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Introduction: Diabetes is a global disease, commonly complicated by neuropathy.

The spinal cord reacts to diabetes by neuronal apoptosis, microglial activation,

and astrocytosis, with a disturbance in neuronal and glial Nuclear factor erythroid

2-related factor/Heme oxygenase-1 (Nrf2/HO-1) and Nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB) signaling. Curcumin, a bioactive natural

substance, showed neuroprotective role in many diseases. However, its role in the

treatment of the diabetic central neuropathy of spinal cord and the underlying

mechanisms still need clarification. The present study tried to evaluate the role of

curcumin in diabetes-induced central neuropathy of the spinal cord in rats.

Methods: Twenty rats were divided into three groups; group 1: a negative control

group; group 2: received streptozotocin (STZ) to induce type I diabetes, and group

3: received STZ + Curcumin (150 mg/kg/day) for eight weeks. The spinal cords

were examined for histopathological changes, and immunohistochemical staining

for Glia fibrillary acidic protein (GFAP); an astrocyte marker, Ionized calcium-binding

adaptor molecule 1 (Iba1), a microglial marker, neuronal nuclear protein (NeuN); a

neuronal marker, caspase-3; an apoptosis marker, Nrf2/HO-1, NF-kB, and oxidative

stress markers were assessed.

Results: Curcumin could improve spinal cord changes, suppress the expression of

Iba1, GFAP, caspase-3, and NF-kB, and could increase the expression of NeuN and

restore the Nrf2/HO-1 signaling.
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Discussion: Curcumin could suppress diabetic spinal cord central neuropathy,

glial activation, and neuronal apoptosis with the regulation of Nrf2/HO-1 and

NF-kB signaling.
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1. Introduction

Today, there are 422 million diabetic patients. World
Health Organization expects the number to become 700
million by 2045 (Saeedi et al., 2019). Peripheral, as well as,
central neuropathies are common complications of diabetes.
Treatment of diabetic neuropathy (DN) aims to provide control
for blood glucose, manage pain, and suppress nerve damage.
Currently, there is no efficient treatment for DN (Sloan et al.,
2021).

Although many studies investigated the effect of diabetes on
the peripheral nervous system (PNS) and trials to manage DPN,
the diabetic-induced changes in the CNS, e.g., spinal cord, didn’t
gain the same interest, and it must be studied to find new
and effective treatments. Diabetes has been reported to cause
microglial activation (Mandour et al., 2022; Wang et al., 2022),
astrocytosis (Deng et al., 2017; Kiguchi et al., 2017), and neuronal
apoptosis with up-regulation of BAX and Caspase-3 expressions
(Mandour et al., 2022). Furthermore, diabetes causes up-regulation
in the pro-inflammatory cytokine; Nuclear factor kappa light
chain enhancer of activated B cells (NF-kB) (Mandour et al.,
2022).

Nuclear factor erythroid 2-related factor (Nrf2)/Heme
oxygenase-1 (HO-1) is a natural antioxidant cytoprotective system
and a powerful modulator of longevity. This system can counteract
oxidative stress, regulate apoptosis, modulate inflammation, and
contribute to angiogenesis. When the cells face oxidative stress,
Nrf2 translocates to nucleus, to regulate the genes transcription of
anti-oxidant mediators (Lv et al., 2019). Diabetes causes a disturbance
in Nrf2/HO-1 system (Pouso-Vazquez et al., 2022). Furthermore,
the activation Nrf2 in neurons and/or neuroglia attenuated spinal
cord ischemia-reperfusion injury through stimulating neuronal anti-
oxidant and anti-apoptotic systems (Wang et al., 2017). Therefore,
the oxidative stress and its subsequent neuronal apoptosis can
be antagonized by activating Nrf2 pathway in damaged spinal
cord.

