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G-ratio is crucial for understanding the nervous system’s health and function 
as it measures the relative myelin thickness around an axon. However, manual 
measurement is biased and variable, emphasizing the need for an automated 
and standardized technique. Although deep learning holds promise, current 
implementations lack clinical relevance and generalizability. This study aimed 
to develop an automated pipeline for selecting nerve fibers and calculating 
relevant g-ratio using quality parameters in optical microscopy. Histological 
sections from the sciatic nerves of 16 female mice were prepared and stained 
with either p-phenylenediamine (PPD) or toluidine blue (TB). A custom UNet 
model was trained on a mix of both types of staining to segment the sections 
based on 7,694 manually delineated nerve fibers. Post-processing excluded non-
relevant nerves. Axon diameter, myelin thickness, and g-ratio were computed 
from the segmentation results and its reliability was assessed using the intraclass 
correlation coefficient (ICC). Validation was performed on adjacent cuts of the 
same nerve. Then, morphometrical analyses of both staining techniques were 
performed. High agreement with the ground truth was shown by the model, 
with dice scores of 0.86 (axon) and 0.80 (myelin) and pixel-wise accuracy of 
0.98 (axon) and 0.94 (myelin). Good inter-device reliability was observed with 
ICC at 0.87 (g-ratio) and 0.83 (myelin thickness), and an excellent ICC of 0.99 for 
axon diameter. Although axon diameter significantly differed from the ground 
truth (p  =  0.006), g-ratio (p  =  0.098) and myelin thickness (p  =  0.877) showed no 
significant differences. No statistical differences in morphological parameters 
(g-ratio, myelin thickness, and axon diameter) were found in adjacent cuts of 
the same nerve (ANOVA p-values: 0.34, 0.34, and 0.39, respectively). Comparing 
all animals, staining techniques yielded significant differences in mean g-ratio 
(PPD: 0.48  ±  0.04, TB: 0.50  ±  0.04), myelin thickness (PPD: 0.83  ±  0.28  μm, TB: 
0.60  ±  0.20  μm), and axon diameter (PPD: 1.80  ±  0.63  μm, TB: 1.78  ±  0.63  μm). 
The proposed pipeline automatically selects relevant nerve fibers for g-ratio 
calculation in optical microscopy. This provides a reliable measurement method 
and serves as a potential pre-selection approach for large datasets in the context 
of healthy tissue. It remains to be demonstrated whether this method is applicable 
to measure g-ratio related with neurological disorders by comparing healthy and 
pathological tissue. Additionally, our findings emphasize the need for careful 
interpretation of inter-staining morphological parameters.
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1 Introduction

G-ratio is a quantitative measure of relative myelin thickness 
around an axon, which is given by the ratio of the inner and outer 
diameter of the myelin sheath. Both the myelin thickness and axon 
diameter contribute to the neuronal conduction velocity, and its ratio 
is important for understanding the health and function of the nervous 
system. Abnormalities in myelination can occur in a variety of 
neurological disorders, including multiple sclerosis, traumatic brain 
injury, and neurodegenerative diseases (Fields, 2008). Moreover, it has 
been proposed that the g-ratio, steered by testosterone differences, is 
dependent on gender during development (Paus and Toro, 2009; 
Perrin et al., 2009; Pesaresi et al., 2015). Measuring the g-ratio can 
provide valuable insights into developmental mechanisms, the 
pathology of disorders, as well as aid in diagnosis and treatment. This 
research study aims to enhance the analysis of the g-ratio in healthy 
animals by mitigating potential confounding factors that should 
be addressed prior to evaluating pathological conditions.

Manual g-ratio measurement is a time-consuming and labor-
intensive process, prone to observer bias and variability. An automated 
and standardized technique for g-ratio calculation can benefit the field 
of neuroscience by providing a more reliable, efficient, and objective 
method for quantifying myelination. Thereby, reproducibility and 
accuracy of results are expected to increase. Early advances in axon 
and myelin segmentation, and morphological analysis rely on 
traditional image processing techniques (More et al., 2011; Liu et al., 
2012; Bégin et al., 2014; Zaimi et al., 2016; Kaiser et al., 2021). These 
approaches are designed for a specific image processing task, and 
struggle with different contrast or morphology than what they were 
designed for. Additionally, image specific preprocessing often limits 
inference on unseen novel data (Öztürk and Akdemir, 2018).

