AUTHOR=Nami Harris , Perone Christian S. , Cohen-Adad Julien TITLE=Histology-informed automatic parcellation of white matter tracts in the rat spinal cord JOURNAL=Frontiers in Neuroanatomy VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neuroanatomy/articles/10.3389/fnana.2022.960475 DOI=10.3389/fnana.2022.960475 ISSN=1662-5129 ABSTRACT=

The white matter is organized into “tracts” or “bundles,” which connect different parts of the central nervous system. Knowing where these tracts are located in each individual is important for understanding the cause of potential sensorial, motor or cognitive deficits and for developing appropriate treatments. Traditionally, tracts are found using tracer injection, which is a difficult, slow and poorly scalable technique. However, axon populations from a given tract exhibit specific characteristics in terms of morphometrics and myelination. Hence, the delineation of tracts could, in principle, be done based on their morphometry. The objective of this study was to generate automatic parcellation of the rat spinal white matter tracts using the manifold information from scanning electron microscopy images of the entire spinal cord. The axon morphometrics (axon density, axon diameter, myelin thickness and g-ratio) were computed pixelwise following automatic axon segmentation using AxonSeg. The parcellation was based on an agglomerative clustering algorithm to group the tracts. Results show that axon morphometrics provide sufficient information to automatically identify some white matter tracts in the spinal cord, however, not all tracts were correctly identified. Future developments of microstructure quantitative MRI even bring hope for a personalized clustering of white matter tracts in each individual patient. The generated atlas and the associated code can be found at https://github.com/neuropoly/tract-clustering.