A question was raised concerning whether modulating the
spinal cord diabetic central neuropathy can affect directly the
neuropathic pain. Zhang et al. could succeed in relieving diabetic
neuropathic pain through reducing the spinal cord microglial
activation (Zhang et al., 2018). In addition, Zhong et al. could
alleviate diabetic neuropathic pain in rats by inhibiting spinal
cord astrocyte activation (Zhong et al., 2018). Furthermore,
Shayea et al. could control the diabetic neuropathic pain
through the control of astrocyte activation and microglia-
mediated inflammation (Shayea et al., 2020). Moreover, Basu
et al. reviewed the successful role of modulation of spinal Nrf2/HO-1

system in controlling the peripheral neuropathic pain (Basu et al.,
2022).

Curcumin, a primary bioactive substance in turmeric, has
shown neuroprotective effects in a variety of diseases. Many studies
reported the beneficial effect of Curcumin in diabetic peripheral
neuropathy. It could attenuate neuropathic pain by inhibiting
oxidative stress through suppression of NADPH oxidase, thus
decreasing malondialdehyde (MDA) and increasing superoxide
dismutase (SOD) activity (Zhao et al., 2014), through activation
of the opioid system causing an antinociceptive effect (Banafshe
et al., 2014), and through suppression of tumor necrosis factor
(TNF) alpha expression (Daugherty et al., 2018). In addition, nano-
curcumin supplementation could reduce depression and anxiety
after diabetic neuropathy (Asadi et al., 2020). Furthermore, the
action of curcumin in neuropathic pain may involve the pJNK
pathway in the astrocytes and neurons of the dorsal root ganglia
(DRG) (Park et al., 2021). Moreover, Curcumin could inhibit the
apoptosis of Schwann cells (SCs) and could promote nerve growth
factor (NGF) expression in sciatic nerves of diabetic peripheral
neuropathy (DPN) rat model (Zhang et al., 2022). All the previous
studies explored the role of Curcumin in diabetic peripheral
neuropathy; however, few of these studies explored its role in diabetic
central neuropathy.

Many studies reported the beneficial effect of curcumin on
models of spinal cord injury (SCI) (Jin et al., 2021; Kahuripour et al.,
2022). In addition, Curcumin could attenuate the hypoxia-induced
white matter injury (Daverey and Agrawal, 2020). Furthermore,
Curcumin could significantly reduce glial activation with down-
regulation of spinal NF-kB and up-regulation of Nrf2 and HO-1
in Paclitaxel-treated rats with suppression of neuronal apoptosis
(Yardim et al., 2021). However, the role of curcumin in the
management of diabetes-induced spinal cord impairment still
requires clarification.

The current study aimed for the first time to explored the role of
curcumin against diabetes-induced central neuropathy in spinal cord,
microglial activation, astrocytosis, neuronal apoptosis, and its role in
the regulation of Nrf2/HO-1 and NF-kB signaling pathways.

2. Materials and methods

2.1. Ethical statement

The study was designed following the Animals in Research:
Reporting in Vivo Experiments (ARRIVE) standards and meeting the
standards of Mansoura University Animal Care and Use Committee
(MU-ACUC), Egypt (MED.R.22.09.2).
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2.2. Animals

Twenty adult male Sprague-Dawley (SD) rats weighing 150–
200 grams, 7–8 weeks in age, were used. SD rats were used as
they are considered efficient models for studying Type I diabetes-
induced spinal cord injury (Inam et al., 2019; Shayea et al., 2020)
and males were chosen because they have a greater degree of diabetic
neuropathy, as compared to females (Fan et al., 2018). The animals
were allowed to acclimate before the start of the experiment. They
were kept in stainless steel cages, in firm day/night cycles, under
appropriate temperature, and humidity, and in aseptic conditions,
with a free source of food and water.

