced sagittally using a cryostat (Leica,
VT-1200S) at 50 µm employing an approximate angle rotation
of 4 ± 1 degrees along the anterior-posterior axis to optimize
alignment with apical dendrites. These brain slices were stored in a
cryoprotectant solution (30% v/v ethylene glycol; 30% m/v sucrose
in 0.1 M PB) at –20◦C, preserving them until cytochemistry assays
were executed (within a maximum of two weeks from extraction to
cytochemistry).
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Brain slices were stained using cresyl violet, a stain specifically
targeting cell bodies, including the endoplasmic reticulum, also
known as Nissl substance or Nissl bodies. Free-floating sections
of 50 µm thickness were transferred from cryoprotectant into
0.1 M PB to thaw and eliminate any cryoprotectant remnants.
Subsequently, they were transferred into 0.01MPB tominimize salt
residues before beingmeticulouslymounted onto SuperFrost©glass
slides (Thermo Fisher Scientific Inc., Gerhard Menzel B.V. and
Co. KG, GE). This mounting was carried out while considering
the brain’s orientation relative to the midline, from its external to
internal regions. Slide-mounted sections were processed using an
automated slide stainer Tissue-Tek R© Prisma Plus (Sakura Finetek-
Europe, NL). These sections were incubated for 6 min at room
temperature (RT = 20◦C) in a 0.5% cresyl violet solution in water
(with pH adjusted to 2.85 using acetic acid), followed by a brief
wash in tap water. The sections underwent dehydration through
a series of ethanol concentrations (70, 70, 96, 100, 100%) with
each step lasting one minute at RT. Subsequently cleared with two
steps of xylene for one minute each at RT, and the sections were
mounted using Pertex (Sakura Finetek-Europe, NL) before being
cover-slipped using the automated glass coverslipper Tissue-Tek R©

GlasTM g2 (Sakura Finetek-Europe, NL). A meticulous assessment
of the coloration was conducted and if the staining appeared faint,
a repeat staining procedure was carried out.

Stained slides were scanned using an automated slide scanner
(Olympus, VS120-L100, GER) equipped with a UPLSAPO 20x/0.75
air objective (Olympus, GER) and a Pike F505 Color camera leading
to a pixel size of 0.346 µm/pixel. This is three times higher than
commonly used atlases (Allen Institute for Brain Science, 2004;
Paxinos and Watson, 2014) (see also Table 1). Each brain slice
was entirely scanned. Subsequently, the digital images obtained
were meticulously organized and subjected to analysis using the
open-source software QuPath v0.3.2 (Bankhead et al., 2017). The
tasks of cell segmentation training, cell density analysis, and ML
were analyzed employing tools from the Python programming
language. We used an imaging pixel size of 0.346 × 0.346 µm on
the whole dataset.

Detailed information regarding the distinct experimental
procedures, duration days within the cryoprotectant, incubation
times for staining, the count of slices containing S1HL, the
methodology of cell detection have been documented and can be
found in Supplementary material.

2.3 Cell segmentation

We organized the dataset by structuring the QuPath projects
on a per-hemisphere basis (i.e., one project dedicated to each
hemisphere, as indicated in Supplementary Table 1). To determine
the slice position, the brain distance to midline axis was evaluated
by visually matching the closest sagittal section from the Paxinos
and Watson (2014) atlas to each sample. This positional data was
then integrated into each image as a metadata field called “distance
to midline.” Due to the age difference of the specimens between
our study and the Paxinos and Watson atlas (respectively, juvenile
40 grams vs. adult 270 grams), the resolution of the atlas plates (50
µm between slices vs. 250 µm between slices for the atlas) and the

inherent angle in our slicing procedure (4 ± 1 degrees angle along
the anterior-posterior axis vs. 0◦ for the atlas), a direct comparison
of our images with the atlas is not entirely feasible. Because of
this slicing angle, the part of the slice spanning from the pia to
the hippocampus closely aligns with the published atlas, whereas a
linear shift becomes apparent as we move from the hippocampus to
the cerebral peduncle. To define the somatosensory cortex anterior
border, we used the fact that Layer IV is absent in the motor cortex,
whereas it is present in the somatosensory cortex. This helps to
determine the start of the S1 region and to exclude slices without a
visible Layer IV. To confirm the accuracy of the assigned “distance
to midline” values for the acquired images, an expert assessment
was conducted.

Each image falling within the S1HL range (spanning from
lateral coordinates 1.90–3.18 mm) underwent delineation within
the QuPath software. This delineation encompassed defining both
the slice contour (SliceContour) and the S1HL brain region (S1HL).
Initially, the SliceContour was roughly delineated using a pixel-
based thresholder (Resolution: 11 µm/px, RGB average intensity,
Gaussian Blur sigma: 4 px, threshold: 211.5) (“Pixel classification—
QuPath 0.3.0 documentation,” n.d.). Manual refinement was
conducted, with particular focus directed toward obtaining an
accurate cortex segmentation. To ensure the integrity of cell density
calculations and avoid introducing bias, the cellular aggregates near
the pia were excluded from the SliceContour annotation. This
exclusion was necessary due to the non-uniform representation of
these aggregates in every slice, attributable to cutting artifacts.

We undertook a manual delineation process to define the S1HL
brain region and closely replicate the corresponding Paxinos and
Watson atlas plate as accurately as possible. The upper boundary
of the S1HL region precisely followed the contours outlined in the
SliceContour annotation, while the lower boundary was established
by the initiation point of the cingulum brain region. In addition,
we incorporated some pertinent metadata to each slice, such as
a comment section (the “distance to midline” information, and a
classification indicating whether the image should be included in
the semi-automated analysis: Analyze/True or Analyze/False). This
systematic approach was consistently applied across all datasets to
ensure the possibility of batch processing.

