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The model of the four streams of the prefrontal cortex proposes 4 streams 
of information: motor through Brodmann area (BA) 8, emotion through BA 9, 
memory through BA 10, and emotional-related sensory through BA 11. Although 
there is a surge of functional data supporting these 4 streams within the PFC, 
the structural connectivity underlying these neural networks has not been fully 
clarified. Here we perform population-based high-definition tractography using 
an averaged template generated from data of 1,065 human healthy subjects 
acquired from the Human Connectome Project to further elucidate the structural 
organization of these regions. We report the structural connectivity of BA 8 with 
BA 6, BA 9 with the insula, BA 10 with the hippocampus, BA 11 with the temporal 
pole, and BA 11 with the amygdala. The 4 streams of the prefrontal cortex are 
subserved by a structural neural network encompassing fibers of the anterior part 
of the superior longitudinal fasciculus-I and II, corona radiata, cingulum, frontal 
aslant tract, and uncinate fasciculus. The identified neural network of the four 
streams of the PFC will allow the comprehensive analysis of these networks in 
normal and pathological brain function.
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Introduction

The pre-frontal cortex (PFC) has been suggested to serve as the central executive system of 
the human brain by controlling refined motor movements, goal-directed behavior, reasoning, 
planning, language, emotion, and memory (Wood and Grafman, 2003; Seeley et al., 2007). The 
medial PFC is a key component of our default mode network whereas the lateral PFC is 
fundamental in orchestrating high order functions (Jobson et al., 2021; Friedman and Robbins, 
2022). Recently, Ben Shalom and Bonneh proposed a functional parcellation of the PFC in 4 
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streams, suggesting the BA8 is implicated in motor functions, BA9 for 
emotional processing, BA10 for memory, and BA11 for processing 
emotionally related sensory information (Ben Shalom and Bonneh, 
2019). This model is based on data demonstrating strong functional 
connectivity of BA8 with BA6, BA 9 with the insula, BA10 with the 
hippocampus, and BA11 with the anterior temporal lobe (Shalom, 
2009). Based on the functional network proposed, we hypothesize that 
the four streams of the PFC are subserved by connections between 
BA8 and BA6, BA 9 and insula, BA10 and hippocampus, and BA11 
and temporal pole. To further elucidate the organization of these 
regions we investigated their structural connectivity using population 
based high definition tractography.

Methods

We performed fiber tracking using DSI Studio software developed 
by FCY on a population-averaged diffusion MRI template 
(HP-ADMRIT) generated from diffusion MRI (dMRI) data of 1,065 
human healthy subjects acquired from the Human Connectome 
Project (HCP) of the WashU consortium (Glasser et al., 2016; Yeh, 
2022). The age range was 22–37 years, and the average age was 
28.75 years. The multi-diffusion scheme included three b-values at 
1,000, 2,000, and 3,000 s/mm2 and each shell had 90 sampling 
directions with isotropic spatial resolution at 1.25 mm, and slice 
thickness at 1.25 (Van Essen et al., 2013). The number of diffusion 
sampling directions were 90, 90, and 90, respectively. The b-table was 
checked by an automatic quality control routine to ensure its accuracy 
(Schilling et al., 2019). The diffusion data were reconstructed in the 
MNI space using q-space diffeomorphic reconstruction (Yeh and 
Tseng, 2011) to obtain the spin distribution function (Yeh et al., 2010). 
A diffusion sampling length ratio of 1.7 was used. The restricted 
diffusion was quantified using restricted diffusion imaging (Yeh 
et al., 2017).

Regions of interest (ROI) were assigned according to 
Brodmann atlas (Pijnenburg et al., 2021). ROIs of the precentral 
cortex included the supplementary motor area (BA6), superior 
frontal gyrus (BA8), medial prefrontal cortex (BA9), anterior 
prefrontal cortex (BA10), lateral and medial orbitofrontal cortex 
(BA11), insula, hippocampus, and temporal pole. We performed 
fiber tractography analyses to identify anatomical connections 
between two regions of interest following our proposed 
hypothesis of connection on the PFC as follows, BA 8 with BA6, 
BA 9 with insula, BA10 with hippocampus, BA11 with temporal 
pole, and BA11 with amygdala. Each region of interest was placed 
on the MNI space and were based on the Brodmann atlas 
included in the DSI Studio package. Once regions of interest were 
placed and anatomically verified by an anatomist. Cortical 
regions were assigned as “regions of interest” to allow whole brain 
seeding and to allow tracts to be  filtered during the analyses. 
White matter regions were assigned as “seed” to refine fiber 
tractography results as this specifies the algorithm to start at this 
“seed” point. Tracking parameters included tracking threshold at 
0, angular threshold at 0, and step size at 0 (based on default 
parameters). Length of fibers were based on default parameters 
as well (minimum length at 30 mm and maximum length at 
200 mm), and these particular parameters allows to exclude tracts 
that are either too short (to exclude excessive u-fibers) or too 

long (to exclude long false continuations). In addition, we allow 
fiber tractography to end at 1,000,000 seeds to allow us to obtain 
as many results as possible. Finally, topology informed pruning 
was applied at 4 iterations to eliminate false continuations, a 
patented method described in recent publications (Yeh et  al., 
2019). To check for result accuracy, we  followed a single-ROI 
approach to evaluate if fibers generated by this method will result 
in the same trajectories when compared to fibers obtained by 
pairwise tractography, and results are discussed in the 
results section.