2.3. Research design

The twenty animals were divided into three groups;
Group 1 (vehicle control group; n = 6) received only 0.5%
carboxymethylcellulose (CMC; the solvent of curcumin) by oral
gavage once per day for 8 weeks. Group 2 (Diabetic; n = 8); after
12 h of fasting overnight, rats received an intra-peritoneal injection
of freshly prepared streptozotocin (STZ; Sigma Aldrich, St. Louis,
MO, USA), at a dose of 55 mg/kg of body weight to induce Type
I Diabetes. STZ was dissolved in 0.1 M citrate buffer (pH = 4.5).
Blood glucose was detected using an Accu check blood glucose meter
(Roche Diagnostic, Germany) three days after STZ injection. The rats
were confirmed diabetic when fasting blood glucose was >250 mg/dl,
for two consecutive days. The rats received CMC once per day for
8 weeks after induction of diabetes. Group 3 (Diabetic + curcumin
group; n = 6) received STZ, as mentioned above, and after induction
of type I diabetes, the rats received Curcumin (Acros organics
product of the US), at a dose of 150 mg/kg/day (Varatharajalu et al.,
2016; Zheng et al., 2017; Ghelani et al., 2019) by oral gavage for
8 weeks. Curcumin suspensions in 0.5% carboxymethylcellulose were
freshly prepared. Throughout the study, two rats from the diabetic
group died. At the end of the study; 8 weeks after diabetes induction,
the rats were subjected to sacrification through decapitation.
Consequently, the spinal cords were removed, washed in saline, and
dried. Figure 1 shows a graphical abstract for the study.

2.4. Detection of serum blood glucose,
and oxidative stress markers (MDA and
GSH)

Blood was taken from the hearts of the rats. Serum was separated.
Serum glucose was detected using an Accu check blood glucose
meter (Roche Diagnostic, Germany). MDA and GSH were measured
following the technique of Elsayed et al. (2021a,b).

2.5. Assessment of histopathological
changes and histopathological scoring

The spinal cords of the rats were excised and parts of cervical
and lumbar segments were fixed in formaldehyde (10%) and then
embedded in paraffin to evaluate the histopathological changes,
then 7 µm thick sections were stained with hematoxylin and
eosin (H&E) (Suvarna et al., 2018). Using the Olympus Light
Microscope and SC100 camera, the dorsal horns of the cervical and
lumbar segments were examined, as they are commonly affected
by diabetic neuropathy and neuropathic pain. Semiquantitative
histopathological scoring for the spinal cord changes was performed.
Shrinkage of soma, neurons with piknotic nuclei, axon degeneration,
inflammatory cell infiltrate, focal bleeding were evaluated and were
graded as follows: 0, less than 5%; 1, 5–33%; 2, 34–66%; and 3, over
66%.

2.6. Immunohistochemical staining

Three µm thick sections of the spinal cord were processed for
immunohistochemical staining using the immunoperoxidase method
(Elhadidy et al., 2021; Elsayed et al., 2021a, 2022). Concisely, the
slides were deparaffinized and endogenous peroxidase was blocked.
Hydrogen peroxide and 0.3% methanol were added to the spinal
cord sections for 10 min at room temperature. To stimulate antigen
retrieval, the sections were consequently subjected to heating at
95◦C for 10 min in 10 mM citrate buffer and then left for
1 h to cool. The slides were kept with primary antibodies for

FIGURE 1

A graphical abstract demonstrating the research design.

Frontiers in Neuroanatomy 03 frontiersin.org

https://doi.org/10.3389/fnana.2023.1094301
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/


fnana-17-1094301 March 9, 2023 Time: 10:23 # 4

Elsayed et al. 10.3389/fnana.2023.1094301

TABLE 1 Primary antibodies applied for immunohistochemistry.