We opted for using Cellpose, a general deep learning-based
segmentation method described to be the most precise in the IoU
comparison of different models (Cellpose, Mask R-CNN, Stardist,
U-Net3 and U-Net2) (Stringer et al., 2021). Although Cellpose does
struggle with handling overlapping cells, this limitation does not
impact the primary objective of classifying brain regions based
on cell shape and localization features. With Cellpose integrated
into QuPath, we were able to generate ground truth cell data
directly within the software, which facilitated the training of a
custom model. Initially, we selected four images that represent
the S1HL region, each sourced from distinct animals, litters, and
points along the distance-to-midline axis. On those four images, we
randomly positioned three validation and 24 training squares, with
each square being (177,16 × 177,16 µm). After applying the pre-
trained Cellpose model cyto2 (Stringer et al., 2021) to each square,
we engaged in manual corrections through visual inspection and
curation of the identified cells. In cases where two cells were lightly
stained and overlapping, they were counted as one cell. Similarly,
if a darker and smaller cell overlapped with a fainter one, we
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TABLE 1 Datasets comparison.

Study Current
Meystre et al.
(2024)

Paxinos and
Watson
(“PandW”) 7th
Ed. 2014

Blixhavn et al.
(2023)

Allen Brain
Institute
(Juvenile)

Allen Brain
Institute (Adult)

Johnson et al.
(2012)

Papp et al.
(2014)

Goerzen et al.
(2020)

Animal species and

strain

Rat Wistar Han Rat Wistar Han Rat Wistar Han Mouse C57BL/6J Mouse C57BL/6J Rat Wistar Han Rat Sprague Dawley Rat Fischer 344

Animal sex Male Male Not specified*** Male Male Male Male Male, Female

Animal age Juvenile (14 days) Adult Adult Juvenile (14 days) Adult (56 days) Adult (80 days) Adult Adult (130± 7 days)

Animal weight Mean 36.7 grams 270 grams Not specified* >6 grams 18.8–26.4 grams 250 grams 397.6 grams 282± 60 grams

Sample size Nanimal = 8; NS1HL =
199

Nanimal = 1; NS1HL = 4 Nanimal = 1 Nanimal = 1 Nanimal = 1; NS1HL<20 Nanimal = 5 Nanimal = 1 Nanimal = 41 (24M,
17F)

Slice thickness 50 µm sagittal* 40 µm sagittal 40 µm sagittal 25 µm sagittal 25 µm sagittal N/A N/A N/A

Image interval Consecutive sample 250 µm gap between
samples

80 µm gap between
samples

200 µm gap between
samples

200 µm gap between
samples

N/A N/A N/A

Resolution 0.346× 0.346 µm Not specified** 0.22× 0.22 µm 0.95× 0.95 µm 0.95× 0.95 µm 25 µm3 39 µm3 60 µm3

Magnification 20x Not specified** 20x 10x 10x N/A N/A N/A

Modality Histology
(Nissl-Cresyl Violet)

Histology
(Nissl-Cresyl Violet)

Histology
(Nissl-Thionine)

Histology
(Nissl-thionin or
Nissl-Cresyl Violet)

Histology
(Nissl-thionin)

Histology, magnetic
resonance (MR) and
3D diffusion tensor
images (DTI)

Diffusion magnetic
resonance images

Magnetic resonance
(MR)

Brain region Whole brain Whole brain Whole brain Whole brain Whole brain Whole brain Whole brain Whole brain

Label method Manual delineation
using P/W atlas
information

Pencil drawings Images registered to
the WHS atlas

Alignment possible
with ARA atlases

Systematic conversion
of traditional drawings
to digital annotation
database

Aligned with the P/W
atlas

Semi-automatic
(SNAP) and manual
segmentation on MR

Stepwise manual
segmentation based on
T2 contrast on MR
template, in
conjunction with P/W
atlas

Number of

Segmented

structures

1 Over 1,000 structures
identified

Same as WHS 0 71 20 118 71

Data format .tiff .pdf .tiff .jpg .jpg Not specified NIfTI MINC and NIfTI

Purpose of the

study

Machine learning for
histological annotation
and quantification of
cortical layers

P/W atlas: A Timm-Nissl
multiplane
microscopic atlas of rat
brain zincergic
terminal fields and
metal-containing glia

Developing mouse
brain atlas

Genome-wide atlas of
gene expression in the
adult mouse brain

A Multidimensional
Magnetic Resonance
Histology Atlas of the
Wistar Rat Brain

WHS atlas: Waxholm
Space atlas of the
Sprague Dawley rat
brain

An MRI-Derived
Neuroanatomical Atlas
of the Fischer 344 Rat
Brain

(Continued)
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TABLE 1 (Continued)

Study Current
Meystre et al.
(2024)

Paxinos and
Watson
(“PandW”) 7th
Ed. 2014

Blixhavn et al.
(2023)

Allen Brain
Institute
(Juvenile)

Allen Brain
Institute (Adult)

Johnson et al.
(2012)

Papp et al.
(2014)

Goerzen et al.
(2020)

Reference 10.3389/fnana.2024.
1463632

The Rat Brain in
Stereotaxic
Coordinates, 7th
Edition. Elsevier
Academic Press, San
Diego

doi.org/10.1038/
s41597-023-02012-6

developingmouse.
brain-map.org/
static/atlas

doi.org/10.1038/
nature05453

10.1016/j.
neuroimage.2012.05.041

10.1016/j.neuroimage.
2014.04.001

doi.org/10.1038/
s41598-020-63965-x

Note and Caveat *With 4± 1◦ along the
anterior-posterior axis.

**For the last edition,
the biological sections
were imaged for us by
the ABI, which has
enabled us to
reproduce the sections
in color.

***1973 publication,
not available online

Mouse and a lower
image resolution

Mouse, adult age, and a
lower image resolution

Cell counting not
possible

Cell counting not
possible

Cell counting not
possible

Study Current Meystre et al.

(2024)

Paxinos andWatson

(“PandW”) 7th Ed.

2014

Blixhavn et al. (2023) Allen Brain Institute

(Juvenile)

Allen Brain Institute

(Adult)

Sample image 100

× 100 µm
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accurately accounted for both entities. It is important to note that
the analysis specifically excluded capillaries, endothelial cells, and
the cellular aggregates near the pia. Moreover, the ground truth
dataset includes not only neuronal cells but a diverse range of
cell types including astrocytes, oligodendrocytes, neurons and glial
cells.