Results

Fibers running within the anterior part of the dorsal component 
of the superior longitudinal fasciculus (SLF-Ia) were observed 
interconnecting BA8 of the superior frontal gyrus (SFG) with BA6 of 
the pre-SMA and SMA proper. These fibers reside within the 
paracingulate gyrus dorsal to the body of corpus callosum. BA6 and 
BA8 are also interconnected with U-fibers residing within the SFG 
and middle frontal gyrus (MFG) as well as fibers of the superior 
longitudinal fasciculus II (SLF-II) (Figure 1). In addition, fibers from 
the frontal aslant tract (FAT) were observed connecting BA6 and BA8. 
Fibers interconnecting BA9 of the SFG and MFG with the insula, 
more specifically the posterior insular cortex, were tracked. These 
fibers run within the corona radiata at a rostrocaudal direction parallel 
to fibers of the external capsule (Figure 2). The connectivity of BA10 
and hippocampus was tracked through two different fiber bundles 
(Figure  3). Cingulum fibers were recorded arching dorsal to the 
corpus callosum between BA10 and hippocampus (Figure 3). Fibers 
of the uncinate were tracked interconnecting BA11 with amygdala and 
temporal pole. Fibers implicating the amygdala were observed 
running medial and posterior to the fibers implicating the temporal 
pole. To test result accuracy, we  used a single-ROI tractography 
approach and compared results with our original method. For 
example, we placed the hippocampus as a single ROI assigned as a 
seed to evaluate if obtained trajectories were similar to fibers obtained 
by pairwise tractography. Results show that fibers generated by 
single-ROI and two-ROI approach are the same trajectories that 
project from the hippocampus to BA10, which proves the pairwise 
tractography to be a valid method to evaluate connections of the PFC 
(Figure 4).

Discussion

In this population-based tractography study, we identified direct 
connections of BA 8 with BA6, BA 9 with the posterior insular 
cortex, BA10 with the hippocampus, and BA11 with the temporal 
pole and amygdala through the SLF-Ia, FAT, U-Fibers, SLFII, corona 
radiata, and cingulum. To the best of our knowledge this is the first 
study demonstrating the structural connectivity of the proposed 
four streams of the prefrontal cortex using an HP-ADMRIT 
generated from dMRI data of 1,065 human healthy subjects acquired 
from HCP.

The connectivity between BA6 and BA8 has been demonstrated 
in non-human primates through tracer injections (Arikuni et  al., 
1988). We have recently characterized the connectivity between BA8 
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and BA6 through the SLF-Ia in the human brain using blunt fiber 
microdissections in normal human hemispheres (Komaitis et  al., 
2019). Our dissection results suggested that the dorsal part of the 
superior longitudinal fasciculus is segmented at the level of the 
anterior paracentral lobule in an anterior and posterior part (Komaitis 
et  al., 2019). In line with previous anatomical studies in humans, 
we found the connectivity of the more lateral parts of BA8 and BA6 
through the FAT, U-fibers, and the anterior segment of the SLF-II 
(Wang et al., 2016; Bozkurt et al., 2017).

The structural connectivity of the insula with BA9 has been 
previously demonstrated through a dataset of n = 199 subjects 

(Nomi et al., 2018). In addition, studies have shown connections 
between BA9 and BA10 and several association pathways, 
including cingulum and fibers from BA9 connecting to the ventral 
part of the insula (Petrides and Pandya, 2007). Histological studies 
have identified von Economo neurons both within the insula and 
BA9 (Fajardo et al., 2008; Allman et al., 2011). To the best of our 
knowledge, this is the first study reporting the trajectory, and 
directionality of the fibers interconnecting these regions. A tracer 
injection study identified major connection to BA10 including 
projections from parahippocampal areas, which supports our 
findings of fibers connecting BA10 and hippocampus (Burman 

FIGURE 1

Fiber tract connectivity between BA8 and BA6 through the Frontal Aslant Tract, U-fibers, and the anterior part of the dorsal component of the Superior 
Longitudinal Fasciculus and Superior Longitudinal Fasciculus-II. (A) Lateral view demonstrating the anterior part of the left dorsal component of the 
superior longitudinal fasciculus in light blue, FAT in silver, and the anterior part of the superior longitudinal fasciculus II in purple interconnecting BA6 
(purple) and BA8 (green) superimposed on a left hemisphere isosurface. Fibers of the cingulum are shown in dark blue. (B) Coronal section at the level 
of BA8 demonstrating the spatial relationship of the different pathways interconnecting BA6 and BA8. (C) Medial view demonstrating the relationship 
between SLF-Ia and cingulum. SLF-Ia, anterior part of the left dorsal component of the superior longitudinal fasciculus; SLF-II, Superior Longitudinal 
Fasciculus-II; CB, cingulum bundle; BA8, Brodmann area 8; BA6, Brodmann area 6.

