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Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental 
condition characterized by deficits in social interaction and communication, 
along with restricted and repetitive behaviors. Both genetic and environmental 
factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and 
nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, 
particularly in the ventral region, is thought to play a role in the social deficits 
observed in ASD.

Methods: In this study, we investigated social behavior and adult hippocampal 
neurogenesis in C57BL/6J mice prenatally exposed to VPA or nicotine, as well 
as in genetically modified ASD models, including IQSEC2 knockout (KO) and 
NLGN3-R451C knock-in (KI) mice. Sociability and social novelty preference were 
evaluated using a three-chamber social interaction test. Adult hippocampal 
neurogenesis was assessed by BrdU and DCX immunofluorescence to identify 
newborn and immature neurons.

Results: VPA-exposed mice displayed significant deficits in social interaction, 
while nicotine-exposed mice exhibited mild impairment in social novelty 
preference. Both IQSEC2 KO and NLGN3-R451C KI mice demonstrated reduced 
adult neurogenesis, particularly in the ventral hippocampus, a region associated 
with social behavior and emotion. Across all ASD mouse models, a significant 
reduction in BrdU+/NeuN+ cells in the ventral hippocampus was observed, 
while dorsal hippocampal neurogenesis remained relatively unaffected. Similar 
reductions in DCX-positive cells were identified in VPA, nicotine, and NLGN3-
R451C KI mice, indicating impaired proliferation or differentiation of neuronal 
progenitors.

Discussion: These findings suggest that impaired adult neurogenesis in the 
ventral hippocampus is a common hallmark across ASD mouse models and may 
underlie social behavior deficits. This study provides insight into region-specific 
neurogenic alterations linked to ASD pathophysiology and highlights potential 
targets for therapeutic interventions.
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1 Introduction

Autism spectrum disorder (ASD) is a group of developmental 
disorders defined by the presence of persistent deficits in social 
communication and social interaction across different situations (Hirota 
and King, 2023). The prevalence has been estimated from 0.4 to 4.0% and 
is four to five times higher in males than females (Bougeard et al., 2021; 
Salari et al., 2022). High heritability and the recurrence of ASD within 
families strongly suggest that genetic factors play a significant role in its 
etiology. ASD is categorized into syndromic and non-syndromic forms. 
Syndromic ASD is associated with comorbidities, such as intellectual 
disability, epilepsy, or language impairment, and is often linked to genetic 
abnormalities or monogenic alterations (Genovese and Butler, 2020). For 
instance, Fragile X syndrome, Rett syndrome, and Phelan-McDermid 
syndrome, are caused by the monogenic mutations in FMR1, MECP2, 
and SHANK genes, respectively (Masini et al., 2020; Bicker et al., 2021). 
Furthermore, environmental factors such as prenatal drug and chemical 
exposure in the mother have also been implicated in the development of 
ASD (Mandy and Lai, 2016; Sarieva and Mayer, 2021; Barrett et al., 2024).

Genetic studies have identified over 1,200 gene variants associated 
with ASD in the Simons Foundation Autism Research Initiative database 
(Banerjee-Basu and Packer, 2010). Among these, IQSEC2 (Intelligence 
quotient motif and SEC7 domain containing 2) and Neuroligin (NLGN) 
3, located on the X chromosome, are prominent candidates. IQSEC2 has 
been identified in four families with missense mutations at Xp11.22, 
associated with severe intellectual disability (Shoubridge et al., 2010). 
Approximately 25–80 percent of patients with IQSEC2 mutations also 
exhibit autistic features (Levy et al., 2019; Leoncini et al., 2023). IQSEC2 
belongs to a family of guanine nucleotide exchangers localized at the 
postsynaptic density of excitatory synapses. The activation of ADP 
ribosylation factor 6 by the SEC7 domain contributes to neuronal 
transmission through postsynaptic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor and facilitates the development and 
maturation of the dendritic spines. IQSEC2 knockout (KO) and 
transgenic mice with the A350V mutation exhibit ASD-like social 
deficits (Hinze et al., 2017; Levy et al., 2019; Mehta et al., 2021). The 
NLGN3 gene is implicated in a non-syndromic monogenic form of ASD 
(Quartier et al., 2019). The R451C substitution in NLGN3 was first 
identified in two siblings in a Swedish family diagnosed with autism and 
Asperger syndrome (Jamain et  al., 2003). NLGN3, a member of 
transmembrane cell adhesion proteins, is localized at the post-synapse 
and interacts with presynaptic proteins, such as neurexins. It is expressed 
at both excitatory and inhibitory synapses, playing a crucial role in 
synaptic function and neural connectivity. The R451C mutation, a 
variant extensively studied, is estimated to occur in less than 3% of 
non-syndromic ASD cases (Quartier et al., 2019). Mice carrying the 
R451C missense variant in NLGN3 (NLGN3-R451C) show ASD-related 
behavior alterations with repetitive behavior and reduced sociability 
(Tabuchi et al., 2007; Gioia et al., 2023).

