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The vision of astroglia as a bare scaffold to neuronal circuitry has been largely

overturned. Astrocytes exert a neurotrophic function, but also take active part

in supporting synaptic transmission and in calibrating blood circulation. Many

aspects of their functioning have been unveiled from studies conducted in

murine models, however evidence is showing many differences between mouse

and human astrocytes starting from their development and encompassing

morphological, transcriptomic and physiological variations when they achieve

complete maturation. The evolutionary race toward superior cognitive abilities

unique to humans has drastically impacted neocortex structure and, together

with neuronal circuitry, astrocytes have also been affected with the acquisition

of species-specific properties. In this review, we summarize diversities between

murine and human astroglia, with a specific focus on neocortex, in a panoramic

view that starts with their developmental origin to include all structural and

molecular differences that mark the uniqueness of human astrocytes.
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Introduction

The notion of neuroglia as glue embedding different cellular components of the central
nervous system (CNS) was first proposed by Virchow (1856, 1858). Subsequently, in the
second half of the 19th century, the neuroanatomist Santiago Ramón y Cajal, was able
to visualize astrocytes for the first time by using a gold and mercury chloride-sublimate
staining (Ramón y Cajal, 1913) labeling a protein later identified by Eng et al. (1971) as glial
fibrillary acidic protein (GFAP). These pioneering discoveries paved the path to countless
studies that served to highlight the plethora of functions operated by astrocytes in the CNS,
such as synapse maturation and elimination (Chung et al., 2015), ion and neurotransmitters
homeostasis (Simard and Nedergaard, 2004), regulation of functional hyperemia (Macvicar
and Newman, 2015), and modulation of synaptic plasticity (Bains and Oliet, 2007; Ota et al.,
2013).

Most of the information currently accessible on astrocytes has been collected from
animal models, especially from rodents. While these studies proved invaluable to gain an
insight on the multiple functions operated by astrocytes, an increasing body of evidence is
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pointing out several divergences between astrocytes across species,
both at the morphological and at the molecular level (Oberheim
et al., 2009; Zhang et al., 2016; Falcone and Martínez-Cerdeño,
2023). In particular, considerable differences have been highlighted
between adult human and murine astrocytes.

The cerebral cortex has been object of systematic investigations
at this regard, in an attempt to delineate, at a cellular level,
the contribution of non-neuronal cells to the cognitive capacities
that distinguish humans. Data have shown not only a larger
abundance of astrocytes in humans, but also the existence of
human-specific astrocyte types endowed with distinctive shapes
and diverse functions (Oberheim et al., 2009; Vasile et al., 2017;
Falcone and Martínez-Cerdeño, 2023). The contemporary evo-
devo approach uses developmental principles to obtain a glimpse
into how human neocortex may have evolved (Rakic, 2009) and on
this basis, it appears conceivable that also inter-specific differences
in astrocytes may origin during development.

In this context, the purpose of this review is to trace an outline
of the currently available notions on the differences between human
and mouse astrocytes development, with a specific focus on cerebral
cortex, and eventually, extending the comparison to mature cells on
a morphological, molecular, and functional perspective.

Astroglia development in mouse and
human cerebral cortex

The neural tube is the primordial structure of the CNS and,
in the earliest developmental stages, is composed by a single
layer of neuroepithelial cells (NECs). These cells constitute the
ventricular zone (VZ) of the neural tube and are the founders
from which all neurons and glial cells of the adult CNS will be
generated. Until the seventh post-conceptional week in humans,
or day 8 of embryonic development in mice (E8), NECs undergo
primarily symmetric divisions in order to expand the stem cell
pool (Baggiani et al., 2020). Subsequently, a small fraction of
NECs undergoes asymmetric divisions to generate the first wave
of post-mitotic neurons that migrate radially into a transient
structure called preplate (PP) (Figure 1A) (Gao et al., 2013).
As development proceeds, NECs transform into radial glia cells
(RGCs) which exhibit a typical bipolar morphology with an
apical process touching the ventricular edge, and a long process
extending toward the pia (Figure 1A) (Miyata et al., 2001;

