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The spatiotemporal dynamics of resting-state brain activity can be characterized 
by switching between multiple brain states, and numerous techniques have been 
developed to extract such dynamic features from resting-state functional magnetic 
resonance imaging (fMRI) data. However, many of these techniques are based on 
momentary temporal correlation and co-activation patterns and merely reflect 
linear features of the data, suggesting that the dynamic features, such as state-
switching, extracted by these techniques may be misinterpreted. To examine 
whether such misinterpretations occur when using techniques that are not based 
on momentary temporal correlation or co-activation patterns, we addressed Energy 
Landscape Analysis (ELA) based on pairwise-maximum entropy model (PMEM), 
a statistical physics-inspired method that was designed to extract multiple brain 
states and dynamics of resting-state fMRI data. We found that the shape of the 
energy landscape and the first-order transition probability derived from ELA were 
similar between real data and surrogate data suggesting that these features were 
largely accounted for by stationary and linear properties of the real data without 
requiring state-switching among locally stable states. To confirm that surrogate 
data were distinct from the real data, we replicated a previous finding that some 
topological properties of resting-state fMRI data differed between the real and 
surrogate data. Overall, we found that linear models largely reproduced the first 
order ELA-derived features (i.e., energy landscape and transition probability) with 
some notable differences.
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Introduction

Brain activity in the resting state, as measured using functional magnetic resonance 
imaging (fMRI) has been widely investigated for its potential applications in the non-invasive 
diagnosis of neuropsychiatric and neurological disorders (Fox and Raichle, 2007). A common 
assumption regarding the dynamics of resting-brain activity is that it can be explained by 
transitions between multiple brain states (Vidaurre et al., 2017; Noro et al., 2022; Hutchison 
et al., 2013; Calhoun et al., 2014; Preti et al., 2016). Recent studies have reported that dynamic 
features (e.g., brain states) extracted from measured resting-state brain activity can better 
explain subject-specific phenotypes (e.g., cognitive performance) than static features (Cabral 
et al., 2017; Liégeois et al., 2019), suggesting the potential importance of dynamic features for 
applications such as diagnosis of neuropsychiatric disorders.

However, it remains an open question whether the presence of multiple brain states is 
supported by resting-state fMRI data. Recent statistical examinations of common analysis 
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techniques used to extract possible brain states from resting-state 
fMRI data, such as sliding-window correlation analysis (Hutchison 
et al., 2013; Matsui et al., 2018b) or co-activation pattern analysis (Liu 
et al., 2013), reported that these potential brain states can be fully 
reproduced with surrogate data which only have a single state by 
construction (Laumann et al., 2016; Liégeois et al., 2017; Matsui et al., 
2022). Using surrogate data, these studies extensively examined the 
results obtained with sliding-window correlation analysis or 
co-activation pattern analysis (e.g., brain states, transition probability). 
These surrogate data were designed to retain selected statistical 
properties of the real fMRI data, such as covariance structure and 
autocorrelation, and were produced using stationary and linear 
models. Crucially, these methods produced almost identical results for 
real data and surrogate data, which contradicted the assumptions of 
sliding-window correlation analysis and co-activation pattern analysis 
(Laumann et al., 2016; Liégeois et al., 2017; Matsui et al., 2022). Thus, 
features extracted by sliding-window analysis or co-activation pattern 
analysis reflect stationary, linear properties of the real fMRI data, 
indicating that these analyses cannot be regarded as evidence of the 
non-stationarity, or multiple brain-states, of resting brain dynamics.

Given that methods based on sliding-window correlations and 
co-activation patterns are unable to extract dynamic features of 
resting-state fMRI data, a natural choice is to use alternative methods 
that do not use sliding-window correlations or co-activation patterns. 
Among these alternative methods, Energy landscape analysis (ELA) 
is a widely used approach inspired by statistical mechanical techniques 
developed for the analysis of Ising spins (Ezaki et al., 2017; Watanabe 
et al., 2014). On the basis of the maximum entropy principle, ELA 
recovers the energy landscape of resting-brain activity from the fMRI 
data, whose local minima correspond to the basins of attraction (i.e., 
brain states). Using the extracted energy landscape, ELA describes the 
dynamics of brain activity as transitions between brain states. Recent 
studies have reported that subject-level information (e.g., psychiatric 
conditions and cognitive scores) is reflected in the transition patterns 
among the states extracted by ELA (Watanabe and Rees, 2017; Kang 
et al., 2021). In the present study, we used surrogate data to examine 
statistical properties of the rs-fMRI data represented by the features 
extracted by ELA.