Algorithms based on deep learning overcome these issues since they 
are context aware, and often scale and rotation invariant, in part due to 
data augmentation (Marcos et  al., 2016). Current implementations 
(Table 1) only segment axons (Deng et al., 2021) or often rely on small 
input patches (Naito et al., 2017) and are not designed to work with 
background noise that is present in whole slide histological sections. 
Implementations focusing on axon counting have been proposed but do 
not provide value regarding the quality of the performed staining 

(Reynaud et al., 2012; Zarei et al., 2016; Goyal et al., 2023a,b). Currently, 
the best performing publicly available algorithm is trained on EM 
histological sections (Zaimi et al., 2018), for which others have shown 
strong generalizability to optical microscopy (OM) with (Daeschler et al., 
2022) and without (Wong et al., 2021) transfer learning. The clinical 
utility of these algorithmic measurements is questionable because they 
do not differentiate between individual nerve characteristics and those 
that are representative of all nerves in the specific histological section.

Additionally, assessing g-ratio measurements obtained from diverse 
sources and staining techniques presents significant hurdles. Staining 
protocols influence the way that morphological parameters are acquired 
and may affect the obtained results (Ohnishi et  al., 1974). Staining 
techniques impact the visualization and quantification of myelin, 
resulting in varying g-ratio values within the same animal or slide 
(Ward et al., 2008). This phenomenon has the potential to impact the 
analysis of g-ratio in histological samples and introduce intra-individual, 
or within-slide differences. Additionally, morphological parameters can 
be influenced by the species, age, health status, and sampling location 
of the animal from which the sample was taken (Geuna et al., 2001). 
These issues hamper the dependable comparison and interpretation of 
g-ratio across studies, potentially restricting the applicability of findings.

The primary goal of this research was to create an automated 
pipeline for the precise selection of nerve fibers in OM, aiming to 
calculate the g-ratio with clinical relevance. Furthermore, this study 
explores potential implications resulting from variations in staining 
protocols, utilizing a standardized analysis approach that we developed.

2 Materials and methods

2.1 Origin of samples and histological 
preparation

16 female mice (RjOrl:SWISS, Janvier; Elevage Le Genest, France) 
originating from another independent and unrelated study, were used 
for sampling of sciatic nerves. All mice were housed in a conventional 
facility and sampled at an age between 24 and 31 days. The healthy 
animals belonged to a control group and received a single injection of 
saline (NaCl 0.9%, 2 mL/kg, intravenous) into the lateral tail vein. The 

TABLE 1 Overview of prior nerve segmentation implementations.

Reference Modality Main characteristic / advantages Clinical limitations

Zaimi et al. (2016) OM/EM/CARS Traditional image processing-based segmentation Limited by user defined parameters

Zaimi et al. (2018) EM Fully automatic segmentation Implementation designed for EM

Deng et al. (2021) OM (Un)supervised segmentation No quality stratification

Kaiser et al. (2021) EM Semi-automatic GUI without code requirement Manual corrections needed

Daeschler et al. (2022) OM Additional OM model to Zaimi et al. (2018) No quality stratification

Goyal et al. (2023a,b) OM Morphological analysis No quality stratification

Our implementation OM Nerve auto-selection for clinical analysis Healthy-nerve-based model
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study was officially approved by the Cantonal Veterinary Office (animal 
permission number: ZH029/19) and follows the ARRIVE guidelines.

Euthanasia was performed according to the AVMA Guidelines for 
the Euthanasia of Animals by carbon dioxide inhalation at 4 weeks 
after injection (Underwood and Anthony, 2020). Absence of heartbeat 
and respiration confirmed the death of the animals, prior to sciatic 
nerve tissue sampling.

2.2 Epoxy resin embedding, staining 
techniques and scanning

Resin embedded sections of nerve biopsies are recommended for 
analysis of detailed nerve pathology (Weis et al., 2012).