Abbreviations: AADAT, aminoadipate aminotransferase; AMY2B, amylase
alpha 2B; APC, astrocyte progenitor cell; APOC2, apolipoprotein C2;
AQP4, aquaporin-4; ASCL1, achaete-scute family bHLH transcription
factor 1; BBB, blood brain barrier; bRGC, basal radial glia cell;
CETN2, centrin 2; CNS, central nervous system; CP, cortical plate;
CSF, cerebrospinal fluid; EGFR, epidermal growth factor receptor; GFAP,
glial fibrillary acidic protein; GM, gray matter; GW, gestational week;
hIPSC, human induced pluripotent stem cell; IP, intermediate progenitor;
IP3, inositol 3-phosphate; IZ, intermediate zone; MIPC, multipotent
intermediate progenitor; MKI67, marker of proliferation Ki-67; MRVI1, inositol
1,4,5-triphosphate receptor associated 1; MZ, marginal zone; NDUSF5,
NADH:ubiquinone oxidoreductase subunit S5; NEC, neuroepithelial Cell;
NVU, neurovascular unit; OLIG1/2, oligodendrocyte transcription factor 1/2;
OPC, oligodendrocyte progenitor cell; PP, preplate; RGC, radial glial cell;
RYR3, ryanodine receptor 3; S100B, S100 calcium binding protein B; SP,
subplate; SVZ, subventricular zone; tRG, transforming radial glia cell; tRGC,
truncated radial glia cell; VZ, ventricular zone; WM, white matter.

Noctor et al., 2004). RGCs divide, but unlike NECs, the divisions
of RGCs are mostly asymmetric, giving rise to a daughter RGC,
an intermediate progenitor (IP) cell, or a nascent neuron that will
subsequently migrate toward the pial surface. IPs originated from
RGCs then delaminate from the VZ and migrate to reach the
subventricular zone (SVZ) where they undergo additional cycles of
symmetric divisions to generate neurons (Figure 1A). In humans,
IPs undergo numerous rounds of division before starting neuronal
differentiation, whereas in mouse divisions are limited to one cycle
(Hansen et al., 2010; Lamonica et al., 2013). Exploiting the processes
of RGCs as a guide for radial migration, newborn neurons split
the PP region into three areas: a more superficial marginal zone
(MZ), that will eventually become the future layer 1 of the cortex,
an intermediate area called cortical plate (CP), and a deeper and
transient subplate (SP) (Figure 1A). As a result of successive waves
of migration, newly generated neurons migrate past the existing
born neurons and occupy more superficial layers in the CP, thus
generating layers 2–6 of the forming cortex, according to an inside-
out pattern that characterizes cortical lamination (Rakic, 1988;
Bronner and Hatten, 2013; Mukhtar and Taylor, 2018).

In mice, at E16, RGCs lose their neurogenic potential in
favor of a progressive gliogenic capacity that reaches its peak at
the postnatal day (P) 6 and starts decreasing at P28 (Ge et al.,
2012). Astrocytes in mouse originate from two sites: the VZ
and the SVZ. In the VZ, the RGCs translocate, detaching their
process from the ventricular surface of the cortex, and lifting
their soma toward the pial surface, thus acquiring the novel
identity of transforming RG (tRG) (Figure 1A) (Nadarajah et al.,
2001; Noctor et al., 2004; Deneen et al., 2020). Eventually, tRG
terminally differentiate and give rise to protoplasmic and fibrous
astrocytes (Figure 1A) (Deneen et al., 2020). The second wave of
astrogenesis occurs in SVZ during the postnatal period, leading
to the generation of gray matter (GM) astrocytes (Gressens et al.,
1992; Tabata, 2015). In this area, RGCs generate multipotent
intermediate progenitors (MIPCs) molecularly distinguishable for
the expression of ASCL1, EGFR, OLIG2, and MKI67 (Li X. et al.,
2021). Subsequently, MIPCs originate both astrocyte progenitors
(APCs) (Figure 1A) and oligodendrocyte progenitors (OPCs),
which terminally differentiate into mature cells (Li X. et al., 2021).
A subset of oligodendrocyte precursors, named NG2 cells, can also
generate protoplasmic astrocytes prenatally (∼ E17.5) before the
acquisition of a fully differentiated phenotype (Nishiyama et al.,
2016; Guo et al., 2021). Once precursors are specified, the last
step is migration toward their final location. Precursors of the
VZ migrate through the direct transformation into tRG with the
consequent retraction of radial fibers that pushes the soma upward
(Tabata, 2015), whereas SVZ precursors migrate radially into both
white matter (WM) and GM (Jacobsen and Miller, 2003). When
the progenitors are positioned in their final location, they undergo
numerous rounds of proliferation, especially during the first three
postnatal weeks, before entering terminal differentiation (Ge et al.,
2012; Molofsky and Deneen, 2015; Deneen et al., 2020).