Figure  1 illustrates the approach used in the present study. 
We first prepared real fMRI data of resting-state brain activity. ELA 
was applied to these data, yielding energy landscapes and transition 
probability matrices (a path indicated by blue arrows in Figure 1). 
Next, we generated surrogate data using real fMRI data and applied 
the same ELA to the surrogate data (a path indicated by green 
arrows in Figure 1). The surrogate data retained selected statistical 
properties, such as covariance structure, of the real fMRI data and 
were Gaussian and linear by construction. Finally, we compared the 
results of ELA obtained with the real data with those obtained with 
surrogate data (brown bidirectional arrow in Figure  1). Any 
difference between the two results could be attributed to statistical 
properties of the real data that were not used in the surrogate data, 
non-Gaussianity, non-linearity of the real data, or any combination 
of these factors.

Materials and methods

Dataset

We used the S1200 release of resting-state fMRI distributed by the 
Human Connectome Project (HCP (Van Essen et al., 2013).1 The data 
were preprocessed to obtain ROI-based timecourses [4,000 volumes 
× 264 ROIs × 1,002 subjects; repetition time (TR), 0.72 s; see Matsui 
et al., 2022, for details]. From 264 regions of interest (ROIs) defined in 
Power et al. (2011), we selected seven ROIs related to the cingulo-
opercular network (CON), 11 ROIs related to the fronto-parietal 
network (FPN) and 12 ROIs related to the default mode network 
(DMN), whose centers were closest to the CON, FPN, and DMN ROIs 
defined in Fair et al. (2009). Because large amount of data is required 
to fit PMEM (Masuda et  al., 2024), similar to Ezaki et  al. (2017), 
we  concatenated data from two participants (four scans per 
participants), yielding 501 real data samples in total.

Generation of surrogate data

For each sample of real data, we applied three types of linear, 
stationary models to generate simulated data that retained certain 
statistical properties of the real data (Matsui et al., 2022; Liégeois et al., 
2017). The first model retained only the covariance structure of the 
real data (Static Null). Simulated data for Static Null were generated 
using a multivariate Gaussian distribution with covariance matrices 
set to those of the real data. The second model was a first-order 
autoregressive randomization null model (ARR). The lag of the ARR 
null was set to 1. Thus, ARR assumed that the fMRI data at time t is 
the sum of the linear transformation (A1) of the fMRI data at time t-1 
and zero-mean multivariate Gaussian noise with a covariance matrix 
(Σ). The parameters for the autoregressive equation (Σ, A1) were fitted 
as described previously (Liégeois et al., 2017). Simulated data for ARR 
were generated using a randomly selected time point from the real 
fMRI data as the seed and by iteratively applying the autoregressive 
equation. The third model was a phase randomization null model 
(PR). PR retained the complete autoregressive structures of the real 
data as well as the covariance structures (Liégeois et  al., 2017). 
Simulated data for the PR null were generated by first applying a 
discrete Fourier transform (DFT) to the real fMRI data. Random 
phases were then added to the Fourier-transformed data, and inverse 
DFT was applied. The added phases were independently generated for 
each frequency but were the same across brain regions (Liégeois et al., 
2017). We referred to the simulated data produced by the null models 
as surrogate data.

Energy landscape analysis

ELA was performed as described previously (Ezaki et al., 2017) 
using Matlab2023a (MathWorks, Natick, MA) with code provided by 
Ezaki et al. (2017). Briefly, for both real and surrogate data, fMRI time 
courses were binarized to −1 and 1. This implies that, for data with N 

1 http://humanconnectomeproject.org/

Abbreviations: ELA, Energy Landscape Analysis.; CON, Cingulo-opercular Network; 

FPN, Fronto-parietal Network; DMN, Default Mode Network.
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ROIs, each volume could assume one of 2N states. After binarization, 
a pairwise maximum entropy model was fitted to each sample of real 
or surrogate data, yielding an energy landscape. Basins of attraction 
of the energy landscapes were obtained by fitting dysconnectivity 
graphs (see Ezaki et al., 2017, for details).

