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Sparse connectivity enables 
efficient information processing 
in cortex-like artificial neural 
networks
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Neurons in cortical networks are very sparsely connected; even neurons whose 
axons and dendrites overlap are highly unlikely to form a synaptic connection. What 
is the relevance of such sparse connectivity for a network’s function? Surprisingly, 
it has been shown that sparse connectivity impairs information processing in 
artificial neural networks (ANNs). Does this imply that sparse connectivity also 
impairs information processing in biological neural networks? Although ANNs 
were originally inspired by the brain, conventional ANNs differ substantially in 
their structural network architecture from cortical networks. To disentangle the 
relevance of these structural properties for information processing in networks, 
we  systematically constructed ANNs constrained by interpretable features of 
cortical networks. We find that in large and recurrently connected networks, as 
are found in the cortex, sparse connectivity facilitates time- and data-efficient 
information processing. We explore the origins of these surprising findings and 
show that conventional dense ANNs distribute information across only a very 
small fraction of nodes, whereas sparse ANNs distribute information across more 
nodes. We show that sparsity is most critical in networks with fixed excitatory and 
inhibitory nodes, mirroring neuronal cell types in cortex. This constraint causes a 
large learning delay in densely connected networks which is eliminated by sparse 
connectivity. Taken together, our findings show that sparse connectivity enables 
efficient information processing given key constraints from cortical networks, 
setting the stage for further investigation into higher-order features of cortical 
connectivity.
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Introduction

Cortical networks are very sparsely connected. In fact, we recently showed that in a given 
subvolume of sensory cortex, <1% of neurons with overlapping axons and dendrites will form 
a synaptic connection (Udvary et al., 2022). What is the relevance of such sparse connectivity 
for a network’s function? Surprisingly, sparse connectivity was shown to impair information 
processing in artificial neural networks (ANNs), making training more difficult and leading 
to worse performance (Evci et  al., 2019). Do these findings in ANNs imply that sparse 
connectivity also impairs information processing in biological neural networks, or are there 
conditions under which sparsity may be beneficial?

Although the ANNs underlying much of modern deep learning were originally inspired 
by the brain, there are major differences between conventional ANNs and biological neural 
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networks. While neurons are arranged in layers consisting of different 
cell types, there are abundant recurrent connections within and 
between layers [reviewed in Singer (2021)]. Meanwhile, conventional 
ANNs are typically initialized with dense, feedforward connectivity, 
meaning that each node in a given layer is connected unidirectionally 
to all nodes in the subsequent layer. In the brain, a neuron is either 
excitatory or inhibitory (Dale’s law; Eccles, 1976), whereas 
conventional ANNs place no such constraints on weights, allowing 
individual nodes to have both positive and negative outgoing 
connections. Determining the relevance of these differences in 
structure for network function is challenging. It may seem an obvious 
approach to take the empirically measured connectivity from, e.g., a 
dense electron microscopic reconstruction, and use it to construct an 
ANN replica with biologically realistic connectivity. Unfortunately, 
such a detailed replica of cortical connectivity is challenging to 
compare to other architectures in order to understand which 
structural properties are actually relevant for function. How can 
we  isolate the effect of individual features of cortical networks on 
information processing in a network?

To this end, we systematically generate and train artificial neural 
networks (ANNs) constrained by selected, interpretable features of 
cortical network architecture. We constructed ANNs with different 
degrees of sparsity in the hidden layers – the sparser the network, the 
fewer nodes are connected to each other by a trainable weight. 
Connectivity in cortex is highly recurrent, so we compared the effect 
of sparsity in feedforward ANNs and recurrent neural networks 
(RNNs). It has been suggested that the degree of sparsity in cortex is 
affected by the size of the brain, with larger brains having sparser 
connectivity (Herculano-Houzel et al., 2010), so we here investigated 
sparsity and recurrence in networks of different sizes. Our networks 
were trained by backpropagation and gradient descent. We find that 
in networks which are large and recurrent, like cortical networks, 
sparse connectivity enables networks to achieve better performance 
when training time or data are limited than conventional, 
dense connectivity.

An important function of sensory areas in the cortex is to encode 
inputs in a way that enables them to be distinguished by downstream 
areas. Similarly, ANNs must encode their inputs in the activations of 
nodes in the hidden layers in order to allow classification at the output 

layer. We therefore next investigated how our ANNs represent their 
inputs in the activations of the hidden layer nodes, and to what extent 
connectivity in the hidden layer affects this input representation. 
We find that although in the case of large, recurrent networks, both 
sparsely and densely connected networks form sparse representations 
of their inputs, sparse networks use more distributed representations 
which are more robust to neuronal noise.