Human astrogenesis appears to occur mostly in the second half
of gestation, with a variability of a few weeks correlated to the
anatomical area (Choi and Lapham, 1978; Holst et al., 2019), and
seems to persist in the postnatal period (Roessmann and Gambetti,
1986). In humans, as well as in mice, the principal neural stem
cell niches for astrocytes are in the VZ and SVZ. In human VZ,
around gestational week (GW) 16–18, a subset of RGCs generate
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FIGURE 1

Astrogenesis in mouse and human cortex. (A) At E8.5, neuroepithelial cells (NECs) are located in the ventricular zone (VZ). Around E10.5, the preplate
(PP) appears and later divides into a marginal zone (MZ), a subplate (SP), and cortical plate (CP). Radial glial cells (RGCs) begin to generate astrocytes
at E18.5. During the first wave of astrogenesis, RGCs give rise to transforming RGCs (tRG) that reside in the intermediate zone (IZ). In the second
wave, intermediate progenitors (MIPCs) residing in the subventricular zone (SVZ) generate astrocytic progenitors (APCs). (B) At GW7, a single layer of
NECs characterizes the developing human neural tube. Around GW7-8 the PP appears, and then divides into MZ, CP and SP. Astrogenesis begins
around GW21-26 from two different sources: truncated RGCs (tRGCs) and basal RGCs (bRGCs). The tRGCs maintain the ventricular process and
contact vasculature in the oSVZ, while detaching from the pial surface. The tRGCs generate multipotent intermediate progenitors (MIPCs) that
localize between the oSVZ and the inner SVZ (iSVZ). From the MIPCs, APCs arise and eventually differentiate into gray matter (GM) astrocytes. bRGCs
detach their basal process from the VZ and reside in the outer SVZ (oSVZ), where they generate white matter (WM) astrocytes.

the so-called truncated RGCs (tRGCs), which are characterized
by the loss of contact with the pial surface, and by the abrupt
termination of basal processes on the blood vessels of the oSVZ
(Figure 1B) (DeAzevedo et al., 2003; Nowakowski et al., 2016;
Holst et al., 2019). tRGCs give rise to MIPCs residing in the inner
fibers layer, which are characterized by the expression of EGFR,
thought to mediate the initiation of gliogenesis, ASCL1, OLIG1,
and OLIG2 (Yang et al., 2022). Similar to mouse astrogenesis,

human MIPCs will subsequently give rise to APCs and OPCs that
will terminally differentiate into astrocytes and oligodendrocytes,
respectively (Figure 1B) (Yang et al., 2022).

In humans, the SVZ further subdivides into outer SVZ (oSVZ),
and inner SVZ (iSVZ) by means of an internal layer of fibers
(Figure 1B) (Rakic, 1988; Bystron et al., 2008; Bronner and
Hatten, 2013; Mukhtar and Taylor, 2018; Molnár et al., 2019).
This subdivision and the vast amplification of the oSVZ are
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two prominent elements of difference compared to developing
mouse cortex and are also acknowledged as responsible of the
gyrification that distinguishes human from mouse brains (Namba
and Huttner, 2017). In the human oSVZ, a peculiar type of RGCs
not described in mouse, are named outer or basal RGCs (bRGCs).
bRGCs are characterized by the loss of their connections with
the ventricular surface and by retention of basal processes facing
the pia (Figure 1B) (Ortega et al., 2018). Observations conducted
in non-human primates have outlined that, after completion of
neurogenesis, bRGCs acquire a prominent gliogenic capacity which
has an important role for the ‘fanning out’ of the cortex, the
enlargement of the cerebrum and development of convolutions
(Rash et al., 2019).