Comparison of ELA results obtained with 
real and surrogate data

Energy landscapes were compared by calculating Pearson’s 
correlation between an energy landscape of each sample of real data 
and an energy landscape obtained from the corresponding 
surrogate data.

For comparing the dynamics of real and surrogate data, 
we  calculated a transition matrix describing the probability of 
switching (or staying) between basins of attraction. To obtain the 
transition matrix, each volume in the data was assigned to one of the 
basins of attraction, yielding a time course of state switching. Then, 
the probabilities of switching/staying from one basin to another in 
successive volumes were calculated. Comparisons of transition 
matrices were done in two methods. In the first method, we selected 
surrogate data with basins of attraction identical to those of the 

corresponding real data. An elementwise Pearson’s correlation was 
then calculated between the two matrices using all elements or only 
off-diagonal elements. In the second method, for each sample of 
surrogate data, we obtained the state-switching time course using 
basins of attraction obtained from the corresponding real data. 
We then calculated the transition matrix of the surrogate data and 
compared it with that of the real data using elementwise Pearson’s 
correlation (using all elements or only off-diagonal elements). Note 
that Pearson’s correlation using off-diagonal elements was calculated 
for those data that had more than three basins of attraction. For 
comparison of energy landscapes and transition probability, because 
each sample of surrogate data had a corresponding sample of real data, 
statistical testing was performed using a paired t-test.

Topological data analysis

We conducted Mapper-based TDA following the procedures 
described by Saggar and colleagues with the Matlab codes provided 
by the researchers (Saggar et al., 2022). Briefly, in the first step, high-
dimensional input data were embedded in a two-dimensional space 
using a filter function. To capture the intrinsic geometry of the data, 
we  used a nonlinear filter function on the basis of neighborhood 

FIGURE 1

Schematics of surrogate data analysis. This schematic figure describes the strategy of the examination of ELA using surrogate data. The path indicated 
by blue arrows describes an ELA analysis of real resting-state fMRI data. The path indicated by green arrows describes an ELA analysis of surrogate data. 
In the first step of this path, surrogate time courses were constructed from the real fMRI time courses using autoregressive randomization (ARR) or 
phase randomization (PR). ELA was then applied to the surrogate data. Finally, in the step indicated by the brown bidirectional arrow, the results of the 
ELA (energy landscapes and transition probabilities) obtained in the two paths were compared.
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embedding. Specifically, Euclidian distances were calculated between 
all pairs of volumes. A k-nearest neighbor graph was then constructed 
using all volumes and calculated distances. Using the k-nearest 
neighbor graph, geodesic distances were calculated between all 
volumes in the input space. The geodesic distance was then embedded 
into a two-dimensional Euclidian space using multi-dimensional 
scaling. In the second step, overlapping two-dimensional binning was 
performed for data compression and noise reduction. Based on the 
previous study by Saggar et al. (2022), we chose a resolution parameter 
of 14. In the third step, partial clustering within each bin was 
performed. Finally, a shape-graph was generated by connecting nodes 
from different bins when any volumes were shared by the bins.

We randomly selected 100 HCP participants to match the sample 
size reported in the previous study (Saggar et al., 2022). For each 
participant, the time courses were concatenated across all four 
sessions. For statistical comparison, as in the previous study (Saggar 
et  al., 2022), we  calculated the proportion of high-degree nodes 
(degree>20). The statistical significance of the difference across real 
and surrogate data was assessed using one-way analysis of variance 
(ANOVA). Note that we applied the TDA using the same fMRI data 
and the same procedure for generating surrogate data as we used in 
the ELA. Thus, any difference between ELA and TDA could not 
be  attributed to the difference in the data, the preprocessing 
procedures, or the generation of surrogate data.

Data and code availability

The data used in this study are available from the website of (Ezaki 
et al., 2017) or from HCP. Code for reproducing essential results will 
be made available for download upon publication of the manuscript 
at https://github.com/teppei-matsui/EL. All codes used for the analysis 
will be provided upon reasonable request to the corresponding author.