Finally, we  constructed and trained ANNs which obey Dale’s 
principle, which states that a neuron releases the same set of 
neurotransmitters at all of its synapses (Eccles, 1976); broadly, in 
cortical networks, this means that each neuron is either excitatory or 
inhibitory and must remain that way. For ANNs, this corresponds to 
each node having exclusively positive or negative outgoing weights, 
and this sign remaining unchanged throughout the training process. 
It has been found that applying such constraints to conventional 
ANNs often impairs their training (Cornford et  al., 2020). Here, 
we constructed Dale-compliant RNNs with a proportion of inhibitory 
nodes corresponding to the proportion of inhibitory neurons reported 
in sensory cortex (Meyer et al., 2011). We find that the training of 
densely connected networks is indeed severely slowed by Dale’s 
principle, but that sparse connectivity enables Dale’s networks to train 
almost as efficiently as their unconstrained counterparts.

Results

Sparse connectivity enables efficient 
training of large and recurrent networks

We generated networks with different connectivity parameters to 
systematically investigate the effect of network size, sparsity and 
recurrence on training (Figure 1). We began by training RNNs with 
different numbers of hidden layer nodes and different connection 
probabilities between these nodes on MNIST handwritten digit 
recognition (Lecun et  al., 1998), a popular benchmark machine 
learning task (Figure 2A). Each of our networks has a single hidden 
layer containing all of the recurrently connected nodes, which may 
be sparsely connected to each other, as well as a fully connected input 
and output layer (Supplementary Figure S1). The lower the connection 

FIGURE 1

Schematic illustration depicting ANNs with conventional or cortex-inspired structural properties. Top row, left to right: conventional ANNs are densely 
connected, feedforward and have nodes with mixed excitatory and inhibitory weights. Bottom row, left to right: cortex-inspired ANNs are sparsely 
connected, have recurrent connectivity and have nodes with fixed excitatory or inhibitory weights.
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probability, the fewer nodes were connected by a trainable weight, and 
therefore the sparser the network. As the connection probability is 
applied to connectivity between all nodes in the hidden layer, the 
connection probability is functionally equivalent to the network 
density in our networks (see also Methods). Since RNNs, like 
biological neural networks, process information with a temporal 
dimension, we  modified the image-based MNIST dataset to 
be compatible with recurrent networks by encoding each image as a 
time series (Supplementary Figure S1). To avoid interpreting artefacts 
from a particular initialization, we  repeated each set of network 
connectivity parameters 10 times, using different random 
weight initialisations.

Our first observation was that networks with different 
connectivity parameters differ in their performance most notably 
during the early stages of training (Figure  2B). To compare the 
performance of networks with limited training time, we therefore 
evaluated the single epoch accuracy, i.e., the performance on the 
testing dataset after the network has seen each example in the training 
dataset only once. For the purposes of this study, we define as “sparse” 
any network with 10% connectivity or less. We  find that sparse 
connectivity facilitates time-limited learning in large and recurrently 
connected networks, but confers no benefit and is rather detrimental 
in small networks (Figure 2C). After just a single epoch of training, 
large sparse networks (with 20,000 nodes and a connection probability 
of 10%) attained a mean test accuracy of of 90.3 ± 2.0% while their 
densely connected counterparts only reached 77.5 ± 7.3% (for all 
values see Supplementary Table S1). This disparity in performance is 
abolished by further training, with sparse and dense networks 
reaching comparable test accuracies after around 80 training epochs 
(p > 0.05, KS-test). Could this finding simply be  caused by the 

different number of parameters between networks with different 
connectivity levels? To investigate this, while keeping the number of 
weights in the hidden layer constant, we systematically varied the 
connection probability of the networks. Hereby, we  can compare 
between larger, sparse networks and smaller, dense networks with the 
same number of hidden layer weights. We find that even when the 
number of weights is the same, sparse connectivity allows for better 
performance in a short training time than dense connectivity 
(Supplementary Figure S2).

Next, we assessed whether these findings generalize to another, 
more challenging benchmark image recognition dataset, CIFAR10, 
which uses full-color RGB images (Krizhevsky, 2012). Similarly to 
results on MNIST, large sparse networks outperform their dense 
counterparts on the CIFAR10 dataset (Figure  2D). After a single 
training epoch, large sparse networks attained a mean test accuracy of 
29.7 ± 1.5%, while large densely connected networks only reached 
17.4  ± 3.9% (for all values see Supplementary Table S2). On the 
CIFAR10 dataset, while large sparse networks initially outperform 
their dense counterparts and attain a higher maximum accuracy, they 
begin to overfit after around 40 epochs, and their test performance 
eventually drops below that of dense networks.

To confirm that these findings are not due to some artefact related 
to performing image classification with recurrent networks, 
we evaluated the networks on a native timeseries dataset, Sleep-EDF 
sleep-stage classification from EEG recordings (Kemp et al., 2000). 
Once again, we find that large sparse networks outperform their dense 
counterparts, reaching 50.7 ± 1.8% accuracy after one training epoch 
while dense networks of the same size only attained 10.3  ± 0.0% 
accuracy (Figure  2E, for all values see Supplementary Table S3). 
We  therefore conclude that sparse connectivity facilitates training 

FIGURE 2

Effect of network size and sparsity on time-limited training. (A). Examples from each of the three classification datasets used in this study. (B). Test 
accuracy over 10 training epochs of a densely (connection probability = 1) and sparsely (connection probability = 0.1) connected network with 20,000 
hidden layer nodes on the MNIST dataset. (C). Test accuracy after one training epoch on the MNIST dataset for networks with different numbers of 
hidden layer nodes and connection probabilities between nodes in the hidden layer. (D). Test accuracy after one training epoch on the CIFAR10 dataset 
for networks with different numbers of hidden layer nodes and connection probabilities between nodes in the hidden layer. (E). Test accuracy after one 
training epoch on the Sleep-EDF dataset for networks with different numbers of hidden layer nodes and connection probabilities between nodes in the 
hidden layer.
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when training time is limited in large and recurrent networks, and that 
this effect is not dataset-specific.