By means of human oraganotypic brain slices collected at the
onset of astrogliogenesis (GW18-23), a recent work has showed that
astrocytes originated from tRGCs (VZ), and bRGCs (oSVZ) follow
distinct fates in the human cortex, thus pointing out for the first
time, the identification of two separate niches (Allen et al., 2022).
Specifically, astrocytes originated in the VZ typically endowed with
dense and bulbous processes are eventually localized in the CP
(∼70%) and in the SP (∼29%), prevalently giving rise to GM
astrocytes. Astrocytes generated in the oSVZ, on the other hand,
have smooth processes and for the vast majority remain in the
SVZ, where they generate WM astrocytes. These two populations
have also been molecularly defined by mean of RNA sequencing
which identified in ITGB4 and ANGPTL4 the candidate markers
of VZ- and oSVZ-originated astrocytes, respectively (Figure 1B)
(Allen et al., 2022).

Cortical astrocytes: mouse and
human morphometric assessment

The evolution of the CNS has driven an increase in brain size
(DeFelipe, 2011). Like neurons, astrocytes changed in shape, size
and number becoming progressively more specialized in evolved
species (Falcone and Martínez-Cerdeño, 2023). Accordingly, the
astrocyte to neuron ratio has also evolved from 1:3 in the mouse
cortex to 1:1.4 in the human cortex, an increase arguably ascribed
to the presence of more sophisticated neuronal networks (Bass
et al., 1971; Nedergaard et al., 2003). Disparity from a numerical
point of view is also accompanied by morphological divergence
(Oberheim et al., 2009; Vasile et al., 2017). Human astrocytes
are much larger, more complex, and more heterogeneous that
their murine counterpart, with species-specific subtypes that have
been only found in primates (Oberheim et al., 2009; Vasile et al.,
2017; Falcone and Martínez-Cerdeño, 2023). Of note, four types of
astrocytes have been observed in humans: interlaminar, varicose
projections, protoplasmic and fibrous. With the exception of
varicose projections astrocytes, all the other types were also found
in the mouse brain, with several morphometric differences outlined
in the section below.

Interlaminar astrocytes

Originally identified by Andriezen (1893) and Retzius (1894),
interlaminar astrocytes reside in layer 1 of the cerebral cortex, and

exhibit long and tortuous varicosity-free processes that typically
terminate in layers 2–4 (Colombo and Reisin, 2004). Recently,
two types of interlaminar astrocytes have been described: pial
and subpial. Pial interlaminar astrocytes are in direct contact
with the pial surface and present an inverted pyramidal shaped
soma. Conversely, subpial astrocytes, with their rounded soma,
are located in the upper layer 1 with processes contacting
the pia. Both types were detected in human and mouse
cortex, although in the mouse they present a very rudimental
morphology with processes limited to layer 1 (Figure 2A)
(Falcone et al., 2019). The degree of complexity of human
interlaminar astrocytes has been pointed out regarding both
the total number of processes (27.9 in H. sapiens versus
5.8 in M. musculus), and their overall length that reaches
593.4 µm in human, while being only 133.4 µm in mouse
(Falcone et al., 2019).

Varicose projection astrocytes

Varicose projection astrocytes are detectable only in humans
and other apes in layers 5–6 and in the WM of the cortex
(Falcone et al., 2021). They are characterized by the presence
of short spiny processes and 1–5 mm long projections with
prominent, evenly spaced varicosities. The long processes, span
in all directions and often contact vessels (Figure 2B) (Oberheim
et al., 2009). Their processes are less tortuous respect to the
interlaminar astrocytes and are less branched in comparison with
the protoplasmic astrocytes, thus arguably establishing a lower
number of synaptic contacts.

Protoplasmic astrocytes

Protoplasmic astrocytes reside in layers 2–6 of human and
mouse cortex and are the most common astrocyte type in the GM.
In humans they exhibit a largely more complex arborization with
approximately 37.5 processes, which can measure up to 100 µm
(Figure 2B). The number of branches goes down to 3.75 per
cell in mice, with an approximate length of 39 µm (Figure 2A)
(Oberheim et al., 2009). Because of their finely articulated
branching, human protoplasmic astrocytes cover a high number of
synapses (270,000 to 2 million), thus facilitating the modulation of
inter-neuronal communication and local information integration.
Each protoplasmic astrocyte retains its own anatomical space.
However, in humans, the anatomical borders are less preserved,
compared to their rodent counterpart and present an area of
overlap of about ∼205 µm2, which is limited to ∼12 µm2 in mice
(Oberheim et al., 2009).

