AUTHOR=Herculano-Houzel Suzana , Messeder Débora J. , Fonseca-Azevedo Karina , Pantoja Nilma A. TITLE=When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals JOURNAL=Frontiers in Neuroanatomy VOLUME=9 YEAR=2015 URL=https://www.frontiersin.org/journals/neuroanatomy/articles/10.3389/fnana.2015.00064 DOI=10.3389/fnana.2015.00064 ISSN=1662-5129 ABSTRACT=

There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.