We next investigated how this finding depends on other network 
properties. We find that the advantage conferred by sparse connectivity 
is limited to networks with a recurrent architecture (Figure 3A). In 
feedforward networks, sparse connectivity has very little effect on the 
performance of large networks, and is typically detrimental in small 
networks (Supplementary Figure S3). We  had so far constructed 
networks using the ReLU activation function (see 
Supplementary Figure S1), with which nodes require a threshold of 
net excitation received before any output is produced. This is 
reminiscent of neuronal integration, whereby neurons require net 
excitatory synaptic input to surpass a certain threshold before an 
action potential response is elicited, and otherwise produce no output. 
We therefore next tested whether our finding still holds when using 
an activation function whose properties are very different from 
neuronal integration, e.g., the symmetrical hyperbolic tangent (tanh) 
function, which can produce positive and negative outputs. We find 
that with this less biologically realistic activation function, sparse 
connectivity no longer improves learning efficiency in large networks 
(Figure 3B). The tanh activation function has been reported to cause 
vanishing gradients (Ven and Lederer, 2021). To investigate whether 
this may explain our results, we repeated training and recorded the 
gradients during the first epoch of training in large sparse networks 
(10,000 hidden layer nodes, connection probability 0.1). Surprisingly, 
networks with the tanh activation function have slightly larger 
gradients than those with the ReLU activation function (mean 
gradient magnitude 2.0×10−5 for tanh network and 6.0×10−6 for ReLU 
network), indicating that the failure of large networks using tanh is 
not simply due to vanishing gradients.

Having established that sparse connectivity can improve network 
performance in large and recurrent networks when training time is 
limited, we  next investigated whether the same is true with data 
limitations. To this end, we trained networks on a reduced training set 
from the MNIST dataset, where only a subset of samples from each 
class was used during training (50, 100, 500 or 1,000 samples per 

class – results for 100, 500 and 1,000 samples per class, as well as for 
the full dataset are found in Supplementary Figure S4). The test dataset 
remained unaltered. Training time was not a constraint in these 
experiments, so all networks were trained for 50 epochs and 
we recorded the best test accuracy attained during this training period. 
We find that in large (20,000 hidden nodes) recurrent networks, sparse 
connectivity becomes more advantageous the more restricted training 
data are: while on the full training dataset of 60,000 examples, sparse 
and dense networks attain comparable maximum test accuracies 
(99.0 ± 0.1% vs. 98.5 ± 0.1%), their performance diverges the more 
restricted the training dataset is, with respective test accuracies of 
70.1 ± 10.2% and 40.3 ± 7.2% when trained on only 500 examples (50 
per class, Figure  4A). Meanwhile, in small networks (500 hidden 
nodes), we again see that sparse connectivity is detrimental to the 
training process, with test accuracies only reaching 57.0 ± 1.3% in 
sparse networks but 66.0 ± 4.0% in dense networks when trained on 
the most restricted training dataset. Repeating this experiment on the 
CIFAR10 dataset, large sparse networks outperform their dense 
counterparts on all subsets of the training data, with test accuracies of 
54.9 ± 0.1% vs. 42.1 ± 1.8% on the full training dataset, and 
24.0 ± 0.1% vs. 17.6 ± 1.5% on the most restricted dataset (Figure 4B). 
Our findings therefore suggest that in large and recurrent networks, 
as found in the cortex, sparse connectivity enables the network to 
learn efficiently in terms of both training time and training data.

Sparsely connected networks form 
distributed, robust representations

To determine how inputs are represented by networks with 
different connectivity properties, we recorded the activation values of 
nodes in the hidden layer when presented with all examples from the 
test dataset. To assess whether activity is sparse or dense, we first 
recorded whether a node produces a zero or non-zero activation in 
the final timestep, which is passed to the output layer (Figure 5A). 
We find that in large networks (10,000 hidden nodes), already after a 