Fibrous astrocytes

Fibrous astrocytes reside in the WM both in mice and humans.
They are organized parallel to the axon fibers, on which their
perinodal processes terminate by interdigitating in the Ranvier’s
nodes (Verkhratsky et al., 2021). From a morphological point of
view, they present lobate and oblong nuclei, their unbranched
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FIGURE 2

Arrangement and morphology of human and mouse astrocytes. (A) In mice, three types of astrocytes have been identified: protoplasmic, fibrous
and rudimental interlaminar. Interlaminar astrocytes in mouse cortex reside in layer 1 with very short processes identified by immunohistochemical
labeling of GFAP [image adapted and modified from Falcone et al. (2019); scale bar 50 µm]. Protoplasmic astrocytes localize in all layers, whereas
fibrous astrocytes are found in WM. Both subtypes are labeled by immunofluorescence staining of GFAP image adapted and modified from
Oberheim et al. (2009). Scale bar for protoplasmic astrocyte 20 µm, scale bar for fibrous astrocyte 10 µm. (B) Human astrocyte spatial arrangement
in the cortex depends on the cellular subtype. The soma of interlaminar astrocytes localizes in layer 1 with projections reaching layers 2–4 (scale bar
15 µm). Protoplasmic astrocytes reside in layers 2–6 (scale bar 30 µm), whereas varicose projection astrocytes are found in layers 5–6 and in WM
(scale bar 20 µm). Fibrous astrocytes localize in the WM (scale bar 30 µm). Astrocyte images are adapted from Degl’Innocenti et al. (2022)
(immunofluorescence staining of GFAP) with the exception of varicose projection astrocyte image adapted and modified from Oberheim et al.
(2009), generated by diolistic labeling. All images were readapted with permission (Copyright 2009 Society for Neuroscience).

processes are long and very thin (Verkhratsky et al., 2021).
The projections generally contact neighboring fibrous astrocytes
with overlapping anatomical domains (Oberheim et al., 2009).
In humans these astrocytes appear noticeably larger, about two
times than in mice (183.2 ± 6.1 µm versus 85.6 ± 2.7 µm)
(Figures 2A, B). Their function is arguably structural, for the
support of the axonal tracts (Oberheim et al., 2009).

Molecular and functional
characterization of human and
mouse astrocytes

In recent decades, growing evidence has highlighted the
plethora of functions operated by astrocytes. As structural
components of the neurovascular unit, astrocytes are essential for

the formation and maintenance of the blood brain barrier (BBB)
(Virchow, 1858; Bélanger et al., 2011; Cabezas et al., 2014; Macvicar
and Newman, 2015), for the transport of cerebrospinal fluid (CSF)
in the glymphatic system (Iliff and Nedergaard, 2013; Jessen et al.,
2015), and for metabolic support (Bélanger et al., 2011). Astrocytes
also notably assist synapse formation and maintenance (Chung
et al., 2015), participate in the tripartite synapse (Araque et al., 1999;
Perea et al., 2009; Farhy-Tselnicker and Allen, 2018), modulate
synaptic plasticity (Bains and Oliet, 2007; Ota et al., 2013), and
regulate neurotransmitters uptake and recycling (Sonnewald et al.,
1997; Simard and Nedergaard, 2004). For a systematic and general
description of all the functions operated by astrocytes we refer
to other reviews (Khakh and Sofroniew, 2015; Verkhratsky and
Nedergaard, 2018). In the following subsections, we focus primarily
on those elements that have been explored in both species and for
which differences have been outlined.
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Morphofunctional differences