Name Cat. number Source and
clonality

Dilution

NeuN ABclonal A19086 Rabbit monoclonal 1/100

Iba1 ABclonal A19776 Rabbit monoclonal 1/100

GFAP Servicebio GB11096 Rabbit polyclonal 1/1000

Caspase-3 Servicebio GB11532 Rabbit polyclonal 1/500

Nrf2 ABclonal A11159 Rabbit polyclonal 1/100

HO-1 Santa Cruz sc-390991 Mouse monoclonal 1/200

NF-kB ABclonal A19653 Rabbit monoclonal 1/100

NeuN; a neuronal marker, Iba1; a microglial marker, GFAP; an
astrocyte marker, caspase-3; an apoptosis marker, Nrf2/HO-1, and
NF-kB inflammatory and oxidative stress markers, overnight at 4◦C.
Table 1 presents the details of the antibodies and their dilutions.
Consequently, the slides were kept for 30 min with a mouse-rabbit
polydetector (BSB 0268, Bioscience). For the reagent (no-primary
antibody) control, Phosphate-buffered saline (PBS), was added as a
substitute for the primary antibody. Lastly, the slides were washed,
then dehydrated, and investigated with a light microscope (Ramos-
Vara and Miller, 2014). Dark brown areas on a blue background,
demonstrate positive staining. Antigen localization was mainly
nuclear for NeuN, mainly cytoplasmic for GFAP, cytoplasmic, and
nuclear for caspase-3, Iba1, Nrf2, HO-1, and NF-kB.

2.7. Morphometric analysis

This was performed utilizing the 1.52a version of ImageJ software
(Schneider et al., 2012) and Fiji ImageJ software (Schindelin et al.,
2012). The number of NeuN, Iba1, GFAP, Caspase-3, Nrf2, HO-1, and
NF-kB immunopositive cells/high-power field (x400) was counted in
spinal cord sections from rats of all groups.

2.8. Statistical analysis of
immunohistochemical results

Data were analyzed utilizing IBM-SPSS software. After normality
testing, normal quantitative data from the three study groups were

compared using one-way ANOVA and Post-hoc Tukey test. The data
that are not normally distributed were presented as median and
interquartile range and a Kruskal–Wallis H test was used to compare
them. The results were considered significant if the p-values < 0.050.

3. Results

3.1. Effect of curcumin treatment on
serum blood glucose, MDA, and GSH

Serum glucose, MDA, and GSH revealed significant differences
between the studied groups (p: < 0.0005). The diabetic group
revealed significantly higher serum glucose, and MDA levels, as well
as, a significantly lower level of GSH compared to the control group.
These findings were reversed by curcumin administration compared
to the diabetic group. On the other hand, serum glucose, MDA, and
GSH levels, still revealed a significant difference from the control
group (Figure 2).

3.2. Effect of curcumin administration on
diabetes-induced histopathological
alteration and histopathological score in
the dorsal horn of the cervical and lumbar
segments of the spinal cord

The negative control group (Figures 3A, D) revealed medium-
sized basophilic neuronal somas, and myelinated axons with
their myelin sheaths, together with few glial cells; microglia, and
astrocytes. Blood capillaries appear intervening. The diabetic group
(Figures 3B, E) revealed shrunken neuronal somas with surrounding
haloes and pyknotic nuclei, degenerated nerve axons, and myelin
sheaths, together with multiple microglia, and astrocytes. Focal areas
of bleeding are noticed. The Curcumin-treated group (Figures 3C, F),
revealed relatively normal neuronal somas, with few shrunken
neuronal somas. Relatively normal myelinated axons, and myelin
sheaths with few degenerate axons, together with few glial cell nuclei;
microglia (yellow arrows) and astrocytes. Few areas of congestion are
noticed. The histopathological score showed a statistically significant
higher scores in the diabetic group (median value = 9) as compared to
the control groups (median value = 1), with a significant reduction in

FIGURE 2

(A) Serum glucose, (B) Serum MDA, and (C) Serum GSH, in the studied groups. Histograms show means ± standard errors (SE). Data are mentioned as
mean ± SE, different letters = significant difference. P is significant if < 0.05. MDA, malondialdehyde; GSH, reduced glutathione.
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the curcumin-treated group (median values = 3.5) when compared to
the diabetic group. Table 2 shows the results of the histopathological
score.