FIGURE 3

The benefit of sparse connectivity is dependent on a recurrent network architecture and a single-cell activation function with a threshold. (A). 
Comparison of test accuracy between densely (connection probability = 1) and sparsely (connection probability = 0.1) connected networks in small 
networks (1,000 hidden layer nodes, top row) and large networks (10,000 hidden layer nodes, bottom row). Nodes were either placed in a single 
hidden layer with recurrent connectivity (black lines) or in two hidden layers connected by feedforward connections (grey lines). (B). Test accuracy 
after one training epoch on the MNIST dataset for networks with different numbers of hidden layer nodes and connection probabilities between nodes 
in the hidden layer when nodes use the hyperbolic tangent activation function instead of ReLU.
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single training epoch inputs are sparsely represented by the hidden 
layer activity in both sparsely and densely connected networks, with 
a majority of hidden layer nodes sending zero-activations to the 
output layer in response to any given image (Figure 5B). Surprisingly, 
we find that in sparsely connected networks more nodes contribute 
non-zero outputs to the classification than in densely connected 
networks (11.2 ± 1.5% vs. 3.0 ± 1.0% after one training epoch). When 
looking at the activation values, not just whether they are zero or 
non-zero, we  note that the average magnitude of hidden layer 
activations is larger in densely connected networks and smaller in 
sparsely connected networks (Figure 5C). We calculated the mutual 
information between the outputs of 10,000 randomly chosen pairs of 
hidden layer nodes for a sparse and a dense network. We find that the 
mutual information is significantly higher between nodes in the 
sparsely connected network (mean 0.019 ± 0.065) compared to 
densely connected networks (mean 0.005 ± 0.029, KS-test 
p = 1.03×10−44). A larger proportion of nodes contributing to the 
classification with smaller activations suggests that large sparse 
networks employ a more distributed, consensus-based coding strategy 
than dense networks.

Such a distributed code may have advantages in terms of 
robustness to noise, as the output of any individual node may 
be less important for the final classification. To test this, we set the 
output to the classification layer of a proportion of randomly 
selected nodes to zero for each image at test time and assessed the 
networks’ performance (Figure 5D). Indeed, we find that sparsely 
connected networks outperform their dense counterparts at all 
noise levels (Figure  5E). For instance, when 50% of all nodes’ 
outputs are set to zero after one epoch of training, the test 
performance of sparse networks is barely affected (from 
91.1  ± 0.4% to 90.9  ± 0.6%), while the performance of dense 
networks suffers more (from 81.4  ± 4.6% to 76.3  ± 5.8%). This 
discrepancy is even more noticeable at higher dropout levels, with 
sparse networks’ performance only dropping by 3.1%, while dense 
networks lose 33.3% in accuracy when 90% of nodes are zeroed 

out. With more training, dense networks gradually become more 
robust to low levels of dropout noise, but even after 10 training 
epochs they are still outperformed by sparse networks at high 
dropout levels.

Sparse connectivity facilitates efficient 
training in networks with fixed excitatory 
and inhibitory nodes

How do these sparse representations form during training? When 
recording the changes in hidden layer weights during training, 
we observe a greater tendency for negative weights to increase their 
magnitude, and positive weights to change their sign and become 
negative, than vice-versa (Supplementary Figure S5A). This leads to a 
sparse representation as the weighted sum of inputs to any given node 
is more likely to be negative, resulting in an output of zero after the 
ReLU activation function is applied. This extent of sign reversal of 
weights is biologically implausible, as each neuron generally transmits 
the same set of neurotransmitters to all of its post-synaptic partners, 
and cannot change this for individual connections (Dale’s principle). 
Therefore, we constructed and trained networks which obey Dale’s 
principle, with fixed excitatory and inhibitory nodes, reminiscent of 
cortical neuronal cell types (Figure 6A). Note that while the clear 
distinction of neurons into excitatory and inhibitory is valid in cortex, 
this may not be true for all neurons [e.g., neuromodulatory neurons 
in the cholinergic system (Saunders et  al., 2015)]. We  chose the 
proportion of inhibitory nodes which has been reported 
experimentally for somatosensory cortex (Meyer et al., 2011) (11.5% 
inhibitory, 88.5% excitatory). Inhibitory nodes were initialized with 
random, all negative outgoing weights, and excitatory nodes with 
random, positive outgoing weights. Inhibitory and excitatory weights’ 
magnitudes were sampled from the same uniform distribution, and 
the connection probability was applied in the same way to all 
connections, regardless of whether they were excitatory or inhibitory. 

FIGURE 4

Sparse connectivity enables data-efficient training of large and recurrent networks. (A). Test accuracy after one training epoch on a reduced version of 
the MNIST dataset (50 examples per class instead of 6,000) for networks with different numbers of hidden layer nodes and connection probabilities 
between nodes in the hidden layer. (B). Test accuracy after one training epoch on a reduced version of the CIFAR10 dataset (50 examples per class 
instead of 5,000) for networks with different numbers of hidden layer nodes and connection probabilities between nodes in the hidden layer.
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During training, if any weight’s sign would be reversed, its value was 
set to zero instead.

In line with reports from others, we note that the training of large 
(10,000 nodes), densely connected networks is indeed severely 
impeded by the constraints of Dale’s principle (Figure 6B). We observe 
a delay of tens of training epochs at the start of the training process, 
during which the network’s performance remains around chance level. 
However, the sparser the connectivity, the shorter the delay before a 
network’s performance shows improvement. The length of this delay 
in training of densely connected networks increases with the size of 
the network, and no delay was observed at any tested network size for 
sparsely connected networks with a connection probability of 0.1 
(Figure 6C).