Following this refinement, we proceeded to train a custom
Cellpose model, denoted as v1. In the interest of enhancing
precision, we imposed constraints on the v1 detection phase.
This involved considering stacked cells as a single entity instead
of two (as in v1), and ensuring that the shape was accurate at
the edge of the regions. This led to a refined series of ground
truth annotations, in order to train a new custom model v2. The
cell segmentation quality was assessed using three recommended
metrics developed by an international consortium (Maier-Hein
et al., 2022). Unpaired Welch’s t-tests were applied to compare
results from cyto2 and v2 mean predictions (see Section 2.7).
Then, in order to obtain a reference for the performance of
the automated counts, we compared these with cell counts from
another human annotator. We selected one of the images used for
the segmentation training steps and assigned a second human to
correct the segmentation provided by cyto2. We then compared
this second human annotation (Human 2) and the segmenter final
counts v2 to the original human ground truth (Human 1). The
accuracy betweenHuman 1 andHuman 2 or v2 were also compared
using the Welch’s t-test.

Once cell segmentation was achieved, reference points (S1HL
region of interest (ROI), Outside pia; S1HL contour, S1HL top-
right point, S1HL top-left point, S1HL bottom-right point, S1HL
bottom-left point) and custom cell measurements (image; name;
centroid -x in µm; centroid -y in µm; cell maximum diameter in
µm; cell minimum diameter inµm; the distance to annotation with
the outside pia inµm) were extracted fromQuPath to proceed with
stereological analysis.

2.4 Stereology and cell density

The conventional stereological approach to prevent cell
overcounting during consecutive slice density estimation involves
excluding cells on half of the boundaries of the sampled areas
(West, 1999; West and Gundersen, 1990). In our approach, we
counted all cells included in the S1HL region without applying
such a correction in the -x and -y directions because all cells
were fully counted and not sampled. However, in the -z direction,
corresponding to the slice thickness and because our datasets
contained consecutive slices, such a correction remained necessary.
To derive a reasonable -z correction factor, a method involving a
random assignment of a -z coordinate and an appropriate diameter
to each cell was employed. The cell diameter was estimated from
the six nearest neighboring cells, by computing a mean diameter
between these cells. With this information, it is possible to identify
cells touching the upper surface of the slice. We compared the -
z coordinate of the cell added to the half of its diameter to the -z
coordinate of the upper surface of the slice. The procedure was
iterated a hundred times to facilitate bootstrapping, a statistical
procedure. We randomly resampled the cell -z position to create

many simulated samples. Once the stereology correction factor was
obtained, cell densities as a function of the percentage of depth
inside the somatosensory cortex can be calculated.

Initially, the cell centroid coordinates for the -x and -y axis as
well as the S1HL polygon coordinates were exported from QuPath
and the S1HL polygon cartesian point coordinates were converted
into a shapely polygon (a two-dimensional feature with a non-zero
area enclosed by a linear ring). Cells outside of the polygon were
excluded.

A nonlinear grid consisting of 10 columns and 20 rows was
generated within the S1HL polygon. Straight vertical lines were
calculated using the endpoints derived from the quadrilateral’s
top and bottom lines, ensuring an even division. The horizontal
lines were formed by multiple segments that mimic the shape
of the quadrilateral’s top and bottom lines, effectively depicting
the brain’s depth. The resulting split polygons followed the
S1HL’s top and bottom lines. This nonlinear grid method was
constrained to a convex polygon shape. When the method was
applied to a concave shape, we realized that split polygons were
not constrained anymore in the horizontal axis, resulting in cells
from different somatosensory depth being wrongly considered in
the same polygon. Slices with a concave S1HL shape were then
excluded from further cell density analysis (slices spanning from
lateral coordinates of 3.10–3.25 mm). The resulting S1HL size is
consequently reduced within lateral coordinates of 1.90–3.05 mm.

For each split polygon, we counted the number of cells and
computed its volume by using the theoretical slice thickness of 50
µm (volume in mm3). The cell densities were then computed as a
function of the percentage of the somatosensory depth. For each of
the density computed per depth percentage, the mean values and
the standard deviation were calculated (cells/mm3).

2.5 Cortical layer boundaries

Defining layer boundaries in an image is challenging for
humans. To establish precise laminar delineation within our
datasets, we used (Palomero-Gallagher and Zilles, 2019) layering
properties. The cortical column extends from Layer I to Layer VI
and each layer has a different and representative cell population.
Layer I contains small soma sizes with round shape and is sparse in
cell density; Layer II contains medium soma sizes with triangular
soma shapes and is denser than Layer I; Layer III contains a broader
range of soma sizes, with a majority of ovoid shape and has a
slightly sparser density than Layer II; Layer IV contains a greater
number of small soma sizes with similar ovoid shape and has a
similar density as Layer II; Layer V contains small, medium and
large soma sizes with a lower density compared with Layer IV
(Layer Va) and in the transition to Layer VI, the soma sizes increase
drastically and become more distinctly pyramidal in shape (large
pyramidal cell population; Layer Vb); Layer VIa has an average to
dense cell density, with small and medium soma sizes and lacks
large pyramidal cells; Layer VIb is sparse, with a majority of small
soma oriented horizontally. The white matter clearly defines the
bottom of Layer VI.

We manually curated a subset of thirty-eight distributed
images, with each hemisphere represented by two to three images

Frontiers inNeuroanatomy 06 frontiersin.org

https://doi.org/10.3389/fnana.2024.1463632
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org


Meystre et al. 10.3389/fnana.2024.1463632

covering the entire S1HL volume. The SliceContour and S1HL
annotation, as well as the S1HL cell segmentation (v2) output
were imported from the cell segmentation phase. The manually
annotated images were curated to form a dataset that can be used
to train and evaluate a model (“layer boundaries expert-classified
dataset”). In line with the classification established by Brodmann
(1909), we-human identified and categorized the following cortical
layers: Layer I, Layer II, Layer III, Layer II/III, Layer IV, Layer
V, Layer VIa, Layer VIb. In instances where conditions allowed
for a clear visual differentiation between Layer II and Layer III,
we ensured their distinct separation (Layer II and Layer III).
Otherwise, in cases where visual separation was not feasible,
we opted to merge these layers (Layer II/III). For measurement
purposes, the annotation “Outside Pia” was added, the cell positions
registered and the corresponding result file exported.