Results

Energy landscape reflects the covariance 
structure of resting-brain activity

First, we compared the energy landscapes obtained with real data 
and surrogate data constructed by stationary null models. Figure 2A 
shows the energy landscapes of example real data and the surrogate 
data constructed from it. This example demonstrates that the energy 
landscapes of the real and surrogate data were highly correlated and 
largely overlapped for all the null models tested (Static Null, R = 0.845; 
ARR, R = 0.827; PR, R = 0.835) (Figure 2A). These results indicate that 
linear and stationary models taking into account the second-order 
statistics of the data are enough to capture the shape of the 
energy landscape.

In contrast to energy landscapes, there were some notable 
differences in disconnectivity graphs for the real and surrogate data 
(Figure 2B). The energy barrier between states 1/2 and 3/4 is greatly 
reduced in the surrogate data. Similarly, in the real data, states 2 and 3 
appear as minor basins, whereas in the surrogate data these basins 
become large. The discrepancy in disconnectivity graphs was 
unexpected given PMEM is designed to fit correlation structures in 
the data that were preserved in surrogate data.

To examine the source of the difference in dysconnectivity graphs, 
we compared the covariance matrices of the real rs-fMRI data and those 
of the surrogate data. To reduce the influence of sampling error due to 
random simulation, we  generated 100 times more time points for 
surrogate data compared to the real data. We found that the covariance 
matrices of real and surrogate data produced by static null, ARR and PR 
nearly perfectly matched (Supplementary Figure 1A), confirming the 
expectation that these null models preserve the covariance of the real 
data. We next examined covariance matrices obtained using the real and 
surrogate data after the binarization. Because PMEM only takes binary 
inputs, both real and surrogate data were binarized before fitting PMEM 
(Masuda et  al., 2024). Importantly, we  found that the covariance 
matrices of the real and surrogate data became dissimilar after the 
binarization (Supplementary Figure 1B). Together, these results suggest 
that the binarization of the data caused a mismatch in real and surrogate 
matrices which in turn caused the discrepancy in disconnectivity graphs.

To further examine the possibility that binarization caused the 
discrepancy of the real and surrogate disconnectivity graphs, we next 
created new static null surrogate data of the binarized real rs-fMRI 
data using a method for generating multivariate binary sequences with 
specified covariance structure (Macke et al., 2009). Notably, the new 
binary surrogate data revealed near perfect matchings of the energy 
landscape and the disconnectivity graph with those of the real data 
(Supplementary Figures 2A,B). Moreover, the basins of attraction also 
perfectly matched (Supplementary Figure 2C). These results indicate 
that linear and stationary model taking into account the mean and the 
covariance of the binarized real data was sufficient to accurately 
capture the shape of the energy landscape and the dysconnectivity 
graph. Moreover, the results suggest that binarization of data is likely 
to be a major cause of the discrepancy between the real and surrogate 
disconnectivity graphs seen in Figure 2B.

Because the purpose of present study is to understand the 
statistical features of (non-binarized) rs-fMRI data extracted by ELA 
features, the rest of the paper used surrogate data generated using 
non-binarized real data.

Transition patterns among states reflect 
the autocorrelation of resting-brain activity

Next, we  examined whether the transition patterns among the 
energy minima could be captured by the null models. We found that the 
local minima in the energy landscapes were identical for the real and 
surrogate data. Note that the basins of attraction differed as suggested 
by the difference between real and surrgoate disconnectivity graphs 
(Figure  2B). Figure  2C shows the transition probability matrices 
describing the state-switching dynamics of the real and surrogate resting 
brain activities. Unlike the shape of the energy landscape, transition 
probabilities obtained with Static Null showed low correlations with 
those obtained with the real data (R = 0.138). In contrast, the transition 
probabilities obtained with ARR and PR showed extremely high 
correlations with the real transition probabilities (ARR, R = 0.992; PR, 
R = 0.999). The correlation between transition matrices was higher for 
PR than for Static Null even when excluding diagonal elements (Static 
Null, R = 0.773; PR = 0.953). Though this correlation value was slightly 
smaller for ARR than Static Null (ARR, R = 0.697), actual correlation 
values were much closer to those of the real data in ARR than Static Null 
(Figure 2C). The relatively high positive correlation for Static Null was 
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likely due to the relative frequency of states reflected in the covariance 
structure. High self-transition probabilities in the real data and ARR/PR 
surrogate may reflect the temporal sampling rate (TR) of fMRI scanning 
in the HCP dataset (0.72 s) that is substantially faster than typical 
temporal autocorrelation of fMRI signal. These results indicate that the 
dynamics of the transitions between energy minima can be effectively 
captured by linear autoregressive models.