All samples were fixed in 2.5% buffered glutaraldehyde and 
transferred to Sorensen’s phosphate buffer (pH7.2; MORPHISTO). 
The samples were washed in 0.1 M PBS (pH 7.2) and were processed 
with a tissue processor (Leica EM TP) with 1% osmium tetroxide 
(OsO4). Dehydration steps were followed by increasing ethanol 
concentrations (25, 35, 50, 70, 75, 85,100%). Prior to embedding, 
samples were combined with resin (Agar 100 Resin Kit; agar scientific) 
and were dehydrated in a desiccator overnight. Polymerization of the 
resin was accomplished at 60°C for 24 h. From resin blocks semi-thin 
cross sections (990 nm) were cut, mounted on glass slides, and stained 
with either p-Phenylenediamine (PPD) or Toluidine Blue (TB). Both 
PPD and TB are helpful for detailed imaging of peripheral nerve 
morphology (Weis et al., 2021). Applying PPD staining to osmicated 
tissue samples helps identify the lipids in the myelin sheath of 
peripheral nerves (Shirai et al., 2016). For PPD staining, the slides 
were immersed in 2% PPD (Sigma) in 100% Ethanol for 55 min at 
room temperature, followed by rinsing in 2 × 100% ethanol for 5 min. 
TB staining is a useful method to assess the number of axons and 
myelination (Ghnenis et al., 2018). TB staining was performed with a 
solution composed of 1% TB (Merck and Cie), 1% Sodium Tetraborate, 
and 1% Pyronin mixed at a ratio of 40:40:10. Following staining, the 
slides were rinsed with demineralized water. Slides were dried and 
cover-slipped with mounting media (Cytoseal XYL; Thermo Fisher).

All sections were scanned using NanoZoomer S360 MD 
(Hamamatsu) and viewed using NDP.view2 (U12388-01, Ver 2.9 Rev.2).

2.3 Automated segmentation of OM 
sections

The convolutional neural network UNet, is considered state-of-
the-art in biomedical image segmentation; it contains an encoder and 
decoder path with skip connections to preserve low-level spatial 
features (Ronneberger et al., 2015). In this study, the algorithm was 
implemented using the MONAI framework. This framework is 
developed for deep learning in healthcare imaging and is freely 
available and open source (Cardoso et al., 2022). To obtain a ground 
truth for training of our algorithm, delineations were performed by 4 
experienced observers using the image processing software QuPath 
(version 0.4.0).1 In the delineating process, the boundaries of each axon 

1 https://qupath.github.io

and its surrounding myelin sheath were used to obtain the ground 
truth. To guarantee standardization, all annotations were reviewed by 
the expert of the observers. In total, 8 nerve fibers of 4 mice containing 
7,694 nerve fibers were delineated in the histological sections acquired 
by OM. These nerve fibers were extracted from the histological sections 
in 23 representative patches of 4096×4096 pixels, with a size of 0.05 μm 
per pixel to guarantee standardization.

The algorithm had 6 layers with 16, 32, 64, 128, 256, and 512 filters 
respectively, where each depth has two convolution layers followed by 
batch normalization and parametric rectified linear activation. In all 
dimensions a stride of 2 was maintained. To enhance the model’s 
ability to generalize across varying conditions, 512×512 voxel input 
patches were subject to various data augmentation (randomly rotated, 
flipped, and zoomed along both axes). Additionally, random Gaussian 
noise and smoothing filters were applied to simulate real-world 
variations. The model was trained using a learning rate of le-3 with 
Dice loss and Adam optimizer. Following the initial segmentation, 
cavities larger than 5 pixels were filled following the thresholding of 
the output probability maps at threshold 0.8.

For the model’s training and validation, the dataset was divided 
into 10 patches in the training set and 8 in the validation set, each 
containing varying axon content ranging between 17 and 1,040 axons. 
This stratification helped to ensure a robust training regime that could 
handle a wide range of axon densities. Finally, the models’ performance 
was evaluated by the Dice performance metric on an independent test 
set of 5 patches, giving an indication how well the trained model 
would generalize to new, unseen data. The network was trained on a 
local system (NVIDIA Tesla T4 GPU).

2.4 Training performance evaluation

During training, the algorithm’s performance was evaluated using 
the Dice score, defined as: Dice = (2 * (A ∩ B)) / (|A| + |B|), where A 
and B are the predicted and ground truth binary masks, respectively 
(Milletari et al., 2016).