Once this baseline expert-classified dataset was defined,
a supervised ML approach for cell classification in cortical
layers was developed. The goals were to decrease the bias
that can occur between human annotators and to improve
the annotation throughput. Careful feature selection using the
permutation importance algorithm (Breiman, 2001) was carried
out to reduce the dimensionality of the data and improve the
model’s performance. Only features with a positive impact on
the predictions were kept. This ML task can be defined as a
multiclass classification problem at the cell level (i.e., each cell
within an image has to be classified as belonging to one of the
seven cortical layers classes: Layer I, Layer II, Layer III, Layer
IV, Layer V, Layer VIa or Layer VIb). To train the models,
the dataset was split into images for training and others used
for testing. Models of varying degrees of complexity (such as
image segmentation models) could be employed to solve the
task. However, due to the large number of pixels in the sample
set [one full image contains roughly 46,000 (width) × 31,000
(height) pixels], employing complex convolutional neural network
architectures like U-Net (Ronneberger et al., 2015) would result in
significant computational overhead and increase processing times
without necessarily yielding improved results. Furthermore, we
would lose the rich features gained from QuPath, such as area,
length, circularity, solidity of the cells. Therefore, we did not explore
the feasibility of using segmentation models, but structured the
problem as a cell level classification task instead.

The classification displays an intrinsic spatial relationship
as each layer sequentially appears in the slices. We therefore
experimented with simpler models such as a K-Nearest Neighbor
(KNN) (Cover and Hart, 1967) and a Random Forest (RF)
(Breiman, 2001). These models were evaluated according to four
metrics: accuracy, precision, recall and F1-score (Fawcett, 2006),
using a 10-fold cross-validation (Hastie et al., 2001) method. These
metrics provide good insights into the model performance, and
facilitate comparison across models. Notably, they are computed by
averaging the per-class metrics for eachmodel, ensuring that classes
with varying sample sizes contribute equally to the final metric
values. We tested the models on two paradigms: one in which
Layer II was separated from Layer III (LII and LIII distinguished),
and another in which Layer II was merged with Layer III (LII/LIII
merged). Once the model was trained, we applied it to naive data
and assigned a predicted layer to each cell. For each image, the
predicted layer to each cell was registered.

2.6 Cell densities and size predictions

With the cells segmented and the predicted layer assigned to
each cell, the cell densities and the cell soma sizes as a function
of the somatosensory predicted layer can be calculated. We first
created the smallest polygon possible containing all the cells of
a given predicted layer using the Alpha-Concave hull method
(Asaeedi et al., 2017). In this method, the alpha value (α) can
be adjusted to tighten or loosen the polygon, thereby integrating
points inside or outside the concave hull.

To generalize the method and account for the slight variations
in cell density between images, we aimed to find a single α value
that could be applied universally. For each α tested, we measured
the bounding area surrounding each layer and counted the rejected
cells. We selected the value that created a bounding area as close as
possible to the actual layer shape without rejecting any cells. This
empirical testing approach provided a single α value applicable to
all layers, except for Layer I. Due to the much lower cell density
in Layer I, the method yielded a smaller α value, corresponding to
one-tenth of the value used for the other layers.

The volume of each alpha shape polygon, corresponding to each
layer, was computed using the theoretical slice thickness of 50 µm.
The number of cells within each alpha shape polygon was counted,
and the cell density was subsequently calculated. The cell soma
size was determined by utilizing the area (µm2) feature of each
cell, assuming a perfect circular morphology. From this, a mean
diameter was calculated for analysis.

We applied statistical tests to determine if a bimodal Gaussian
for to the cell diameter distribution produces statistically different
means. We also tested if there are statistically different cell density
differences across layers (see statistical methods).

2.7 Statistical methods

The cell segmentation quality was assessed using several
metrics. The Dice Similarity Coefficient (DSC) is the most widely
used counting metric in medical image analysis. It measures the
overlap between the prediction and the reference and yields a
value between 0, for no overlap, and 1, in the case of full overlap.
The Intersection over Union (IoU) metric quantifies the degree of
overlap between two objects. As IoU approaches 1, the annotation
converges to ground truth. The accuracy, commonly used in
classification tasks to assess the overall detection performance (with
respect to the ground truth), was calculated as follows:

Accuracy =
True Positives

True Positives + False Positives + False Negatives
(1)

The advantages and disadvantages of each metric are listed in
Stringer et al. (2021)).

Unpaired Welch’s t-tests were applied to compare results from
cyto2 and v2 mean predictions. Results are plotted and p-values are
reported with asterisk convention (e.g., *corresponds to p-value ≤
0.1, ***corresponds to p-value≤ 0.001). The unpairedWelch’s t-test
assumes that the means being compared are normally distributed,
but does not assume that the samples come from populations with
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FIGURE 1

A Nissl-stained sagittal section (A) showing the slice contour and the S1HL boundaries (black full lines) (B) The corresponding Paxinos and Watson
atlas plate (Figure 172—Lateral 2.62 mm) (C) A zoom-in of the S1HL brain region (D) with close-up images of cells along the cortical column (1) Layer
I and Layer II border (2) Layer III (3) Layer IV and Layer V border (4) Layer V (5) Layer V border and Layer VIa and (6) Layer VIb. Imaging pixel size: 0,346
µm/pixel. Scale bars: 1,000 µm (A, B); 250 µm (C); 50 µm (D).

FIGURE 2

Comparison of the cell segmentation in Layer III (A) from left to right: the human annotation is superposed on the raw image, on cyto2 and on the
final v2. The human annotation is represented in cyan, the alternative classifiers in olive and the overlap in purple. (B) Quality control measures of the
cell segmentation model comparing cyto2 (blue) with v2 (orange), human 2 (gray), standard deviation (black), Statistical analysis by Welch T-test
∗ ∗ ∗ ∗ p<0.0001.

equal variance. The segmentation accuracy between Human 1 and
Human 2 or v2 was also compared using the Welch’s t-test.