We investigated why sparse networks outperform their dense 
counterparts under these conditions. When examining the activations 
sent from the hidden layer to the output layer, we  find that at 
initialization, activations from the hidden layer nodes of densely 
connected networks are highly correlated with each other, whereas 
those from sparsely connected networks are less correlated 
(Figure  6D). This implies that in densely connected networks, all 
nodes initially produce very similar outputs, which would make it 

more challenging to develop meaningful, distinguishable outputs 
through training.

The gradient of a weight represents the rate of change of the loss 
function with respect to that weight, providing a measure of how 
modifying the weight will influence the network’s overall error. 
Therefore, recording the gradients during training allows us to observe 
the shape of the error landscape. We find that during early training 
epochs (with the exception of the first epoch), densely connected 
networks have very small gradients associated with their weights, 
while the gradients in sparsely connected networks are much larger 
(Figure 6E). This suggests that densely connected networks, unlike 
their sparse counterparts, become stuck on a plateau in the error 
landscape, i.e., a region with a high error and small gradients. This 
plateau is difficult to leave via gradient descent, and therefore causes 
a delay in learning.

To test the hypothesis that this is indeed a feature of the weight 
initialization, and not some other aspect of training, we initialized a 
network with a sparse weight matrix (i.e., with 90% of weights 
starting at zero), but then allowed all weights to be modified during 
training regardless of their starting value, as would be the case for a 
dense network. These “sparse-to-dense” networks all start training 
without a delay like standard sparse networks, but their learning rate 
soon slows and they take longer to reach their peak performance, 
similar to networks with more dense connectivity 
(Supplementary Figure S5B).

The hidden layer activations in densely connected networks 
with a learning delay were not only highly correlated, but also very 
large, which led us to speculate that these networks may 
be experiencing an excitation-inhibition (E-I) imbalance due to the 
low proportion of inhibitory nodes. To test this, we repeated the 
training of Dale-compliant networks with a biologically unrealistic, 
balanced proportion of excitatory and inhibitory nodes (50% 
excitatory, 50% inhibitory). We found that these balanced networks 
did not experience a delay in training, regardless of their density 
(Figure  6F). Similarly, when we  initialise networks with the 
imbalance of excitatory and inhibitory nodes found in cortex as 
before (11.5% inhibitory, 88.5% excitatory), but increase the initial 
magnitude of inhibitory weights ten-fold, there are no delays in 
training, regardless of the network’s density 
(Supplementary Figure S5C). These findings confirm that densely 
connected networks with a biologically plausible fraction of 
inhibitory nodes experience an E-I imbalance which prevents them 
from learning efficiently. We show that this imbalance can be partly 
mitigated by sparse connectivity.

Discussion

We generated and trained ANNs constrained by interpretable 
features of cortical networks in order to disentangle the effect of 
structural properties on network function. We  find that sparse 
connectivity is a prerequisite for efficient learning when the 
network adheres to certain other properties of cortical networks: 
large recurrent networks, even more so when nodes are either 
excitatory or inhibitory like cortical neurons. For biological 
context, the smallest computational unit of the cortex is often 
reported to be the cortical column, consisting of 10,000–20,000 

FIGURE 5

Sparsely connected networks form distributed, robust 
representations. (A). We recorded how many nodes in the hidden 
layer send zero and nonzero activations to the output layer in 
response to all images from the MNIST test dataset (N = 10,000). (B). 
Change in percentage of nodes sending a nonzero activation to the 
output layer in the first training epoch on MNIST. (C). Distribution of 
activation values sent from hidden layer nodes to the output layer by 
large networks (10,000 hidden layer nodes) with dense (connection 
probability = 1, red) or sparse (connection probability = 0.1, blue) 
connectivity in response to all images from the MNIST test dataset 
after one training epoch. (D). We performed a dropout experiment 
where the output from a randomly selected fraction of nodes in the 
hidden layer was set to zero at test time. (E). Effect of different 
dropout fractions on test accuracy in large networks (10,000 hidden 
layer nodes) with dense (connection probability = 1, red) or sparse 
(connection probability = 0.1, blue) connectivity after 1 training 
epoch (left) and 10 training epochs (right).
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neurons, with connectivity between 10–30% (Meyer et al., 2013). 
Therefore, the large and sparse networks we investigated here share 
the same parameters as this elementary computational unit of the 
cerebral cortex.

From a machine learning perspective, many attempts have 
been made to achieve high performance with sparse networks due 
to their potential for lower computational and memory demands. 
A significant approach to generating performant sparse networks 