Environmental factors, such as prenatal exposure to valproic acid 
and nicotine, also contribute to the risk of ASD through epigenetic 
mechanisms (Masini et  al., 2020). Valproic acid (VPA) is a well-
established drug to treat epilepsy and psychiatric disorders (Perucca 
and Mula, 2013). It influences gene expressions in neurodevelopment 
by relieving histone deacetylase (HDAC)-dependent transcriptional 
repression (Larner et  al., 2021; Alavi et  al., 2024). Early prenatal 
exposure to VPA can lead to cognitive impairments and increase the 
risk of ASD in offspring (Bromley et al., 2008; Christensen et al., 2013; 
Wiggs et al., 2020). Similarly, maternal smoking during pregnancy has 

been linked to higher risk of ASD (Jung et al., 2017; Caramaschi et al., 
2018; von Ehrenstein et  al., 2021). Nicotine from tobacco readily 
crosses the placenta and reaches the fetus (Hellström-Lindahl and 
Nordberg, 2002; Lin et al., 2022). Among subunit combinations of 12 
nicotine acetylcholine receptors (nAChRs), α2β4 nAChRs are most 
prominently expressed, and α7 nAChRs are widely distributed in the 
developing mammalian brain (Gotti et al., 2007; Zoli et al., 2015). 
Nicotine activates these receptors, disrupting cholinergic signaling and 
inducing epigenetic changes, such as increased histone acetylation and 
decreased histone methylation (Muenstermann and Clemens, 2024). 
Rodent models exposed to VPA or nicotine administration during 
pregnancy have demonstrated ASD-like behaviors, including deficits 
in social interaction (Schneider and Przewłocki, 2005; Alkam et al., 
2013; Kataoka et al., 2013; Mabunga et al., 2015; Wang et al., 2015; 
Larner et al., 2021; Sivasangari and Rajan, 2022; Zhou et al., 2024).

The diagnosis of ASD is challenging due to the heterogeneity of 
clinical presentations, varying levels of severity, and the presence of 
comorbid disorders, as well as the reliance on the examiner’s subjectivity 
and competence (Hausman-Kedem et al., 2018; Wiggins et al., 2020; Gesi 
et al., 2021; Fusar-Poli et al., 2022). To address these challenges, extensive 
studies have aimed to identify potential biomarkers. Recent research 
suggests higher serum concentrations of γ-Aminobutyric acid and lower 
oxytocin levels in the ASD group compared to the healthy control group 
(Lin et al., 2023). Additionally, trace elements such as iron, copper, and 
zinc, which are essential for brain development and synaptic function, 
have been implicated in individuals with ASD (Zhang et  al., 2021). 
Magnetic resonance imaging studies have provided structural and 
functional abnormalities that point to the diagnosis of ASD (Rafiee et al., 
2022). The volumetric analysis demonstrated cortical thickening in the 
frontal lobe during the early stages of ASD, followed by thinning in the 
temporal cortices, including the hippocampus. Functional imaging 
highlights hypoconnectivity in task-specific brain regions, along with 
compensatory hyperconnectivity to bypass these under-connected areas 
(Guo et al., 2024). These suggest that the underlying neuropathology of 
ASD may involve abnormal brain network organization and disrupted 
neuronal connectivity. The function and the structure of neural circuits 
underlying the pathophysiology of ASD have also been investigated 
using ASD model animals (Sato et al., 2023). Recently, more evidence has 
been accumulated to indicate an association between ASD phenotypes 
and dysfunction of neural circuits in emotion-related brain regions, such 
as the medial prefrontal cortex, the amygdala, and the hippocampus. In 
addition, the role of adult hippocampal neurogenesis has also emerged 
as a critical area of investigation (Liu et al., 2023; Barón-Mendoza et al., 
2024; Chen et al., 2024; Long et al., 2024).