The distribution of cell diameters followed a bimodal Gaussian
distribution. Using scikit-learn’s GaussianMixture model, we

estimated the parameters of a Gaussian mixture distribution for
the cell diameters on an image-by-image basis (228 images). This
approach yielded two mean diameters for each layer in each image:
one representing the smaller cell population and one for the larger
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FIGURE 3

Stereological cell exclusion. (A) An example showing the exclusion distribution on one S1HL brain image. Scale bar: 250 µm. (B) Zoom-in of the
superposition of the raw image with the 2D visualization of the excluded cells in the -x and -y axis. (C) 2D visualization of the excluded cells in the -x
and -z axis. (D) 2D visualization of the excluded cells in the -y and -z axis. (E) 3D visualization of the excluded cells in the three axis. (C–E) panels
shows the exclusion of cells being restricted on the slice upper limit.

cell population. Next, we calculated the average smaller and larger
mean diameters across all images for each layer. To assess whether
these two mean diameters significantly differ within each layer, we
conducted two-sample t-tests, applying a p-value threshold of 0.05
to evaluate the significance.

To determine the statistical significance of cell density
differences across layers, first, cell density for each cortical layer
and in each image was calculated. Second, these cell density values
were aggregated into seven datasets, each representing a distinct
cortical layer. Finally, the Kruskal-Wallis H-test using the SciPy
kruskal function was performed on the seven datasets, and p-
value was calculated to determine the statistical significance of
cell density differences across layers. Finally, We used two-sample
t-tests corrected for multiple comparisons with the Bonferroni
method adjusting the alpha value for the six comparisons (α =

0.05/6 = 0.0083) to assess the difference in cell density between
adjacent layers.

We observed a significant improvement in the segmenter
accuracy (cyto2: 0.2457 ± 0.0596; v2: 0.5554 ± 0.0643) and
in the overlap between the prediction and the reference (Dice
Similarity Coefficient metric, DSC) for v2 compared with cyto2
(cyto2: 0.3908 ± 0.0768; v2: 0.7119 ± 0.0542). The intersection
over the union (IoU) improvement was below a threshold of p =
0.05 and then cannot be considered statistically significant (cyto2:

0.6383 ± 0.0677; v2: 0.7260 ± 0.0626). A possible explanation for

the generalized increase in all metrics can be an improvement in
the segmentation task, as v2 seemed to be less biased in favor of
annotating larger cells than cyto2. Although statistical analysis with
(NImage = 4) was at the low end limit of applicability due to samples
size, the cell segmentation improvement allowed us to calculate
and refine the rat somatosensory cortical cell density numbers
previously published (Keller et al., 2019; Markram et al., 2015).

3 Results

3.1 Sample preparation

The 8 animals behaved normally and no brain abnormality was
noticed at the organ collection. Three had their eyes closed, two had
their eyes starting to open, and three had their eyes opened. The
animal weights were comprised between 26.8 and 45.6 grams with a
mean of 35.48 ± 7.90 grams. Sixteen hemispheres were completely
sliced at a thickness of 50 µm and the Nissl staining protocol was
applied on 2,077 slices.

During processing, one batch of staining required corrections.
Specifically, one dataset needed re-staining due to an acetic acid
step that caused a reduction in staining intensity. To rectify
this issue, these slides underwent a de-coverslipping process by
immersing them in a xylene bath. Subsequently, the cresyl violet
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FIGURE 4

Stereology exclusion result and cell density of the juvenile rat Wistar Han (P14) as a function of percentage of cortical depth of the S1HL brain region.
The upper panel shows the stereology exclusion results of the whole dataset. (A) Superposition of excluded and included cells per distance to the pia
(red for excluded cells and blue for included cells). (B) Superposition of the diameters of excluded and included cells (red for excluded cells and blue
for included cells). (C) The percentage of excluded cells per image. The bottom panel shows cell density as a function of cortical depth with (D) the
inter-hemisphere variability (right hemispheres mean in dark red, left hemispheres mean in dark blue, standard deviation in light red and light blue),
(E) the cell density of the whole dataset (mean in dark blue, standard deviation in light blue), and (F) the variability between animals (one bar per
animal, mean in black, each individual brain slice as a red dot).

staining procedure was repeated. The goal was to restore the precise
color pattern and to match the quality and characteristics of the
previous successful stainings.

In another dataset, an improper slicing orientation led to the
exclusion of a left hemisphere while a distinct right hemisphere
was omitted due to the evident hydrocephalic brain anatomy
appearance. It is worth noting that the corresponding left
hemisphere from the same subject exhibited normal anatomical
features.

The slice images (Figure 1A) were mapped into particular
regions using the corresponding atlas (Figure 1B). The high
resolution of 0.346 × 0.346 µm (Figures 1C, D) allows for
semi-automatic and automatic cell segmentation for better cell
quantification.

Each hemisphere dataset was then prepared in QuPath.
Using the Paxinos and Watson atlas as a reference, we began
by identifying the most similar slice containing the S1HL and
matching the overall slice anatomy. The atlas-described distance
to the midline was then assigned to this selected slice. From this
reference point the appropriate increments or decrements of 50µm

were applied for all slices of the hemisphere. Among the remaining
samples, comprising the S1HL brain region, further selection was

performed using specific criteria: slices were disregarded if they
were damaged, exhibited a curled configuration, lacked proper
visualization of the somatosensory cortex, displayed hydrocephalic
brain characteristics, or presented severe CPu atrophy. At the end
of this process, we drew the Slice Contour, the S1HL ROI, added
S1HL reference points and the Outside Pia contour. NSlices = 199
remained available for further cell densities analysis.

3.2 Cell segmentation

To automatically collect cell positional data from each slice
image, we tested a cytoplasm model (“Cellpose—cytoplasm 2.0
model—cyto2”). This model was utilized on high-resolution images
to effectively detect and segment nuclei within the S1HL region.
However, it became evident that this model had limitations in
accurately constraining the segmentation or distinguishing the
smallest cells. Additionally, it tended to inaccurately identify two
adjacent cells as a single larger cell, thereby impacting the accuracy
of the segmentation process. Because the data used in this study
differed significantly from the training set used for the Cellpose
cyto2 model (most Cellpose training data consists of homogeneous
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FIGURE 5

Example of the cortical layering annotated by a human expert. (A, B) are the unannotated images of (C, D), respectively. In (C) Layer II is distinguished
from Layer III (Lateral 2.90 mm). Whereas, in (D) Layer II and Layer III are merged (Lateral 2.40 mm). Scale bar: 250 µm. Color code: red (Layer I), pink
(Layer II), purple (Layer III), brown (Layer II/III), blue (Layer IV), lighter blue (Layer V), cyan (Layer VIa), green (Layer VIb), black (S1HL).

objects, despite the capability of Cellpose to work with non-
homogeneous populations), we refined the cyto2 cell segmentation
process.