2.5 Segmentation morphometrics

The patches that have been used in training and validation of the 
network were excluded from the morphometrical analyses in this 
study. Additionally, the analysis included multiple his sections of all 
mice in both the PPD and TB staining. Following the segmentation of 
the axons and myelin sheaths, post-processing is performed to exclude 
nerves that are not relevant, based on the morphometrics of the axon. 
Nerve fibers were excluded from the image if they met any of the 
following criteria: the axon’s shape was highly elongated (an 
eccentricity greater than 0.95), the axon’s structure was not compact 
(a solidity less than 0.9), or the axon was too small (area smaller than 
50 pixels). Based on the (automated) delineation of the axon and 
myelin sheath, the axon diameter and myelin thickness were 
computed. Myelin volume fraction (MVF; ratio between area of 
myelin and total area of the region) and axon volume fraction (AVF; 
ratio between area of axon and total area of the region) were used to 
calculate the g-ratio (ratio between axon diameter) and myelinated 
fiber (axon + myelin). The g-ratio was estimated with the following 
formula [Stikov et al., 2015; √(1/(1 + MVF/AVF))].
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FIGURE 1

Segmentation comparison to AxonDeepSeg OM model. (A) Histological section of interest with (B) segmentation according to the presented 
algorithm, compared with (C) AxonDeepSeg OM model without any transfer learning.

Additionally, to determine the reliability of the g-ratio calculation, 
the extent to which measurements can be replicated was determined. 
Here, reliability not only reflects the degree of correlation but also the 
agreement between measurements (Daly and Bourke, 2008). Intraclass 
correlation coefficient (ICC) is an index that reflects both correlation 
and agreement between measurements. A two-way mixed-effect 
model selected using the ICC guidelines (Koo and Li, 2016), based on 
single rating, assessed the repeatability between the automated 
method and the ground truth. According to the ICC guidelines (Koo 
and Li, 2016), this specific ICC is most suitable for determining the 
consistency between two measurement methods. Interpretation of the 
ICC was as follows: <0.50, poor; between 0.50 and 0.75, fair; between 
0.75 and 0.90 good; above 0.90, excellent.

Moreover, the computed axon morphometrics were tested for 
normality by the Shapiro-Wilks test, and group differences between 
the ground truth and automated segmentation were tested with the 
Wilcoxon signed rank test. To visually compare the agreement 
between the measurements from the automated method and the 
ground truth, we  employed a Bland–Altman analysis with a 
significance level of 5%. All mean values are reported with their 
standard deviation.

For final validation of the presented algorithm, to determine 
reliability and repeatability of the automated method, the g-ratio, axon 
diameter and myelin thickness were calculated on three parallel 
histological sections of the same nerve fiber (Figure 1). Consequently, 
statistical testing was performed with a one-way ANOVA. All 
statistical analyses mentioned were performed in Python and R.

3 Results

Application of AxonDeepSeg (Zaimi et al., 2018) to our dataset 
resulted in under segmentation of the majority of the nerve bundles 
in our test set (Figure 1). Performance of our algorithm on the test set 
(Figure 2), prior to nerve fiber selection of OM, from ischiatic mouse 
nerves shows strong agreement with dice scores of 0.86 (axon) and 
0.80 (myelin), and a pixel-wise accuracy of 0.98 (axon) and 0.94 
(myelin). The density of nerve fibers does not seem to influence the 
ability of the algorithm to separate individual nerve fibers from each 
other. Following the selection of nerves that are suitable for g-ratio 

calculation, both dice scores increase (axon: 0.88, myelin: 0.84) as well 
as the pixel-wise accuracy (axon: 0.99, myelin: 0.98).

ICC for inter-device reliability of g-ratio (mean ICC 0.87, 95%CI 
[0.84, 0.89]) and myelin thickness (mean ICC 0.83, 95%CI [0.79, 
0.85]) were good, and excellent for axon diameter (mean ICC 0.99, 
95%CI [0.99, 0.99]), all features had a value of p  < 0.001 
indicating significance.