FIGURE 6

Sparse connectivity facilitates efficient training in networks with structural E/I imbalance seen in cortex. (A). We constructed recurrent ANNs where 
each node was fixed to either excitatory (only positive outgoing weights) or inhibitory (only negative outgoing weights). We set 11.5% of nodes to 
be inhibitory, as reported in measurements from somatosensory cortex. (B). Test accuracy over time in large networks (10,000 hidden layer nodes) 
trained on MNIST with fixed excitation and inhibition and different hidden layer connection probabilities. (C). Training delay (number of epochs before 
the network’s performance exceeds chance level) as a function of the number of nodes in the network’s hidden layer, for dense (connection 
probability = 1, red) and sparse (connection probability = 0.1, blue) connectivity, shaded area shows standard deviation. (D). Distribution of Pearson’s R 
correlation coefficients between hidden layer node activations in response to all MNIST test dataset images, at initialization (before any training), for 
dense (connection probability = 1, red) and sparse (connection probability = 0.1, blue) connectivity with 10,000 hidden layer nodes. (E). The gradient of 
a weight represents the rate of change of the loss function with respect to that weight, providing a measure of how modifying the weight will influence 
the network’s overall error. We visualize distributions of gradients for hidden layer weights for sparse (connection probability = 0.1, blue) and dense 
(connection probability = 1, red) networks with 10,000 hidden layer nodes. Numbers correspond to labels in panel B. (F). We repeated the same 
experiment with fixed excitatory and inhibitory nodes, but now set 50% of nodes to be inhibitory (balanced E/I). Test accuracy over time is shown for 
networks with 10,000 hidden layer nodes.
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is pruning, which begins by training a densely connected network 
and then removing (pruning) edges which are deemed unimportant 
throughout the training process, to eventually obtain a sparse 
network. Pruning approaches are able to generate sparse networks 
whose performance does not significantly differ from dense 
networks for both feedforward (Han et al., 2015) and recurrent 
(Narang et al., 2017) networks, but still requires starting with a 
densely connected network. A related method is rewiring, which 
begins with a sparse network, and then allows existing edges to 
be  pruned and new edges to be  formed during training, while 
maintaining a constant total number of edges. This was shown to 
produce performance equivalent to densely connected networks 
for feedforward architectures (Dettmers and Zettlemoyer, 2019), 
and in fact resulted in sparse networks which outperformed their 
dense counterparts for recurrent architectures (Liu et al., 2021). 
Here we show that, given the right conditions, a sparse recurrent 
network can outperform its dense counterparts even with fixed 
sparse connectivity.

Given the extent of non-random wiring observed in the cortex 
(Song et al., 2005; Udvary et al., 2022), it is somewhat surprising 
that sparse networks with random connectivity perform as well as 
they do here. There is evidence for random connectivity in some 
biological neural networks, like olfactory inputs to the mushroom 
body in Drosophila (Caron et  al., 2013). This aligns with 
computational models like the Liquid State Machine, which posits 
that a sufficiently large population of randomly interconnected 
neurons can generate a diverse enough set of input representations, 
even in the absence of learning, for a simple downstream classifier 
to learn to distinguish between inputs (Maass, 2011). There is some 
evidence that the same may be true in ANNs: Frankle and Carbin 
(2019) find that sparse subnetworks exist in randomly initialised 
densely connected ANNs which, when trained in isolation, achieve 
at least equivalent performance to the full-sized dense network 
with less training. This finding suggests that within large, randomly 
initialised networks, there exist structures which are inherently 
well-suited for learning and/or performing the task at hand, which 
could explain why our large, sparse networks perform well even 
with randomly initialised connectivity. It may be  interesting to 
investigate even larger networks, perhaps mimicking other 
neuronal structures, e.g., the cerebellum, to determine whether 
this property continues to hold true. A systematic evaluation of the 
relevance of non-random connectivity remains an open topic for 
future investigation.

Our results suggest that the integrative properties of nodes (i.e., 
their activation function) are relevant for determining whether a 
network will benefit from sparse connectivity. However, a linearly 
weighted sum followed by a ReLU activation function by no means 
reproduces the complex input–output computations performed by 
real neurons. For example, unlike the nodes in our ANNs, synaptic 
conductance and therefore the activation of biological neurons are 
stochastic (Rusakov et al., 2020). There are strong parallels between 
stochastic activity and the practice of node dropout during training 
in machine learning, as both result in the absence of activity from 
a varying subset of neurons/nodes. Dropout has been shown to 
reduce overfitting (Srivastava et  al., 2014), a problem which 
we observed in our large, sparse networks on the CIFAR10 dataset. 
This suggests that incorporating additional biological details on a 
single-cell scale may also be fruitful.

Sparsely and densely connected networks differ in their node 
activity, and therefore in their representations of input. We found 
that in sparsely connected networks, more nodes participate in the 
classification than in densely connected networks. We  have 
previously shown that correlations in in-degrees (i.e., correlations 
between the number of synaptic inputs received by a neuron from 
excitatory and inhibitory presynaptic populations) are a 
mechanism to compensate for heterogeneous inputs and enable 
balanced state dynamics, where a majority of nodes are able to 
contribute to signal processing (Landau et al., 2016). Here, we show 
that sparse connectivity could be  another way to facilitate a 
balanced state and reduce quiescence. However, by itself sparsity 
is insufficient to account for the broad representation typically seen 
experimentally in cortical recordings. This indicates that higher-
order features of connectivity like degree correlations are a key 
target for future investigation. In addition to degree correlations, 
biological neural networks may make use of specific synaptic 
plasticity mechanisms in order to equalize excitation-inhibition 
ratios and thereby regulate the activity of individual neurons (Xue 
et al., 2014). We used global backpropagation of error and gradient 
descent-based optimisation to train our networks, which cannot 
account for local synaptic plasticity mechanisms. The impact of 
more local learning rules should therefore also be  the topic of 
further studies.