We enhanced the accuracy of cell soma contours, disentangled
double-cell instances, and removed artifacts on four images (three
squares for validation and twenty-four squares for training, each
square size is equal to 177,16 × 177,16 µm). This task was
challenging for several reasons: the large number of cells and
the need to check and update the contours at each training
attempt of the cell detection algorithm. Throughout the process,
we adopted a standard software zooming factor of 5.4% to mitigate

inconsistencies in drawing precision. This labor-intensive endeavor
resulted in the creation of what we refer to as a ground truth cell
segmentation dataset (“cell segmentation GT dataset”).

We then compared this augmented segmentation version,
referred to as v2, with cyto2 and compared two human annotators
(Figure 2A). The accuracy between Human 1 and Human 2
demonstrated a high degree of overlap of 72.5 ± 3.5%. The
accuracy between v2 and Human 1 was even higher than that of
Human 2 74.2 ± 2.5%. These results give us confidence in the
reliability of the submitted segmenter as shown in Figure 2B and
in Supplementary Figure 1.
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FIGURE 6

Classification metrics for KNN and RF models on Layer II and III separated. (A) KNN generated classification metrics per layer, (B) confusion matrix of
the KNN model (C), RF generated classification metrics per layer (D), confusion matrix of the RF model, (E) overall per-model metrics.

3.3 Stereology and cell density

As our datasets contained consecutive slices, we adapted
the classical optical dissector method by adding a virtual -z
coordinate to cells to realistically estimate the cell density within
our defined volume of interest (see Supplementary Figure 2). The
bootstrapping technique excluded only part of the cells (Figure 3A)
touching the upper surface of the slice (Figures 3B–E).

A total of 9.79% of the cells were excluded from
the analysis NImage = 199, NmeanDetectedCell = 13690,
NmeanExcludedCell = 1340, NAnimal = 8, NHemisphere = 14
(7 RH, 7 LH). The proportion of included and excluded
cells remains constant throughout the cortical column and
the cell soma diameters (Figures 4A–C). This exclusion
enhanced the reliability and confidence of our cell
density results.
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FIGURE 7

A superposition of the RF prediction onto the RAW image with the cell segmented and the human-annotation superposed. (A) RF prediction and
human-annotation (black lines) superposed onto the RAW image with the cell segmented (blue). (B) close-up of each layer borders predictions [(1):
LI to LII border; (2) LII to LIII border; (3) LIII to LIV border; (4) LIV to LV border; (2) LV to LVIa border; (2) LVIa to LVIb border]. Scale bar in (A) 250 µm

and in (B) 50 µm.

Our data reports no significant differences of the juvenile
male rat somatosensory cortex cell densities between the right
(NRightHemisphere = 7) and the left hemisphere (NLeftHemisphere = 7)
(Figure 4D). The sexual dimorphism could not be analyzed as only
male datasets were processed.

The cell density curve along the somatosensory cortex
is consistent across animals, litters, and experimental days
(Figures 4E, F and Supplementary Figure 3). The cell density results
for individual brains are shown in Supplementary Figures 4, 5. The
total mean density of cells positive for the Nissl substance in the
S1HL brain region is 83,100 ± 2,393 per cubic mm (cells/mm3).
This result is lower than expected (Morin and Beaulieu, 1994;
Markram et al., 2015); however, comparing methods, animal age,
brain regions, staining molecules or sample size is challenging.
Nevertheless, a study from the late 90s reports a barrel cortex cell
density of 79,130± 26,440 per cubicmm (same strain, older animal,
same fixation procedure, similar methodologies, same cresyl violet
staining) (Keller and Carlson, 1999).

3.4 Cortical layer boundaries

The boundary between Layer II and Layer III could be
distinguished in 30 out of the 38 images (79% of the cases), while

we were not able to separate them in the remaining eight images
(21% of the cases) (Figure 5A). We therefore decided to label cells
belonging to these indistinguishable layers as being part of amerged
Layer II/III (Figure 5B).

Anatomically, it is more interesting to train a model on
separated Layer II and Layer III data. Therefore, we present
here results based on two ML models, RF and KNN, trained
on separated Layer II and Layer III. The results on the merged
LII/LIII are provided in Supplementary Figures 6, 7. We evaluated
other models, such as Gradient Boosting and Feed Forward Neural
Networks, but they either showed worse performance or had higher
computational cost for similar performance.

Out of the 72 available cell features, 19 were selected to
enhance computational efficiency and predictive accuracy. A
detailed list of these features with their importance is provided
in Supplementary Tables 2, 3. The most critical features include
the distance to the annotation with the Outside pia (µm) and its
smoothed value (Smoothed 50 µm: Distance to annotation with
Outside Pia µm), highlighting the intrinsic spatial dependency of
the layers. Those two features individually resulted in a decrease
in accuracy of 0.2288 ± 0.018 % and 0.1902 ± 0.0015 % when
permuted.

To avoid drastic dataset shrinking, we included cells from every
image and excluded only those from the undistinguishable
Layer II and Layer III. This dataset was then split into
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FIGURE 8

Example of cortical layer boundaries generated with the alpha shape toolbox. (A) Region of interest with cell bodies colored according to layer. Scale
bar: 250 µm (B) Cell density per predicted layer [cells/mm3], averaged across all samples, with each orange dot representing one animal. (C)
Predicted layer height [µm], averaged across all samples, with each orange dot representing one animal. (D) Mean S1HL cell diameter [µm] per layer
under the assumption of a perfect circular morphology. Black dotted lines the Gaussian and red dotted line the center peak of the fit Gaussian. (E)
Predicted S1HL cell density per animal (each bar plot represents an animal) [cells/mm3].

32 images for training, representing 395,926 cells, while
the remaining six images containing 76,515 cells were used
for testing.