FIGURE 3

Impact of curcumin on histopathological changes in the dorsal horn
of cervical and lumbar segments in diabetic rats by H & E (×400. Scale
bar = 50 µm. The control group (A,D) revealed medium-sized
basophilic somas of the sensory neurons (blue arrows) in acidophilic
neutropil, myelinated axons with their myelin sheaths (green arrows),
together with few glial cells; microglia (yellow arrows) and astrocytes
(red arrows). Blood capillaries appear intervening (black arrows). The
Diabetic group (B,E) revealed shrinkage of neuronal somas with
surrounding haloes and pyknotic nuclei (blue arrows), degenerated
axons (green arrows), multiple microglia (yellow arrows), and
astrocytes (red arrows). Focal areas of hemorrhage (black arrows) are
noticed. The Curcumin-treated group (C,F), revealed relatively normal
neuronal somas, with few shrunken somas (blue arrows) in acidophilic
neuropil. Relatively normal myelinated nerve axons, with few
degenerated axons (green arrows), together with few glial cell nuclei;
microglia (yellow arrows) and astrocytes (red arrows). Few areas of
congestion (black arrows) are noticed.

TABLE 2 Effect of curcumin on the histopathological scoring for spinal
cord changes, induced by diabetes.

Control
(n = 6)

Diabetic
(n = 6)

Diabetic +
Curcumin

(n = 6)

H value p-value

Shrinkage of
soma

0 (0–0)
A

2 (1.25–2)
B

1 (0–1)
A

41.466 <0.0005

Neurons with
pyknotic
nuclei

0 (0–0)
A

2 (1–2)
B

1 (0–1)
C

37.135 <0.0005

Axon
degeneration

0 (0–0.75)
A

2 (1.25–2)
B

1 (0–1)
A

37.098 <0.0005

Inflammatory
cell infiltrate

0 (0–1)
A

2 (1.25–2)
B

1 (0–1)
A

35.871 <0.0005

Focal bleeding 0 (0–0.75)
A

2 (1.25–2)
B

1 (0–1)
A

38.640 <0.0005

Score 1 (1–1.75)
A

9 (8–9)
B

3.5 (3–4.75)
C

52.100 <0.0005

Results are presented as median and interquartile range. The p-value was determined by
the Kruskal–Wallis H test; different letters = statistically significant difference. Significant
p-values (≤0.05).

3.3. Immunohistochemical results

Immunohistochemical detection of NeuN, Iba1, GFAP, Caspase-
3, Nrf2, HO-1, and NF-kB positive cells, of the negative control
group showed moderate immunoreactivity for NeuN, Iba1, GFAP,
mild expression for Nrf2, and HO-1 with weak expression for
Caspase3 and NF-kB. Noticeably, the dorsal horns of the spinal
cords of the diabetic group revealed a strong expression for Iba1,
GFAP, NF-kB, and Caspase3, with moderate expression for HO-
1, and a mild expression for NeuN and Nrf2. In contrast, the
diabetic + Curcumin group revealed reversed immunoreactivity with
moderate immunoreactivity for NeuN, Iba1, GFAP, and Nrf2, with
a weak expression for caspase3, and NF-kB. However, there was a
strong expression for HO-1 (Figures 4–8).

3.4. Results of morphometric analysis of
immunohistochemical results

The number of NeuN, Iba1, GFAP, Caspase-3, Nrf2, HO-1,
and NF-kB immunopositive cells, revealed a significant difference
(p < 0.0005) between the studied groups. Tukey post-hoc tests showed
a significant increase in the number of Iba1, GFAP, NF-kB, caspase3,

FIGURE 4

(A–C) Cervical and (D–F) lumbar. Impact of curcumin on the
immunohistochemical expression of NeuN in the dorsal horns of
spinal cords of diabetic rats (×400). Scale bar = 50 µm. Histogram
shows the impact of Curcumin on the number of NeuN, +ve
cells/HPF, in the dorsal horns of spinal cords of diabetic rats. Results
are mentioned as mean ± standard error. The results were compared
using one-way ANOVA and Post-hoc Tukey test. The results were
considered significant if the p-values < 0.050. Different letters mean
significant differences. HPF, high power field.
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FIGURE 5