Adult neurogenesis is a process of brain development that involves 
the continuous generation of new neurons throughout the lifespan 
(von Bohlen und Halbach, 2011; Kempermann et  al., 2015). This 
process is restricted in two regions: the subventricular zone and the 
subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus 
(Gage, 2000; Ming and Song, 2011). In the SGZ, radial glia-like stem 
cells give rise to intermediate neural progenitor cells (NPCs) with high 
proliferative capacity and then produce neuroblasts capable of mitosis. 
These newly generated neurons survive, differentiate, and integrate 
into existing brain networks, contributing to cognitive functions 
(Mongiat and Schinder, 2011; Aimone et al., 2014). To clarify the 
stages of neurogenesis, immunohistological techniques using specific 
antibodies have been employed. Bromodeoxyuridine (BrdU) is 
commonly used to label proliferating cells, while doublecortin (DCX), 
a microtubule-associated protein, is expressed from the neuroblast 
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stage to postmitotic maturation. The hippocampus is divided into two 
distinct regions: the ventral and dorsal parts. The ventral hippocampus 
is particularly associated with ASD due to its strong connections with 
subcortical structures, such as the rostral hypothalamus and amygdala, 
related to behaviors such as social interaction and emotions (Liu et al., 
2023). However, a region-specific analysis of adult hippocampal 
neurogenesis across ASD mouse models has not yet been conducted.

In this study, we examined the social behavior of C57BL/6J mice 
prenatally exposed to VPA and studied patterns of adult neurogenesis 
in the dorsal and ventral hippocampus. We  then extended this 
approach to mice prenatally exposed to nicotine (prenatally nicotine 
exposed, PNE). We also studied the neurogenesis in each region of the 
hippocampus in genetically modified ASD mouse models, including 
IQSEC2 KO mice and NLGN3-R451C knock-in (KI) mice. VPA mice 
exhibited severe deficits in social interaction, while PNE mice showed 
mild disturbances in sociability. All these ASD model mice 
demonstrated a reduction in neurogenesis within the ventral 
hippocampus. Our results indicate that decreased adult neurogenesis 
in the ventral hippocampus is a common phenotype across ASD 
mouse models.

2 Materials and methods

2.1 Animals

All procedures of animal experiments were reviewed by the 
Committee for Animal Experiments and were finally approved by the 
president of Shinshu University. Pregnant female C57BL/6J mice were 
obtained from Japan SLC. IQSEC2 KO mice were generated by 
CRISPR/Cas9 as previously described (Mehta et  al., 2021) and 
maintained under a hybrid background of C57BL6/J and 129+Ter/Sv 
strain because of a high mortality under pure C57BL6/J. NLGN3-
R451C mutant mice were generated and the behavior characteristics 
were analyzed previously (Tabuchi et al., 2007; Cao et al., 2022). All 
mice were free with a libitum food and water and kept on 12 h 
light/12 h dark cycle at a temperature of 20 ± 1°C.