FIGURE 2

Fiber tract connectivity between BA9 and insula. Lateral view 
demonstrating fibers within the left corona radiata in green 
interconnecting the BA9 (green) with insula (posterior insular cortex) 
(yellow) superimposed on a left hemisphere isosurface. BA9, 
Brodmann area 9.

FIGURE 3

Fiber tract connectivity between BA10 and hippocampus. Lateral 
view demonstrating fibers of the left cingulum in dark 
interconnecting BA10 (dark blue) with the dorsal hippocampus (light 
blue) superimposed on a left hemisphere isosurface. BA10, 
Brodmann area 10; CB, Cingulum Bundle.
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et al., 2011). Furthermore, research in monkeys has demonstrated 
that distant regions also exhibit significant laminar similarities 
resulting in true anatomical connections, which has been observed 
in the case of projections between the BA9 and BA10 cortical 
areas through association fibers (Barbas, 2015). Our results show 
that fibers interconnecting the insula with BA9 travel within the 
centrum semiovale exhibiting a parallel directionality with the 
cortico-striatal pathways. Fibers traveling within the centrum 
semiovale exhibit a very complex fiber orientation pattern. 
Imaging results in such areas with kissing and crossing fibers are 
more prone to false positives (Fernandez-Miranda et al., 2012). 
Therefore, these results should be taken into consideration with 
caution. Nevertheless, results obtained by single-ROI and 
two-ROI approach result in the same trajectories entering the 
prefrontal cortex, which allows to validate our method for 
accuracy, and the presence of histological and imaging evidence 
of the connectivity of the insula with BA9, in the absence of any 
other fiber tracts connecting these regions support our 
current results.

The connectivity of BA10 and hippocampus was tracked 
through the cingulum. Connectivity of the BA10 and hippocampus 
has been reported by means of the cingulum bundle through an 
abundance of studies (Bubb et al., 2018; Skandalakis et al., 2020; 
Komaitis et  al., 2022). A recent study applying diffusion tensor 
imaging (DTI) in children demonstrated a correlation between 
emotional dysregulation and increased radial diffusivity (RD), as 
well as decreased fractional anisotropy (FA) of the cingulum-
callosal fibers, supporting the hypothesis that connecting fibers of 
the cingulum between BA10 and hippocampus are part of the four 
streams and subserving an important functional aspect of 
emotional regulation (Hung et al., 2020). In line with numerous 
fiber dissection and imaging studies in humans we  showed the 
fibers of the uncinate interconnecting BA11 with the amygdala and 
temporal pole (Liakos et al., 2021). Fibers interconnecting these 
areas exhibit same trajectory and connectivity between humans and 
non-human primates (Thiebaut de Schotten et  al., 2012). 
Furthermore, several areas of the prefrontal cortex have been 

shown to have similarities between human and non-human 
primates. However, other areas in the anterior prefrontal cortex, 
particularly the frontopolar region in humans, appears to be unique 
and not easily matched to macaque prefrontal regions, suggesting 
distinct cognitive capabilities in human anterior prefrontal cortex 
(Neubert et al., 2014). This highlights the intriguing interaction 
between evolutionary consistency and uniqueness within the 
prefrontal cortex.

DMRI provides exceptional means to study fiber tracts in vivo, in 
a fast detailed manner, allowing analysis between large populations 
(Yeh, 2022). Still, fiber tractography provides indirect measurements 
according to the diffusion of water molecules (Dyrby et al., 2018). 
Thus, results should be interpreted judiciously if they are not validated 
by cadaveric data (Yendiki et al., 2022).

Conclusion

The 4 streams of the prefrontal cortex are subserved by a structural 
neural network involving fibers of the anterior part of the superior 
longitudinal fasciculus-I, superior longitudinal fasciculus-II, corona 
radiata, uncinate fasciculus, frontal aslant tract, and U-fibers. The 
identified neural network of the four streams of the PFC will allow a 
more comprehensive analysis of these networks in normal and 
pathological brain function.
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FIGURE 4

Fiber tract connectivity between BA11 and temporal pole through the uncinate fasciculus. (A) Lateral view demonstrating fibers of the left uncinate 
fasciculus in red interconnecting BA11 with temporal pole superimposed on a left hemisphere isosurface. BA11, Brodmann area 11. (B) Lateral view 
demonstrating fibers of the uncinate fasciculus interconnecting BA11 and region of amygdala superimposed on a left hemisphere isosurface. BA11, 
Brodmann area 11; UF, uncinate fasciculus.
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