Test of reproducibility in a large database

To confirm whether these observations also hold in other datasets, 
we compared energy landscapes of real and surrogate data using a 
publicly available large-scale database of resting-state fMRI provided 
by HCP. From this database we  obtained 501 samples of CON 
activities. Correlation coefficients of energy landscapes of the real and 

FIGURE 2

Energy landscapes and transition probability matrices for example and surrogate data calculated from it. (A) Plots of energy landscapes. Energy 
landscapes for real data (blue) and surrogate data (red) are overlaid for each type of surrogate data. (B) Dysconnectivity graphs (top) and activity 
patterns of states corresponding to the local minima (bottom) for real and surrogate data. (C) Matrices of transition probability between energy minima 
(basins). Note that energy minima were identical for the real data and all surrogate data.
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surrogate data were high for all tested null models (Figure  3A). 
Although the differences were small, the correlation values were the 
highest for Static Null and lowest for ARR [Static Null, 0.871 ± 0.068 
(mean ± s.d.); ARR, 0.818 ± 0.085; PR, 0.864 ± 0.070; p < 0.10−10 
(uncorrected) for all pairwise comparisons, paired t-test]. These 
results suggest that the shape of the energy landscape of resting-state 
fMRI data can be  largely captured by stationary and linear 
statistical properties.

A potential concern is whether the estimations of energy 
landscapes were reliable enough to distinguish between energy 
landscape from different samples (Note that different samples consist 

of data from different participants; see Methods for details). To 
address this, we calculated the correlations of ELs between different 
samples from the HCP dataset for all three networks (i.e., CON, FPN, 
DMN). We  then compared these correlation values with those 
obtained by comparing energy landscapes from real versus surrogate 
data. The correlation values of energy landscapes between samples 
were R = 0.478 ± 0.194 (mean ± SD) for CON, R = 0.463 ± 0.114 for 
FPN and R = 0.358 ± 0.138 for DMN. These correlation values were 
significantly lower than those between real and surrogate data within 
the same sample, suggesting that the estimation of energy landscape 
was reliable enough to distinguish between energy landscapes 
obtained from different samples (participants). Note that, because data 
from different participants were combined to meet the data 
requirement of PMEM (Ezaki et al., 2017), these results may be better 
interpreted that the energy landscape representing inter-subject 
variability in fMRI signals can be reproduced by linear models.

Additionally, we examined whether energy landscapes from the 
same network (two ELs from CON) are more similar to each other 
than energy landscapes from different networks (CON and FPN). 
Because two energy landscapes can be compared only when the two 
sets of ROIs have one-to-one correspondence, we selected the first 
seven ROIs in FPN to match the numbers of ROIs in the two networks. 
Note that the correspondence between the ROIs of CON and the 
selected ROIs of FPN was arbitrary. Given this set of ROIs, we found 
that the correlations between energy landscapes from CON 
(R = 0.476 ± 0.192, mean ± SD) were significantly higher than those 
between energy landscapes from CON and FPN (R = 0.350 ± 0.183) 
(p  ≪ 0.001, two-sample t-test, N =  125,250 pairs of samples) 
(Supplementary Figure  3). These results suggest that the energy 
landscape captures common network-specific characteristics across 
subjects. Furthermore, given the similarity of the energy landscapes 
from different samples (but the same network) was substantially 
smaller than that between real and surrogate energy landscapes 
(R > 0.75), it is conceivable that the energy landscape also captures 
sample-specific characteristics.

For simulations yielding identical energy landscapes (32, 17, and 
34 out of 501 simulations for Static Null, ARR, and PR, respectively), 
correlation coefficients between transition matrices obtained from 
data and simulations were high for ARR [R = 0.994 ± 0.006 
(mean ± s.d.) with diagonal elements; R = 0.751 ± 0.311 without 
diagonal elements] and PR (R = 0.992 ± 0.011 with diagonal elements; 
R = 0.711 ± 0.417 without diagonal elements) but not for Static Null 
(R = 0.113 ± 0.125 with diagonal elements; R = 0.545 ± 0.532 without 
diagonal elements).