(A–C) cervical and (D–F) lumbar. Impact of curcumin on the
immunohistochemical expression of Iba1 in the dorsal horns of spinal
cords of diabetic rats (×400). Scale bar = 50 µm. Histogram shows
the impact of Curcumin on the number of Iba1, +ve cells/HPF, in the
dorsal horns of spinal cords of diabetic rats. Results are mentioned as
mean ± standard error. The results were compared using one-way
ANOVA and Post-hoc Tukey test. The results were considered
significant if the p-values < 0.050. Different letters mean significant
differences. HPF, high power field.

and HO-1 positive cells with a significant reduction in the number
of NeuN and Nrf2 positive cells in the diabetic group as compared
to the negative control group. Furthermore, a significant reduction
in the number of Iba1, GFAP, Caspase3, and NF-kB positive cells,
as well as a significant increase in the number of NeuN, Nrf2, and
HO-1 positive cells, were observed in the diabetic + Curcumin group,
when compared to the diabetic group. However, the results of the
curcumin-treated group revealed a significant difference compared
with the control group (Figures 4–8).

4. Discussion

Peripheral, as well as, central neuropathies are common
complications of diabetes. Treatment of diabetic neuropathy (DN)
aims to provide control for blood glucose, manage pain, and suppress
nerve damage. Currently, there is no efficient treatment for DN
(Sloan et al., 2021). Curcumin (Turmeric), a primary bioactive
substance, derived from Curcuma Longa, has shown neuroprotective
effects in many diseases. Many studies reported the beneficial effect
of Curcumin on diabetic peripheral neuropathy (Zhang et al., 2022)
and spinal cord traumatic injury models (Kahuripour et al., 2022).

However, the role of curcumin in the management of diabetes-
induced spinal cord impairment requires clarification. The current
study explored the role of curcumin against diabetes-induced spinal
cord microglial activation, astrocytosis, neuronal apoptosis, and
its role in the regulation of the Nrf2/HO-1 and NF-kB signaling
pathways.

In the present study, STZ could induce type I diabetes, followed
by the development of central neuropathy in spinal cord. Diabetes
induced oxidative stress with decreased GSH and increased MDA,
consistent with Mandour et al. (2022) who reported similar findings.
The current study also found that diabetes-induced spinal cord
microglial activation, as seen by up-regulation of Iba1 expression, is
consistent with the findings of Mandour et al. (2022) and Wang et al.
(2022), as microglia are the main provider of inflammatory cytokines;
TNF-α, IL-6, and IL-1β, in response to neuronal degeneration. On the
other hand, astrocytes; the star-shaped neuroglia in CNS, perform
a nutritional function, preserve the ion balance, regulate the blood
flow to the brain and perform a trial to repair, otherwise, scarring
of CNS after injury. The present study found that diabetes could
induce spinal cord astrocytosis, as manifested by increased expression
of GFAP, similar to the finding of Dauch et al. (2012), Benitez
et al. (2015), Deng et al. (2017), and Kiguchi et al. (2017), however,
Wodarski et al. (2009) and Shayea et al. (2020) found that STZ rats

FIGURE 6

(A–C) cervical and (D–F) lumbar. Impact of curcumin on the
immunohistochemical expression of GFAP in the dorsal horns of
spinal cords of diabetic rats (×400). Scale bar = 50 µm. Histogram
shows the impact of Curcumin on the number of GFAP, +ve cells/HPF,
in the dorsal horns of spinal cords of diabetic rats. Results are
mentioned as mean ± standard error. The results were compared
using one-way ANOVA and Post-hoc Tukey test. The results were
considered significant if the p-values < 0.050. Different letters mean
significant differences. HPF, high power field.
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FIGURE 7

(A–C) NF-kB expression in cervical, (D–F) NF-kB expression in lumbar, (G–I) caspase 3 expression in cervical, and (J–L) caspase 3 expression in lumbar.
Impact of curcumin on the immunohistochemical expression of NF-kB and caspase-3 in the dorsal horns of spinal cords of diabetic rats (×400). Scale
bar = 50 µm. Histograms shows the impact of Curcumin on the number of NF-kB and caspase-3, +ve cells/HPF, in the dorsal horns of spinal cords of
diabetic rats. Results are mentioned as mean ± standard error. The results were compared using one-way ANOVA and Post-hoc Tukey test. The results
were considered significant if the p-values < 0.050. Different letters mean significant differences. HPF, high power field.

had a reduced number of astrocytes. Interestingly, Tsuda et al. (2008)
and Zhang et al. (2018) found an insignificant change in the number
of astrocytes in the diabetic spinal cord. The controversy surrounding
these findings may be due to the difference in the model, the dose of
STZ, and the duration of diabetes.