Why do sparsely connected networks perform better than 
densely connected networks under these conditions? Our analysis 
of node activations in Dale’s networks shows that the outputs of 
nodes in densely, but not sparsely connected networks are highly 
correlated at initialisation, a relationship which has also been 
reported in spiking neural networks (Pernice et al., 2011). We find 
that this is likely due to an excitation-inhibition imbalance here, 
whose effects are mitigated by sparse connectivity. Correlations in 
activity between neurons in biological neural networks are thought 
to be relevant for information processing (Shadlen and Newsome, 
1998; Averbeck et  al., 2006) and learning (Bi and Poo, 2001). 
However, the extremely high correlations in our densely connected 
networks suggest a high redundancy in information across nodes, 
and therefore a very limited effective capacity of the network. This 
could make it more difficult for the dense network to develop 
distinguishable representations of its inputs, and thereby explain 
the delay in learning. Our finding that gradients in dense networks 
are very small during the delay in training supports this hypothesis, 
but there is a need for methods to better characterize the 
error landscape.

It has been speculated that innate behavioral abilities and rapid 
learning in animals may be facilitated by specific wiring properties 
in neural circuits that emerge during development (Zador, 2019). 
As the information capacity of the genome is orders of magnitude 
too small to encode the connection between each pair of neurons 
explicitly, it was suggested that wiring rules may underlie the 
formation of neural circuits in the developing brain. It is indeed 
plausible that such wiring rules could inform biological neural 
networks, as exemplified by a study proposing rules connecting 
different innexins to form gap junctions in the nervous system of 
C. elegans (Kovács et al., 2020), or another showing that just the 
structural composition of the neuropil is sufficient to explain a 
large portion of the non-random connectivity observed in the rat 
somatosensory cortex (Udvary et al., 2022). To further support 
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this, we  here find that even a ‘wiring rule’ as simple as sparse 
connectivity can facilitate efficient information processing.

In summary, we show that sparse connectivity enables efficient 
information processing given some key features of cortical 
networks, and set the stage for the investigation of a variety of 
other features of biological networks.

Methods

Code availability

All code needed to reproduce the results in this study can be found 
at: https://github.com/mpinb/sparseANNs.

We systematically investigated the effect of size and sparse 
connectivity on the training and performance of recurrent ANNs. 
To this end, we generated a range of ANNs with different numbers 
of nodes in the hidden layer, and with different connection 
probabilities between the hidden layer nodes. All nodes were 
arranged in a single hidden layer, and any node in the hidden layer 
could be connected to any other node, with the number of such 
connections determined randomly by the connection probability. 
The lower the connection probability the sparser the network, i.e., 
the fewer nodes were connected to each other by a trainable weight. 
Formally, the density of a network is given as D = E / [N * (N-1)], 
where E is the number of edges in the network, and N is the number 
of nodes. The network density in the hidden layer of our networks 
is therefore functionally equivalent to the connection probability, 
as the connection probability is applied to all edges in the hidden 
layer. To confirm this, we calculated the network density as above 
for all 10 networks with 10,000 hidden layer nodes and connection 
probability of 0.1, and all were equivalent to within 3 significant 
figures. The weights of edges between hidden layer nodes were 
randomly initialised from a uniform distribution between −0.001 
and 0.001, with weights between unconnected nodes fixed at zero 
throughout. For each set of hyperparameters (network size & 
sparsity) we  trained 10 networks with different random 
initialisations, which differ in their connectivity matrix (specifying 
which nodes are connected by a trainable weight) and in the values 
of edge weights at initialisation. Results are given as mean ± standard 
deviation unless otherwise specified. All nodes in our ANNs use the 
rectified linear unit (ReLU) activation function unless 
otherwise specified.

The primary limitation to network size in this study was 
hardware constraints, specifically the VRAM available to store the 
network on the GPU for training. We trained most of our networks 
on NVIDIA Quadro RTX 6000 GPUs, which have 24GB of 
VRAM. The largest networks (24,000 hidden layer nodes and larger 
from Figure 2), were trained on NVIDIA A100 GPUs, which have 
80GB of VRAM, as they were too large to fit into VRAM on the 
other GPUs.

We evaluated our networks on three benchmark machine 
learning tasks, MNIST (Lecun et  al., 1998) and CIFAR10 
(Krizhevsky, 2012) image classification, and Sleep-EDF (Kemp 
et al., 2000) sleep-stage classification from EEG recordings. The 
image-based tasks were modified for recurrent networks to encode 
each image as a time series by slicing each image row-wise and 
presenting one row of pixel values (one value per pixel for grayscale 

images in MNIST, three values per pixel for RGB images in 
CIFAR10) in each time step (Supplementary Figure S1B). The size 
of the input layer was equal to the width of the image (MNIST, 28), 
the width of the image multiplied by 3 to account for RGB color 
channels (CIFAR10, 32×3), or one for the single-channel timeseries 
in the Sleep-EDF dataset. Each input layer node was connected to 
all hidden layer nodes by a trainable weight. The output from all the 
recurrently connected hidden layer nodes in the last time step was 
then passed to a linear output layer with 5 (Sleep-EDF) or 10 
(MNIST & CIFAR10) nodes for classification (one for each class in 
the dataset, target classes were one-hot encoded). Networks were 
trained by backpropagation using the ADAM optimiser for gradient 
descent, with a learning rate of 0.001. We used the cross entropy 
loss function to evaluate the performance of ANNs during training. 
All networks were implemented and trained in PyTorch v1.8.1.