To further examine the similarity of dynamics between data and 
simulations, based on the high similarities of energy landscapes 
between them (Figure  3A), we  calculated transition probability 
matrices in each sample of surrogate data using the basins of attraction 
calculated from the corresponding real data. Transition matrices 
calculated with surrogate data were highly correlated with those 
calculated with ARR (R = 0.999 ± 0.002 with diagonal elements) and 
PR (R = 0.999 ± 0.003 with diagonal elements) but not with Static Null 
(R = 0.096 ± 0.390 with diagonal elements) (Figure  3B; 
Supplementary Figure 4). No significant difference was found between 
ARR and PR [p > 0.015 (uncorrected), paired t-test]. Correlations 
calculated only using non-diagonal elements in ARR and PR were still 
higher than those in Static Null (Figure 3C), although Static Null had 
positive overall correlations (R = 0.747 ± 0.203 without diagonal 

FIGURE 3

Results of population analysis based on HCP. (A) Distribution of 
correlation coefficients between energy landscapes calculated from 
real and surrogate data. (B) Distribution of correlation coefficients 
between transition matrices calculated from real and surrogate data. 
Note that the correlations were calculated using all elements of the 
transition matrices. (C) Distribution of correlation coefficients 
between transition matrices calculated from real and surrogate data 
using only non-diagonal elements of the transition matrices.
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elements). Though the difference was small, correlation values were 
significantly higher for PR (R = 0.956 ± 0.037 without diagonal 
elements) than ARR (R = 0.963 ± 0.043 without diagonal elements) 
[p < 0.004 (uncorrected), paired t-test]. Similar results were obtained 
for DMN and FPN (Figure 4). Overall, these results confirmed the 
reproducibility of the observation made with the example data 
(Figure 2).

Topological analysis confirmed the 
distinction between real and surrogate 
data

All of the results presented so far indicated that ELA yields largely 
identical outcomes for real resting-state fMRI data and surrogate data. 
This raises the possibility that real resting-state fMRI data are indeed 

fully describable by linear autoregressive models with residuals that 
have Gaussian distributions. However, previous studies reported that 
TDA can distinguish between real fMRI data and Gaussian, linear 
surrogates (Saggar et  al., 2022; Geniesse et  al., 2022). Thus, 
we conducted Mapper-based TDA (Saggar et al., 2022) to ensure that 
the real resting-state fMRI data contained features that were not 
captured by the surrogate data.

Figure  5A shows example topological landscapes of the real 
resting-state fMRI data and ARR and PR surrogates as visualized by 
Mapper-generated shape graphs (Figure 5A). Mapper-generated shape 
graphs of the real data showed segregation of nodes to multiple 
clusters. In contrast, nodes in the shape graphs of ARR and PR 
surrogates showed a single homogeneous cluster and appeared distinct 
from the real shape graphs. To quantify the difference of the graph-
structure, we  calculated nodal degree distributions (Figure  5B). 
Compared with ARR and PR, the real data contained nodes with high 

FIGURE 4

Results of population analysis based on HCP for DMN and FPN. (A) Same as Figure 3 but for DMN and FPN. (A,B) Distribution of correlation coefficients 
between energy landscapes for DMN (A) and DMN (B). (C,D) Distribution of correlation coefficients between transition matrices for DMN (C) and FPN 
(D). (E,F) Distribution of correlation coefficients between transition matrices for DMN (E) and FPN (F).
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degree at a higher proportion, consistent with the previous study 
(Saggar et  al., 2022). To test statistical significance, we  assessed 
statistical differences in the proportion of high-degree nodes in the 
real versus surrogate data. Using the same threshold for high-degree 
node (>20) as in the previous study (Saggar et al., 2022), we found 
statistically significant differences across real and surrogate data [F(2, 
299) = 75.49, p < 3.10 × 10−27]. These results confirmed previous 
reports that topological landscapes represent features of the real 
resting-state fMRI data that are not captured by Gaussian, linear 
surrogates (Saggar et al., 2022; Geniesse et al., 2022). Moreover, the 
results suggest that the energy landscapes obtained with ELA do not 
capture these features.