NeuN is a neuronal marker with a nuclear expression. In the
current study, the number of NeuN positive cells was found to
decrease in the spinal cords of STZ rats suggesting a reduced neuronal
number. This decrease may be at least in part due to neuronal
apoptosis as demonstrated by increased caspase3 expression in the
diabetic spinal cord group, similar to the results of Inam et al. (2019),
Niknia et al. (2019), and Mandour et al. (2022).

The mechanisms underlying neuronal apoptosis may be the
disruption of the Nrf2/HO-1 and NF-kB pathways. It is a
cytoprotective system and a powerful modulator of longevity. This
pathway can counteract oxidative stress, regulate apoptosis, modulate

inflammation, and contribute to angiogenesis. The present study
reports down-regulation of Nrf2 with up-regulation in the expression
of HO-1, consistent with the findings of Pouso-Vazquez et al. (2022)
with the induction of NF-kB pro-inflammatory pathway similar to
the results of Mandour et al. (2022). However, Castany et al. (2016)
reported no change in HO-1 in diabetes. NF-kB has been reported
to co-localize with GFAP, suggesting the role of astrocytes in
the regulation of NF-kB activity (Lee et al., 2011). On the other
hand, Nrf2 was found to co-localize with Iba1, GFAP, and NeuN,
confirming its role in microglia, astrocytes, and neurons, respectively,
after spinal cord trauma (Wang et al., 2017).

Curcumin, a primary bioactive substance in turmeric, has
shown neuroprotective effects in a variety of diseases. In the
present study, Curcumin was found to protect the spinal cord
against diabetes-induced injury. Many studies reported the beneficial
effect of Curcumin on diabetic peripheral neuropathy through
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FIGURE 8

(A–C) Nrf2 expression in cervical, (D–F) Nrf2 expression in lumbar, (G–I) HO-1 expression in cervical, and (J–L) HO-1 expression in lumbar. Impact of
curcumin on the immunohistochemical expression of Nrf2 and HO-1 in the dorsal horns of spinal cords of diabetic rats (×400). Scale bar = 50 µm.
Histograms shows the impact of Curcumin on the number of Nrf2 and HO-1 + ve cells/HPF, in the dorsal horns of spinal cords of diabetic rats. Results
are mentioned as mean ± standard error. The results were compared using one-way ANOVA and Post-hoc Tukey test. The results were considered
significant if the p-values < 0.050. Different letters mean significant differences. HPF, high power field.

antioxidant activity (Zhao et al., 2014), activation of the opioid
system (Banafshe et al., 2014), suppression of TNF alpha expression
(Daugherty et al., 2018), reduction of depression and anxiety (Asadi
et al., 2020), modulation of the activity of DRG astrocytes and
neurons (Park et al., 2021), inhibition of Schwann cell apoptosis and
promoting nerve growth factor (NGF) (Zhang et al., 2022). On the
other hand, many studies reported the beneficial role of curcumin in
the treatment of injury, induced by spinal cord trauma models (SCI)
(Kahuripour et al., 2022).