We evaluated KNN and RF performance using four metrics:
accuracy, precision, recall and F1-score. The evaluation shows that
Layer II, IV and VIb are the most challenging to classify for both
models (panel A for KNN and panel C for RF of Figure 6).

A confusion matrix, where each entry represents the number of
cells classified into each combination of ground truth and predicted
labels is shown in panel B for KNN and panel D for RF of Figure 6.
The result shows that almost every cell is either classified in the
correct layer, or in the adjacent one. This underlines that themodels
captured the sequential nature of the layers and that no neighbor
cells in space should pertain to distant classes. The results clearly
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TABLE 2 The cell density per predicted layer (cells/mm3).

Cell density per
predicted layer

(cells/mm3)

Predicted layer
height
(µm)

Cell diameter per predicted layer (µm)

Mean (µm) Population 1
(µm)

Population 2
(µm)

Layer I-VIb Overall
cortical height

1,915± 50.57

Layer I 32,568 129± 18 6.47± 2.27 5.20± 1.20 8.14± 2.33

Layer II 90,226 129± 25 9.17± 2.73 5.96± 1.38 10.33± 2.11

Layer III 85,094 373± 18 9.26± 2.86 6.09± 1.52 10.74± 2.18

Layer IV 103,016 152± 39 9.09± 2.53 6.04± 1.40 10.14± 1.91

Layer V 72,005 517± 45 9.38± 3.42 5.35± 1.03 10.51± 3.00

Layer VIa 89,198 452± 40 8.80± 2.58 5.36± 1.18 10.01± 1.83

Layer VIb 71,153 165± 48 8.03± 2.94 4.80± 0.99 9.12± 2.69

The predicted layer height (µm ± standard deviation between animals in µm). The mean soma diameter per predicted layer (µm), with the larger population represented in Population 1 and

the smaller in Population 2. NHemispheres = 13 (NRight = 7, NLeft = 6).

demonstrate the superior performance of the RF model over the
KNN, across all metrics and all layers.

We averaged the per-class metrics for each model, ensuring
that classes with varying sample sizes contribute equally to the
final metric values. The overall KNN prediction accuracy reaches
74%, whereas the RF prediction accuracy is higher and seems to
be capped at 87% for separated Layer II and Layer III (Figure 6E).
This could be partially influenced by the approximate nature of
the ground truth annotation by a human, especially around the
layer boundaries. Supplementary Figure 8 compares the results of
(Figure 6E) with classes with more samples having a proportionally
higher weight in the metrics and shows a minimal difference due to
an imbalance of samples.

To further assess the predictions of cortical layers, we
visually evaluated them on test images for their biological
relevance (Figure 7A; Supplementary Figure 9). A close-up of the
RF predictions superposed onto the human annotation is shown in
Figure 7B.

As RF outperformed KNN, we applied it to the remaining
unannotated NImages = 262 to predict the S1HL layer boundaries
of each image and we visually verified the predicted layers. This
drastically increased the layer annotation throughput a human-
annotator would reach.

3.5 Cell densities and size prediction

Because the cell density only varies slightly between images,
we aimed to find a single α value, for which the bounding area
enveloping each layer was as close as possible to the layer shape
and that would not reject any cells (Figure 8A). The value of 0.05
is applied on all layers, with the exception of Layer I characterized
by a significantly lower cell density, for which we opted for a value
of 0.005.

We then counted the number of cells located in each alpha
shape polygon corresponding to each layer and computed the
volume of each polygon by using the theoretical slice thickness of

50µm. Consequently we found the following mean densities: Layer
I contains 32,568 cells/mm3, Layer II contains 90,226 cells/mm3,
Layer III contains 85,094 cells/mm3, Layer IV contains 103,016
cells/mm3, Layer V contains 72,005 cells/mm3, Layer VIa contains
89,198 cells/mm3, Layer VIb contains 71,153 cells/mm3 (Figure 8B;
Table 2). The cell density per predicted layer and per hemisphere is
shown in Supplementary Table 4.

Using the layer prediction generated for each cell by the
machine learning model, we determined the height of each layer
by fitting the cell densities predictions. The height of each layer
is the distance between the top and the bottom of a layer. The
projected height of the S1HL cortical column is 1,915 µm with a
standard deviation of 50.57µm, detailed height per layer is reported
in Figure 8C and in Table 2. These projections are consistent with
previously published data (Beaulieu, 1993; DeFelipe et al., 2002;
Markram et al., 2015; Meyer et al., 2010).

Once a predicted layer was assigned to each cell, the
distribution of cell diameters was calculated under the assumption
of a perfect circular morphology of the same area (Figure 8D).
The somatosensory cortical column contains two distinct cell
populations, with a cell diameter distribution ranging from
0.39 to 27.57 µm; each of the populations consists of multiple
subtypes. The first population of small cells spans from 4.80 to
6.09 µm and is present throughout the entire cortical column
height. The second population of larger cells peaks from 8.14
to 10.74 µm and is present in all layers except Layer I. Layers
I, V, and VIb contained a larger proportion of smaller cells,
whereas Layers II, III, IV, VIa contained a larger proportion
of larger cells. Supplementary Figure 10 shows the cell diameter
distribution per layer, which is well-described by two Gaussian
distributions. Supplementary Table 5 displays the mean values for
the two Gaussian distributions of cell diameters calculated per
image and per layer. To determine the statistical significance of
cell density differences across the layers, a Kruskal-Wallis H-
test was performed on data obtained from 228 images. This
confirmed that cell densities are different across layers and
that they are not drawn from the same distribution. The last
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column of Supplementary Table 5 also shows that cell densities are
significantly different across each pair of adjacent layers.

We also confirmed that other cortical regions could
be processed similarly with our approach by applying
it to the medial parietal association cortex - MPtA (see
Supplementary Figure 11).

4 Discussion

We have produced the most detailed publicly available dataset
of Nissl-positive cells in a rodent species to date, accompanied by an
open-source, semi-automatic cell detection pipeline. This pipeline
accurately segments and counts the total number of cells within
the somatosensory hindlimb cortical column of eight juvenile
rats, stained using a traditional Nissl method. By incorporating
machine learning models, the pipeline efficiently assigns layer
boundaries and categorizes segmented cells accordingly. The
Cellpose algorithm was particularly well-suited to the challenge
of dense cell segmentation. We expect that these pipelines could
be adapted for use with other staining methods, as long as the
sample preparation and acquisition parameters support precise cell
annotation for generating reliable ground truth data.