Neither of the morphological parameters (axon diameter, myelin 
thickness and g-ratio) of the nerve fibers that were used for validation 
of the algorithm proved normally distributed on the Shapiro-Wilks 
test. The Wilcoxon signed-rank test showed no significant differences 
between the automated segmentation and ground truth regarding 
g-ratio (Figure 3A; p = 0.098) and myelin thickness (Figure 3B; 0.877), 
in contrast to axon diameter (Figure 3C; p < 0.01).

Figure 4 presents the distributions of g-ratio, myelin thickness and 
axon diameter in the three parallel histological sections of the same 
nerve fiber. Although the algorithm detected a slightly deviating nerve 
fiber count (756 vs. 799 vs. 787), no statistical difference was shown 
on the morphological parameters. The ANOVA p-values are reported 
as 0.34 (g-ratio), 0.50 (myelin thickness) and 0.39 (axon diameter).

In staining comparison, an average of 4914.0 (± 2370.1, range 
458–8,403, PPD) and 5694.6 (± 5214.0, range 255–18,861, TB) nerve 
fibers were included in the morphometrical analysis per mouse. Mean 
g-ratio (PPD: 0.48 ± 0.04, TB: 0.50 ± 0.04), myelin thickness (PPD: 
0.83 ± 0.28  μm, TTB: 0.60 ± 0.20  μm) and axon diameter (PPD: 
1.80 ± 0.63  μm, TB: 1.78 ± 0.63  μm) are reported. None of the 
parameters proved normally distributed. By Wilcoxon signed-rank 
test, all morphological parameters were found to differ significantly 
between the two staining techniques (p < 0.001; Figure 5).

4 Discussion

The main objective of this study was to develop an automated 
pipeline for selection of nerve fibers that are relevant for g-ratio 
calculation based on quality parameters in optical microscopy. 
We provide strong evidence for automated calculations of the g-ratio 
as well as an overall segmentation performance that is similar to other 
methodologies that have been previously described (Zaimi et al., 2016, 
2018; Deng et al., 2021; Kaiser et al., 2021). Collectively, the current 
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study presents a methodology for g-ratio assessment, effectively 
revealing potential interpretational discrepancies between the two 
established staining protocols for OM.

In the current study we are able to reliably measure g-ratio and 
myelin thickness, but not axon diameter when compared to the 
ground truth. Although axon diameter is underlying for the g-ratio, 
the significant difference between the ground truth and automated 
segmentation does not appear to affect the g-ratio calculation. Possibly 
this is due to the way that the g-ratio is calculated, namely via AVF and 
MVF rather than the diameter of either axon or myelin. Moreover, 
demonstrating similar morphometrics on parallel histological sections 
of the same nerve fiber confirm the potential of the presented 
methodology. The architecture of our presented pipeline is similar to 
other methodologies that have been previously described (Zaimi et al., 
2018; Janjic et al., 2019; Deng et al., 2021), with an overall segmentation 
performance that is also similar to what is presented in these 
methodologies. Of these, AxonDeepSeg provides the most elaborate 
framework (Zaimi et al., 2018), which has been adjusted to specific 
segmentation challenges with (Daeschler et al., 2022) and without 
(Wong et al., 2021) transfer learning in OM and EM, respectively. The 
segmentation metrics in our study prove similar to the strong 

performance of Daeschler et al. (2022). However, generalization of 
their model appeared to be challenging with our data, resulting in 
poor segmentation performance when applying their model to our 
data. Additionally, despite the strong segmentation performance 
presented in those papers, the automatically calculated g-ratio 
statistically deviated from its ground truth in both studies, in contrast 
to our study. These findings position our pipeline as a potential 
pre-selection methodology of large datasets, as a first round of quality 
control, prior to further evaluation on EM.

Given the complexities and variability of nerve fiber samples, a 
comprehensive and reliable measurement necessitates the inclusion of 
a large number of nerve fibers (Naito et al., 2017). Our presented 
pipeline showcased robustness and accuracy in measuring and 
analyzing g-ratio and myelin thickness in single parallel cuts from one 
animal, providing a solid foundation for this study. Moreover, our 
automated method enables eliminating the manual selection bias 
(Geuna et al., 2004) and ensuring more consistent results in g-ratio 
calculations. Selecting a representative and relevant number of nerve 
fibers increases the robustness of the analysis and implement 
standardization in a complex environment, wherein manual 
assessments are susceptible to bias (Figure 4). The pipeline has the 