In the present study, curcumin could suppress diabetes-induced
microglial activation, consistent with the results of Wang et al.
(2014) who found that curcumin could promote spinal cord repair
by suppressing microglia, thus inhibiting glial scar formation and
the inflammatory response following a traumatic injury to the
spinal cord, and also consistent with the results of Sheikholeslami
et al. (2019), who described the beneficial role of curcumin in

antagonizing morphine dependence, by inhibiting the microglial
activation and decreasing the inflammatory mediators. In the present
study, curcumin could attenuate the astrocytosis induced by diabetes,
similar to the findings of Daverey and Agrawal (Daverey and Agrawal,
2020) who reported the role of Curcumin in the down-regulation of
the hypoxia-induced astrocytosis as demonstrated by the expression
of GFAP, in white matter hypoxic injury (WMI), and similar to the
results of Yardim et al. (2021), as they described the role of curcumin
in reducing astrocytosis in the spinal cord of Paclitaxel-treated rats.

Furthermore, the present study found that curcumin could
rescue the spinal cord neurons from diabetes-induced injury as
demonstrated through the restoration of the number of NeuN
positive cells, consistent with the results of Lin et al. (2011), who
described the role of curcumin in the restoration of NeuN positive
neurons after neuronal loss after traumatic spinal cord injury.
The mechanisms underlying this role for curcumin may be its
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antiapoptotic activity that was demonstrated in this study through
decreased caspase-3 activity, similar to the results of Hao et al. (2017)
and Xi et al. (2019) in models of traumatic spinal cord injury,
Daverey and Agrawal (2020) in the model of spinal cord white
matter hypoxic injury (WMI), and Yardim et al. (2021) in the spinal
cord of Paclitaxel-treated rats. Moreover, Li et al. (2021) reported
that Curcumin could promote functional recovery and reduce the
number of apoptotic neurons after spinal cord trauma by modulating
autophagy.

The anti-apoptotic effect of curcumin, as reported here, may
be due to its role in the restoration of the Nrf2/HO-1 and NF-kB
pathways. The current study found that curcumin could up-regulate
Nrf2 and HO-1 expressions and down-regulate NF-kB expression in
the diabetic spinal cord and could increase GSH and decrease MDA
levels. Jin et al. (2021) reported a similar finding that Curcumin could
rescue the spinal cord after traumatic injury by activating Nrf2/HO-1
and scavenging free radicals. Furthermore, Yardim et al. (2021) found
that Curcumin could significantly up-regulate spinal Nrf2 and HO-1
expressions and reduce the expression of NF-kB, TNF-alpha, IL-6,
and iNOS in Paclitaxel-treated rats.

The current study found that Curcumin could exert an
antihyperglycemic effect on Diabetic rats, another mechanism that
helps the neuroprotective role of Curcumin, however, it did not
normalize serum glucose, similar to previous reports by Daugherty
et al. (2018) and Zhang et al. (2022).

5. Conclusion

Curcumin could improve spinal cord changes- induced by
diabetes. It could suppress microglial activation, astrocytosis, and
neuronal apoptosis with the restoration of the normal activity of
Nrf2/HO-1 and NF-kB. Curcumin is a promising adjuvant therapy
to suppress diabetes-induced spinal cord microglial activation,
astrocytosis, and neuronal apoptosis through regulation of the
Nrf2/HO-1 and NF-kB signaling pathways.

5.1. Study limitations

Sprague Dawley rats were used as they are considered efficient
models for studying Type I diabetes-induced spinal cord injury (Inam
et al., 2019; Shayea et al., 2020) and males were chosen because
they have a greater degree of diabetic neuropathy, as compared to
females (Fan et al., 2018). So the controversy surrounding the effect
of STZ and/or Curcumin on the spinal cord neurons, glia, Nrf2/HO-
1, and NF-kB signaling may be due to the difference in sex or
species as well as the difference in STZ and curcumin dosage and/or
duration, and even the type of diabetes. Furthermore, it may be due
to the different segments of spinal cord or horns examined. To better
validate the results, further studies should try several doses of STZ
and Curcumin, various animals and species, different sex, different
regimens, different segments and horns of spinal cord and even more
diabetic models.

5.2. Clinical application

The present study recommends the use of Curcumin as an
adjuvant to suppress diabetic spinal cord central neuropathy, glial

activation, and neuronal apoptosis with the regulation of Nrf2/HO-1
and NF-kB signaling.
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