Discussion

The current results revealed that two key results of ELA, the 
energy landscape and transition matrices describing the state-
switching dynamics, can be explained by the stationary null models 
taking into account the covariance and the autocorrelation, 
respectively, of real resting-brain activity data. The finding that 
Static Null reproduced the energy landscape suggests that the 

energy landscape reflects the covariance structure of the resting-
state fMRI data. The absence of a significant difference between 
ARR and PR for explaining the transition matrix suggests that first-
order autocorrelation is sufficient to explain the state-
switching dynamics.

The purpose of the present study is to examine and specify which 
statistical features of the resting-state fMRI data are being extracted 
by PMEM-based ELA. To achieve this, we  analyzed how ELA 
interprets both real data and surrogate data generated by linear 
models. Since PMEM is a function that fits the correlations between 
ROIs up to the second order, and the energy landscape requires only 
that information, it is not surprising to observe that PMEM-based 
ELA produces very similar energy landscapes for the real data and 
surrogate data which preserves the correlation structure. Importantly, 
even if the data are shuffled, the same energy landscape can 
be  obtained. Therefore, by construction, the energy landscape 
obtained using PMEM is agnostic to the temporal structure of the 
data. In other words, the energy landscape obtained by PMEM-based 
ELA does not necessarily specify the dynamics of the data. Hence, it 
remains unclear which feature of the dynamics of resting-state fMRI 
data is captured by the state-transition probability of ELA. This is one 
of the main questions of the study that we addressed based on the 

FIGURE 5

Topological landscape of real and surrogate data. (A) Mapper shape graph of real resting-state fMRI data of an example participant. A Mapper shape 
graph of ARR surrogate data constructed using the real data in (A). A Mapper shape graph of PR surrogate data constructed using the real data in (A). 
(B) Distributions of the degree of Mapper shape graphs across HCP participants. Error bars, SEM.
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series of surrogate data analyses. Nevertheless, since several previous 
studies have shown that the first-order autoregressive model can well 
describe the dynamics of resting-state fMRI data (Liégeois et al., 2017; 
Matsui et  al., 2022; Nozari et  al., 2024), it is expected that data 
preserving first-order temporal structure and correlations preserve the 
transition probability obtained by ELA. The present study confirmed 
this expectation quantitatively. It should also be noted that some of the 
similarity in transition patterns of the real and surrogate data may 
be attributed to the property that transitions can only occur between 
activity patterns in adjacent basins.

Fundamentally, PMEM-based ELA is a technique that labels states 
on a map of brain activity based on a single probability distribution, 
and then examines whether the indices derived from such labeling can 
capture features of brain dynamics. Given this perspective, the present 
study aimed to specify the statistical features mapped to the ELA 
feature by examining whether a particular type of surrogate data 
replicated an ELA feature of the real data. An important point about 
this mapping is that the energy landscape does not utilize temporal 
information of the data: an energy landscape remains invariant under 
temporal shuffling of the data. Thus, in PMEM-based ELA, whereas 
spatial components (i.e., local minima) are derived from the energy 
landscape, the transition matrix and trajectories of states are not 
directly derived from the energy landscape itself. Rather, transition 
matrices and trajectories are projections, or mappings, of the real 
dynamics onto a small number of spatial components. Thus, although 
ELA interprets the resting-brain activity as movements between local 
minima, ELA does not strongly claim that each basin corresponds to 
an “actual” brain state, particularly since there is no ground truth of the 
actual brain states for resting-state data. In this sense, ELA can 
be  viewed similarly to clustering. The possibility that the energy 
landscape obtained by PMEM-based ELA does not contain 
information about temporal structure of the data is supported by a 
previous study that analyzed data from cultured neurons (Yeh et al., 
2010). Interestingly, this study also showed that an extension of PEME 
by incorporating additional terms representing temporal correlation 
successfully recapitulated spatiotemporal sequences of multi-neuronal 
spikes (Yeh et  al., 2010). Nevertheless, the present results do not 
preclude a possibility that brain dynamics are driven by state switching, 
and a possibility that the current form of PMEM-based ELA can map 
some portion of such state-switching features as trajectories in the 
energy landscape.