As demonstrated in the original Cellpose paper, the IoU
comparison of different models (Cellpose, Mask R-CNN,
Stardist, U-Net3 and U-Net2) shows Cellpose’s superior precision
(doi: 10.1038/s41592-020-01018-x; Figure 4). While Cellpose may
struggle with cell overlap, this issue is mitigated using thin (50
µm) slices and has little effect on the classification of brain regions
based on cell shape and localization features.

Although superposition of cells may influence the overall cell
density results, it does not compromise the layer border properties.
We were aware of this limitation during the training phase.
Cytoarchitectonic distortions, such as concave/convex cell shapes,
do not pose a significant challenge to our analysis. Even when mask
convexity decreases, leading to a potential increase in missed cells,
Cellpose still performs better than other contemporary models
(Stringer et al., 2021).

We adapted the stereological exclusion method to estimate the
total number of cells in the S1HL without skipping slices. The
exclusion factor (roughly 10%) may be on the higher end, and
alternative exclusion analysis methods should be explored in the
future. Nevertheless, our results show that the overall cell density
is lower than initially expected but remains remarkably consistent
across individual animals, litters, and experimental days. A study
using similar methods also reported comparable cell density in the
barrel cortex.

Ever since Broca reported the left hemisphere’s dominance
for language (Broca, 1861), brain lateralization has been studied
both behaviorally (Güntürkün et al., 2020; Rogers et al., 2013)
and anatomically (Elkind et al., 2023; Tobet et al., 1993). Previous
data from mice report some variation within the cortical layers
(LII/III tendency for left hemisphere being denser than the
right hemisphere; LIV and LVI with a tendency for right to be
denser than the left; see Figure 3C of Elkind et al. (2023). Our
data reports no significant differences in the juvenile male rat
somatosensory cortex cell densities between the right and the
left hemisphere.

However, comparing datasets in this field is inherently complex
due to species and age differences. Additionally, differences in brain
regions, fixation protocols, staining techniques, sample sizes, and
potential human biases complicate direct comparisons between
studies.

Our dataset offers an opportunity for further analysis,
beyond the metrics explored in this study, and can be adapted
for use in other species. We have high confidence in the
dataset’s quality, due to its exceptional imaging resolution,
the standardized methods employed during data collection,
and the remarkable reproducibility of the results. While
this investigation focused on the somatosensory cortex, the
versatility of the dataset allows for potential applications to other
brain regions.

We employed machine learning algorithms to categorize
cells into layers, minimizing human bias and achieving an
accuracy of 87%. Unlike studies that rely on tissue-level
differentiation (Wagstyl et al., 2020), our method provides a cell-
level classification, offering finer granularity. This accuracy is on
par with recent studies (Štajduhar et al., 2023), despite differences
in species, staining techniques and acquisition parameters. Direct
experimental validation of layer boundaries using a combination
of cell-specific stains remains challenging. Staining data, such
as receptor profile curves in the isocortex, are often blurred
and the localization of stained layers rarely aligns precisely
to cytoarchitectonic boundaries (Palomero-Gallagher and Zilles,
2019).

In our classification approach, spatial location was the most
critical factor for layer assignment, which is unsurprising given
the columnar organization of the cortex. Since all cells must be
assigned to a layer, spatial information played a dominant role,
particularly for cells within a given layer. For cells at the layer
boundaries, morphological features were more influential. Future
studies could explore models trained specifically on these boundary
cells, where morphology would likely have a greater impact on
classification decisions. While our study aimed to reduce human
bias in layer assignment, it is important to note that different brain
regions would require re-training of machine learning models to
account for their unique properties. Classifying cells situated at
layer boundaries remains a significant challenge compared to those
located inside layers. Once a layer is defined by the model, cells
within that layer can be classified based on their distance from the
pia. Future studies should prioritize the development of metrics to
evaluate boundary prediction accuracy and explore methods that
do not rely solely on spatial information for boundary cells, such as
training distinct models for this specific population.

The accuracy of automated annotation may fluctuate in regions
characterized by unique neuronal properties or when utilizing
different staining techniques. As our approach relies on supervised
machine learning, the precision of cell prediction is contingent
upon the expertise of human annotators. Nonetheless, our method
lays the groundwork for more efficient and standardized cortical
layer annotation. Notably, the predicted layer thicknesses in our
study are consistent with those reported in previous studies on the
barrel cortex (Meyer et al., 2013; Narayanan et al., 2017).

Our study also provides a more detailed characterization of the
somatosensory cortex by analyzing the distribution of cell soma
diameters within each predicted layer. We identified two primary
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cell populations: a smaller population with a cell diameter ranging
from 4.8 to 6.1 µm and a larger population with a cell diameter
ranging from 8.1 to 10.7 µm. The exact locations of the peaks
differed slightly according to layer. The smaller population, present
throughout the cortical column, is likely composed of inhibitory
cells, especially since Layer I predominantly contains these small
cell types (Muralidhar et al., 2014). The population with larger
diameters likely includes excitatory cells, as it is absent in Layer
I but present in all other layers. One should remember that our
dataset includes not only neuronal cells but a diverse range of
cell types including astrocytes, oligodendrocytes, neurons and glial
cells. Accordingly, the cell size difference alonemay not be sufficient
to definitely categorize them as inhibitory or excitatory neurons.

By automating cell classification into cortical layers, our
methodology accelerates a traditionally labor-intensive task.
Accurate quantification of cell densities in brain tissues, enabled
by our approach, holds significant potential for advancing our
understanding of neuropathologies, such as neurodegenerative
diseases that affect specific cell populations. Additionally, this work
supports the construction of detailed cortical microcircuit models,
contributing to a more comprehensive understanding of brain
structure. Ultimately, our study lays the groundwork for fully
automated, high-throughput investigations leveraging the wealth
of histological data being produced worldwide, enabling more
efficient exploration of the complexities of cortical microstructure.
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