FIGURE 2

Examples of segmentation and selection performance on different histological sections. (A,B) Duplicate image of selected imperfect histological 
section stained with toluidine blue. (C,D) Duplicate image of selected histological section with multiple obliquely cut nerve fibers stained with 
2%-p-phenylenediamine. (E,G) Automated segmentation of the histological section in (A/C,B/D). The segmentations contain 3 classes: axon (gray), 
myelin (white) and background (black) and show a strong overall agreement. Discrepancies are mainly caused by incomplete (blue arrow) and 
obliquely (yellow arrow) cut nerve fibers. (F,H) Selection of nerve fibers that are suitable for morphological calculations. (I,K) Ground truth annotation 
corresponding to the histological section in (A/C,B/D). (J,L) Selected ground truth annotations based on the selections in (F,H).
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ability to automatically select nerve fibers that are considered 
representative of the whole nerve for clinical evaluation. Consequently, 
differences in morphometric parameters were identified that could 
be due to the precise location of the tissue sectioning and the animal 

from which the sample was obtained. Additionally, the differences 
between TB and PPD staining underscore the need to carefully 
consider staining protocols in the morphometric analysis. We have 
shown that differences in staining methods significantly influence 

FIGURE 3

Automated nerve fiber segmentation morphometrics comparison. (A) Automatically obtained g-ratio, (B) myelin thickness and (C) axon diameter 
compared to the ground truth. Bland–Altman comparison of automated and ground truth (D) g-ratio, (E) myelin thickness and (F) axon diameter. 
Based on the Bland–Altman plot, g-ratio and axon diameter show excellent agreement, with myelin thickness giving an indication for a proportional 
bias.

FIGURE 4

Automated segmentation morphometrics of three parallel histological sections. Inter-cut comparison of (A) g-ratio, (B) myelin thickness and (C) axon 
diameter. ANOVA p-values are reported as 0.34 (g-ratio), 0.50 (myelin thickness) and 0.39 (axon diameter).
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morphometric analysis (Figure  5). These differences in staining 
methods highlight the need for a careful choice of staining method. 
This specifically highlights the importance of carefully selecting 
staining and analysis methods for more accurate and reliable 
outcomes. Moving toward minimal errors and consistency, it is crucial 
to adopt automated and standardized approaches. Our findings 
highlight the need for future research to focus specifically on these 
variables, aiming to improve the accuracy of g-ratio measurements. 
This would add value for studies describing g-ratio effects due to 
neurodevelopment or pathological findings.

Despite its strengths, there are some limitations to our pipeline 
that should be  addressed in future development. In case of large 
sample analysis, images have to be  extracted from histological 
imaging software. To address this, automation could be implemented 
to enhance usability. Integrating the pipeline into Qupath, an open-
source image analysis platform, could make it more widely accessible 
to researchers. Such integration could considerably enhance its 
accessibility and practical application. The ability of Qupath to handle 
large, multi-dimensional images from various sources combined with 
our efficient nerve selection and morphometrics calculation 
algorithm has the potential to streamline nerve fiber analysis, 
increasing the reproducibility and precision of results while 
minimizing manual intervention. Despite these potential 
advancements, the issue of generalizability that we  have shown 
AxonDeepSeg to struggle with, might be applicable to our algorithm 
too, and thus warrants further research. Potential causes that limit 
generalizability are that our dataset is comprised of female mice only, 
which could have an effect on the g-ratio presentation (Paus and 
Toro, 2009). Furthermore, we have only included nerves of healthy 

animals into our dataset which expectedly results in reduced 
generalizability to pathological nerves sections. Further research 
would warrant including more diverse histological sections. Another 
aspect that was not included in the current study but would 
be valuable for future work is the assessment of inter-rater variability 
in g-ratio calculations, although this was not within the scope of our 
study given its focus on comparing different staining methods.

In conclusion, this study presents a new pipeline for automated 
g-ratio calculation based on OM, which has a strong performance 
with clinical benefit. Automation of g-ratio calculation can greatly 
reduce the time and effort required for manual measurements and 
increase the reproducibility and accuracy of results. Further 
development of the pipeline and integration into research software 
would improve usability. Additionally, careful interpretation across 
staining techniques is warranted.
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