The morphological heterogeneity pointed out in astrocytes
is paralleled by functional diversification. Compared to mouse,
protoplasmic astrocytes in the human cortex exhibit a larger and
more complex branching of the processes (Oberheim et al., 2009;
Han et al., 2013; Vasile et al., 2017). Although the area covered
by their projections is extended for an optimal integration of a
larger number of synapses, and with a considerable degree of
overlap in relation to what is observed in mice, it is confined
to a single cortical layer. Intra-layer communication, on the
other hand, relies on interlaminar astrocytes, which represent an
additional important element of diversity between human and
mouse astroglia (Falcone et al., 2019). Initially thought to be a
specific subtype of primate brains, interlaminar astrocytes have
only been recently added to the list of astrocytes subtypes that
can be equally found in mice and humans. Nevertheless, mouse
interlaminar astrocytes exhibit very short projections limited to
the first cortical layer (Falcone et al., 2019). Conversely, with
columnar connections spanning up to 4 cortical layers, the human
counterpart covers very distant territories (Falcone et al., 2019).
The radial morphology of interlaminar astrocytes may be involved
in maintaining the columnar organization and function in the
cortex (Colombo and Reisin, 2004). Consequently, species with a
more organized columnar structure present a greater number of
longer interlaminar processes, as in the case with primates and
humans, specifically (Falcone et al., 2019). The range of cellular
interactions established by processes is determinant in outlining
specific functions. Interlaminar astrocytes have been shown to
directly contact pia and capillaries, suggesting a role in the BBB and
in facilitating the communication of other cell types with meninges
and CSF (Falcone et al., 2019). A peculiar feature of human
protoplasmic astrocyte projections that distinguishes them from
interlaminar, refers to contacts with nodes of Ranvier, suggestive
of a specific participation of this cell type in ionic buffering of
extracellular space around the node (Sosunov et al., 2014).

Varicose projection astrocytes have only been found in humans
and apes and are a definite element of difference with many other
species. Intriguingly, it has been recently observed that they are
not a constant element of human astroglia and that they can
be more frequently observed in conjunction with varicosities on
interlaminar astrocytes (Falcone et al., 2021). On this basis, it has
been hypothesized that varicosities on interlaminar astrocytes may
be a feature acquired under specific conditions, i.e. stress, aging
or disease occurrence and that similar factors may also trigger the
appearance of varicose projection astrocytes. Given the similarities
with fibrous astrocytes in terms of location and morphological
aspect, varicose projection astrocytes may be a modified version of
fibrous astrocytes generated in response to specific cues, more likely
traumatic injuries, which already proved to provoke varicosities
protrusion in astrocytes (Falcone et al., 2021).

Ion and metabolite homeostasis

A key element for the surveillance of proper synapse
transmission is the control of ion and metabolite homeostasis
(Verkhratsky and Nedergaard, 2018), a function operated through

the formation of astrocytes syncytia (Dermietzel et al., 1989;
Rouach et al., 2002; Giaume et al., 2010). Initially thought to be
a feature of protoplasmic astrocytes of the GM, astrocytes have
demonstrated to establish syncytia also in the WM of the corpus
callosum, predominantly populated by the fibrous type (Kiyoshi
et al., 2018). Gap junctions mediate the connection between
neighboring astrocytes within syncytia, an element that is not only
structural but also serves to guarantee the spatial redistribution of
K+ and Na+ ions, as well as of nutrients, metabolites, and signaling
molecules for the coordination of neuronal activity and brain
energy metabolism (Ma et al., 2016). In the mouse, gap junction
coupling by means of connexins 30, 43 and 26 appears to be pivotal
for the establishment of syncytia (Dermietzel et al., 1989; Charvériat
et al., 2021), which have been shown to acquire maturation only
postnatally (P15) (Zhong et al., 2023). Evidence suggests that
human astrocytes also exhibit gap junction coupling (Bedner et al.,
2015), as well as connexin 43 (Aronica et al., 2001), and connexin
30 (Nagy et al., 1999). In the control of ion homeostasis, the cerebral
water content regulated by the AQP4 channel is also important.
AQP4 is localized on astrocyte endfeet where it mediates diverse
functions such as K+ buffering, CSF circulation and waste clearance
(Nagelhus and Ottersen, 2013). AQP4 exhibits a different degree of
polarization in mouse or human astrocytes: in the latter, it appears
more densely distributed on the astrocytic membrane, but with
a minor degree of polarization on endfeet than in murine cells
(Eidsvaag et al., 2017).