One of the limitations of the PEME-based ELA is that PEME-
based ELA can only handle small number of ROIs at a time. This is 
due to the large amount of data required to fit PMEM (see a recent 
tutorial; Masuda et al., 2024, for details). Because PMEM-based ELA 
can only analyze a small number of ROIs, previous studies using this 
method have typically used ROIs within well-known particular 
networks (e.g., DMN, FPN) (Watanabe et al., 2014; Ezaki et al., 2017). 
Thus, unlike whole-brain analyses that extract global brain-states such 
as DMN-or FPN-dominant states, the brain-states extracted by ELA 
may be considered as substates within a global brain-state, making it 
difficult to directly compare these two types of brain-states.

Another important characteristic of the PMEM-based ELA is that 
it requires binarization of the data. We found that the differences of 
real and surrogate energy landscapes and disconnectivity graphs are 
likely due to binarization of the data. A limitation of the present study 
is that we do not have a clear mathematical understanding of the 
statistical features being emphasized by the binarization and the 

subsequent procedures of ELA. Nevertheless, this newly found 
characteristics of PMEM-based ELA is a potentially useful 
characteristic which may be exploited in the future research.

Comparison of ELA and TDA revealed the existence of features of 
the real resting-state fMRI data not captured by Gaussian, linear 
surrogates. Consistent with previous studies (Geniesse et al., 2022; Saggar 
et al., 2022), we found that topological landscapes could distinguish 
between real resting-state fMRI data and surrogate data produced by 
linear, Gaussian models. The topological features do not necessarily 
reflect dynamic aspects of the data, because TDA-mapper did not use 
temporal information (i.e., the same topological landscapes would 
be obtained for temporally shuffled data). Further characterization of the 
topological features obtained by TDA-mapper will be described elsewhere.

It should be noted that the fact that surrogate data produced by a 
linear autoregressive model preserved the energy landscapes and 
transition probabilities of the real data does not diminish ELA’s utility 
in describing resting-brain activity. Additionally, our statement that 
linear models replicate the energy landscape and dynamics of the 
resting-state brain activity is a mathematical but not a conceptual one. 
Without the concept of the energy landscape, the definition (or 
concept) of basins is obscured. The concepts of basins and ELA could 
be useful to obtain intuitive pictures of resting-state fMRI data which 
are otherwise high-dimensional and complex. For example, Ezaki et al. 
(2018) discuss the number and efficiency of switching between two 
distant states, and Watanabe and Rees (2017) show that indirect 
transitions through minor states are useful in describing dynamics. ELA 
is useful for capturing these overall trajectories in an intuitive picture. 
An important issue is the extent to which linear models preserve the 
trajectory properties. One limitation of the present study is that only the 
first-order trajectory (i.e., transition probability) was tested. Unless all 
the temporal features of the real resting-state fMRI data are perfectly 
reproducible by linear models, there remains a possibility of finding 
trajectories that deviate or cannot be  understood as mappings of 
statistical properties described by linear models. The present results, 
nevertheless, indicate that the results obtained by ELA, in particular the 
brain-states and transition probability, should be interpreted with care 
(see Matsui and Yamashita, 2023, for related discussions).

From a broader perspective, the present results align with a recent 
proposal that macroscopic resting brain activity is best described with 
linear models (Nozari et  al., 2024). Taken together with previous 
studies (Laumann et al., 2016; Liégeois et al., 2017; Matsui et al., 2022), 
the present findings indicate that the dynamics of resting-state fMRI 
which resemble state-switching dynamics can be well described by 
simple linear models. An alternative possibility is that, because of the 
large amount of measurement noise in fMRI, many existing analysis 
methods, such as ELA, cannot extract nonlinear and complex 
dynamics (e.g., state-switching) in fMRI data. To distinguish between 
these possibilities and determine the extent to which simple models 
describe macroscopic resting-brain dynamics, future animal studies 
using measurements with higher signal-to-noise ratio, such as calcium 
imaging, would be useful (Li et al., 2023; Matsui et al., 2018a).

Conclusion

Using surrogate data analyses, we  found that the features of 
resting-state fMRI activity extracted by ELA, namely the shape of the 
energy landscape and the transition patterns among the energy 
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minima, can be largely explained by stationary and linear statistical 
properties of the data. This finding supports the notion that resting-
state fMRI activity is well described by linear models.
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