To assess the single-epoch learning performance of our 
networks, we trained all networks for one epoch, meaning that each 
data point from the training dataset was presented once (60,000 
data points for MNIST, 50000 data points for CIFAR10, 398,370 
data points for Sleep-EDF). Then, the accuracy of the networks was 
tested on the corresponding testing dataset, which consists of 
10,000 (MNIST & CIFAR10) or 170,730 (Sleep-EDF) 
unseen examples.

To assess whether recurrent network architecture was necessary 
for sparsity to be  beneficial, we  repeated the same training of 
networks with different hyperparameters with feedforward 
networks. Here, hidden layer nodes were split into two hidden 
layers. Nodes in the first layer could be connected to nodes in the 
second hidden layer by a feedforward connection, with the number 
of such connections determined randomly by the connection 
probability. To feedforward networks, the whole image was 
provided at once as input (flattened to a 1D vector) for MNIST and 
CIFAR10 datasets, and for the Sleep-EDF dataset, the whole EEG 
sequence was passed at once. The length of the resulting input 
vector determined the size of the input layer.

To evaluate the effect of a different activation function, 
we replaced the ReLU activation function in hidden layer nodes 
with the hyperbolic tangent (tanh) function. All other 
hyperparameters remained unchanged, and we  trained three 
different random initialisations for each set of hyperparameters 
with this new activation function. The tanh activation function has 
been reported to cause vanishing gradients (Ven and Lederer, 2021). 
To investigate this, we repeated training and recorded the gradients 
during the first epoch of training in large sparse networks (10,000 
hidden layer nodes, connection probability 0.1).

To assess the performance of our networks with limited training 
data, we modified the MNIST and CIFAR10 tasks. The full training 
datasets contain 6000/5000 examples of each class for MNIST and 
CIFAR10, respectively. We  selected a smaller random subset of 
examples (50, 100, 500 or 1,000 per class) and used only these for 
training. The test dataset remained unchanged. ANNs were trained 
for 50 epochs with early stopping if their performance stopped 
improving, and we then compared their best test accuracy.

In order to investigate how our networks encode their inputs, 
we  determined how hidden layer nodes contribute to a 
classification. To this end, we took a sparsely connected network 
(size 10,000 hidden nodes, connection probability 0.1) and a 
densely connected network (size 10,000 hidden nodes, connection 
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probability 1.0). Then, we  gave each network the full testing 
dataset of MNIST (10,000 images) as input. After the network had 
processed each image, we recorded the activation values (outputs) 
of all hidden layer nodes at the last time step, which is the 
activation value which is passed to the output layer for 
classification. We  performed these measurements before the 
networks had received any training, and after one epoch of 
training. We first consider what proportion of hidden layer nodes 
send a non-zero activation to the output layer in response to each 
image. Then, we also consider the magnitude of these non-zero 
activations. We  used sklearn.feature_selection.mutual_info_
regression from scikitlearn (Pedregosa et al., 2011) to calculate the 
mutual information between the responses to the whole testing 
dataset for 10,000 randomly sampled node pairs.

Finally, we  constructed ANNs which obey Dale’s principle 
(Eccles, 1976), meaning that each node had either exclusively 
positive or negative outgoing weights, and this sign remained 
unchanged throughout the training process. We initialised networks 
with 11.5% inhibitory nodes, corresponding to the proportion of 
inhibitory neurons reported in sensory cortex (Meyer et al., 2011). 
Inhibitory nodes were initialised with random, all negative outgoing 
weights, and excitatory nodes with random, positive outgoing 
weights (all weights still had a magnitude randomly chosen 
according to a uniform distribution between 0 and 0.001). Whether 
a node had a trainable connection to another node was purely 
determined by the connection probability, and was not affected by 
their excitatory or inhibitory nature. After each weight update, if 
any weight’s sign would be reversed, its value was set to zero instead. 
All other training parameters were the same as for our other 
networks. Exceptions are several manipulations which 
we performed on these networks: the “sparse to dense” networks in 
Supplementary Figure S5B had the network initialised the same way 
as a sparse network with a connection probability of 0.1, but then 
weights initialised at zero were allowed to become nonzero during 
training. For Supplementary Figure S5C, we initialised and trained 
the networks as before, with 11.5% inhibitory nodes, except that 
we initialised the outgoing weights from inhibitory nodes with a 
10x larger magnitude than excitatory weights. For Figure  6F, 
we initialised networks with 50% inhibitory nodes to evaluate the 
effect of structural E/I balance.
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