Functional differences between human and murine astrocytes
have also been delineated from a metabolic point of view. RNA
sequencing analyses has pointed out the highest in expression in
human astrocytes of APOC2, involved in fatty acid metabolism well
as of AMY2B and AADAT, participating in glycogen metabolism
and transaminase-mediated excitatory transmission, respectively
(Zhang et al., 2016). Mouse astrocytes show a higher expression
of genes implicated in mitochondrial respiration, while human
astrocytes exhibit increased expression of genes associated with
defense response and genes linked to extracellular space and
secreted factors (Li J. et al., 2021). These divergences have been
associated with a greater resilience of mouse astrocytes to respond
to oxidative stress and to the greater susceptibility of human cells
to neurodegenerative disorders or acute traumas in which oxidative
insult is critical for the pathological process (Li J. et al., 2021).

Calcium signaling

From a molecular perspective, human astrocytes contain many
conserved genes similarly expressed in mouse (Falcone et al.,
2021). On the other hand, about 600 genes have been found to
be specifically upregulated in human cells and, among them, genes
involved in calcium signaling were highly enriched (Zhang et al.,
2016). Calcium in astrocytes fulfills a wide number of functions
including the release of gliotransmitters for the modulation of the
synaptic activity, and the control of vessel diameter in functional
hyperemia, therefore it is conceivable that diverse dynamics in
intracellular calcium signaling may reflect species-specific needs in
terms of synaptic integration (Parpura et al., 1994; Agulhon et al.,
2008; Bélanger et al., 2011). For example, the calcium permeable
ion channel ryanodine receptor type 3 (RYR3) is strongly enriched
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in human astrocytes and amplifies the fast propagation of calcium
currents by acting on calcium release from endoplasmic reticulum.
Similarly, the MRVI1 protein, binding the IP3 receptors, regulates
intracellular calcium stores and is also overexpressed in humans
(Zhang et al., 2016). These findings are consistent with the
reported differences in calcium waves propagation between the two
species as observed by Oberheim and coworkers, who reported
a significantly slower speed in rodents than in their human
counterparts (8.6 ± 0.6 µm/s versus 43.4 ± 4.7 µm/s) (Oberheim
et al., 2009). In addition, the responsiveness of astrocytes to ATP
and glutamate is also different, with human astrocytes calcium
wave transmission being fourfold faster than in mouse (Oberheim
et al., 2009). In line with these findings a new astrocytic marker
peculiar to humans, and almost completely absent in mouse, has
been identified in Centrin-2 (CETN2), a calcium-binding protein
with two EF-hand domains and structurally similar to S100B
(Degl’Innocenti et al., 2022).

The species-specific selectivity of several proteins involved
in calcium intracellular signaling may suggest and evolution-
based specification of calcium propagation that may better serve
the computational capacities of species, like humans, endowed
with superior cognitive abilities. This assumption seems to find
confirmation in the work conducted by Han et al. (2013) who
performed the engraftment of human glia progenitors in a recipient
mouse. With this experiment they demonstrated, not only that the
transplanted cells were gap junction-coupled with recipient host
cells, but also that the engrafted human astrocytes retained their
human characteristics. In particular, transplanted human astrocytes
preserved their original morphology, and performed stronger
calcium wave propagation, as occurs physiologically in humans;
as a result, the chimera animals showed enhanced long-term
potentiation with increased cognitive abilities (Han et al., 2013).

Discussion

The prominent role of astrocytes in outlining intra-species
differences between humans and mice can be inferred by studying
cerebral cortex. In this area, human astrocytes achieve a level
of complexity that drastically differentiates them from mouse
astroglia. The larger shape and the wider network of cellular
interactions (Oberheim et al., 2009; Vasile et al., 2017; Falcone
et al., 2019, 2021), the faster propagation of second messengers
(Oberheim et al., 2009), as well as the increased cognitive abilities
of mice engrafted with human astrocytes (Han et al., 2013), are all
evidences supporting the idea that evolution has pushed toward
an enhanced ability of human astrocytes to respond to stimuli
and communicate with other cells. However, at present, a limited
number of studies have analyzed human fetal brain tissue (Allen
et al., 2022), and many questions regarding the developmental
processes through which human astrocytes gain their peculiar
features remain to be addressed.

It is currently accepted that gliogenesis follows an initial phase
of neurogenesis after the so-called “gliogenic switch.” However,
unlike rodents (Noctor et al., 2004), neurogenesis and gliogenesis
overlap extensively in humans (Malik et al., 2013), and the question
of whether a single progenitor within this time window can
generate both neurons and glial cells has not been addressed

yet. Additionally, the developmental origin of varicose projection
astrocytes, peculiar to humans, or the molecular players that sustain
the massive elongation of the processes of human interlaminar
astrocytes, which instead appear short and rudimental in mouse,
still remain to be elucidated.

Calcium signaling is also an important element of difference.
Transcriptomic analysis (Zhang et al., 2016), physiology studies
(Oberheim et al., 2009), as well as histological characterization
of human and mouse brains (Degl’Innocenti et al., 2022),
have pointed out the overexpression of species-specific elements
correlated to calcium-operated signal transduction. Calcium
signals propagate in the astrocytic syncytia through gap junctions
(Verkhratsky and Kettenmann, 1996), whose functionality has
been assessed in rodent models (Zhong et al., 2023). At
present, no correspondent investigations have been conducted in
human samples and the electrophysiological properties of human
astrocytic syncytia remain an open question.

At this regard, the possibility to generate astrocytes from
human stem cells appears as an invaluable tool to investigate
intracellular dynamics. Advances in human induced pluripotent
stem cell (hIPSC) technology are being adapted to astrocyte
research. At present, astrocytes can be generated in 2D layers
or even in 3D systems, such as spheroids or organoids (Sloan
et al., 2017; Tchieu et al., 2019; Boder and Banerjee, 2021),
or can be grown in mouse chimeric brains (Han et al., 2013;
Osipovitch et al., 2019). Interestingly, astrocytes generated from
patient derived-hiPSC have been shown to recapitulate some
pathological phenotypes, such as lipid metabolism dysregulation,
altered signaling, or variation in the content of extracellular
vesicles (Lin et al., 2018; di Domenico et al., 2019; Varcianna
et al., 2019). However, further experimentation is needed to assess
the capacity of in vitro-cultured astrocytes to recapitulate the
molecular heterogeneity of their in vivo counterparts, in relation
to their regional identity, degree of maturation and susceptibility
to oxidative stress (Li J. et al., 2021) as pivotal elements of human
astrocyte uniqueness.

Astrocytes are also known components of the neurovascular
unit (NVU) (Iadecola, 2017), a fundamental element of the
glymphatic system that cannot be investigated in non-vascularized
3D brain organoids. In this regard, recent efforts have been devoted
toward the generation of reliable in vitro systems recapitulating
the NVU structure either incorporating human primary astrocytes
with human endothelial and pericyte cells in spheroid systems
(Bergmann et al., 2018), or by taking advantage of the microfluidic
technology (Maoz et al., 2018; Vatine et al., 2019). Although
these approaches allow the study many aspects of the BBB
permeability, they lack of anatomical fidelity as the component cells
are arranged in spatial organizations that differ from the human
brain cytoarchitecture.

The study of freshly resected human brain tissues would offer
the possibility to study astrocytes in their original milieu preserving
intact cellular connections. Evidence has shown that this system
allows the study of astrocytic calcium currents (Oberheim et al.,
2009) and implemented protocols have been put in place for
the maintenance of human brain sections to help the long-term
preservation of intact electrophysiological properties (Schwarz
et al., 2017). However, the adaptation of acute brain slices for the
study of human astrocytes needs to take into account that the
manipulation of the tissue at the time of the operation triggers
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an injury response that may evoke a reactive state in glial cells
(Qi et al., 2019).

Future studies should be devoted to a deep comprehension
of the molecular factors that orchestrate human astrogenesis. The
knowledge of transcription factors operating in discrete cell niches,
or of the gliotrophic molecules that drive the vast morphological,
molecular, and functional heterogeneity of these cells is essential
for the implementation of in vitro systems, enabling the generation
of bona fide human astrocytes. An always increasing number of
evidence is underlining the pivotal role of non-neuronal cells in
the neurological diseases (Siracusa et al., 2019), and the poor
translability of studies conducted on murine models highlights the
urgent need for a reliable tool to identify human astrocyte-specific
targets and conceive novel disease-modifying therapies.
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