2.2 Drug treatments

To generate ASD mouse models, offspring prenatally exposed to 
valproic acid and nicotine were prepared. For the VPA-exposed mice 
model (VPA mice), we administered various dosages of VPA (150 mg/
kg, 300 mg/kg, 450 mg/kg, and 600 mg/kg) intraperitoneally on 
embryonic day 13.5, according to previous studies (Larner et  al., 
2021). However, pups occasionally died shortly after birth at dosages 
of 300, 450, and 600 mg/kg. Consequently, a single injection of VPA 
(15 mg/mL dissolved in saline) at a dose of 150 mg/kg was selected for 
the subsequent experiments. The control group received the same 
dose of saline injection on the same day. Male and female pups were 
weighed at the postnatal day (PND) 7, 14, 21, 28, 35. Thirty-one VPA 
mice and 25 control mice, derived from 8 and 9 pregnant dams, 
respectively, were used to calculate the growth curve (Figure 1). For 
the nicotine-exposed mice model (PNE mice), prenatal exposure to 
nicotine or saline was carried out as previously described (Zhou et al., 
2024). Pregnant mice received water containing nicotine (200 μg/mL) 
and 2% sucrose or only 2% sucrose alone from embryonic day (E) 14 

until delivery. All pups were weaned on PND28, and only male mice 
were individually housed in separate cages until the day of 
the experiment.

2.3 Three-chamber social interaction

The behavioral test was conducted as described previously 
(Badawi et al., 2021; Hou et al., 2021; Zheng et al., 2024). The apparatus 
consists of a rectangular transparent Plexiglas box 
(40 cm × 60 cm × 25 cm), divided by two walls with small openings 
(5 cm × 3 cm), allowing access to each chamber. For VPA mice, 
inverted empty small black wire cups with clear glass cylinders were 
placed in the back-left corner of the left chamber and the front-right 
corner of the right chamber, while for PNE mice, the cups were 
positioned at the center of both chambers. The experiments were 
recorded with a GoPro Black 10 Black (resolution: 1,920 × 1,080 
pixels, frame rate: 30 frames per second). Five-week-old males born 
from pregnant female mice with or without VPA were used as subjects. 
Non-treated four-week-old C57BL/6J male mice that had no previous 
contact with the subject mouse were used as strangers. All behavioral 
analyses were performed between 10:00 a.m. and 6:00 p.m. The 
subject mice were placed in the middle chamber and acclimated for 
10 min of free exploration. Subsequently, the mouse was returned to 
the middle chamber by closing the removable doors. In the sociability 
test, a stranger mouse (S1) in an inverted cup was placed in the left 
chamber, while an empty inverted cup (E) was positioned in the right 
chamber. After a 10-min recording, the animals were removed from 
the box, and the apparatus was cleaned with 70% ethanol. In the social 
novelty test, S1 was placed in the same position, while a second 
stranger (S2) was placed in the previously empty cup, and the subject 
mouse was again introduced into the middle chamber. The interaction 
was recorded for 10 min. The exploratory behavior was defined as the 
subject mouse’s nose was within 2 cm of the cup. The time spent in the 
chamber and around the cup was manually measured from the 
recorded videos. Additionally, to generate the heatmaps, we utilized 
DeepLabCut, a markerless tracking tool, to obtain the coordinates of 
the mice, as previously described (Zhou et al., 2024). Fourteen VPA 
male mice (from eight mothers) and 13 control male mice (from nine 
mothers) were used for the tests, as well as nine PNE male mice (from 
four mothers) and nine control male mice (from three mothers). 
Given that ASD is more prevalent in males than in females (Bougeard 
et al., 2021; Salari et al., 2022), and that sex differences can significantly 
influence behavioral phenotypes in both human and animal models 
(Lai et al., 2015; Shepard et al., 2017), we exclusively used male mice 
in this study.

2.4 BrdU injection and histological analysis

Bromodeoxyuridine (BrdU) was administered according to the 
schedule designed in a previous study (Zhou et al., 2024). Male mice 
were intraperitoneally injected with BrdU at a dose of 150 mg/kg from 
P42 to P46 three times a day for five consecutive days. Two weeks after 
the last injection, the animals were used for histological analysis. All 
67 brains were used for immunohistochemical quantification.

Histological analysis was followed by previous procedures 
(Mori and Morimoto, 2014; Mori et al., 2019; Pang et al., 2022). 
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Mice were anesthetized with a cocktail containing medetomidine 
hydrochloride (Domitor, 0.3 mg/kg), midazolam (Dormicum, 
4.0 mg/kg), and butorphanol tartrate (Vetorphale, 5.0 mg/kg). 
Mice were perfused transcardially with ice-cold PBS, followed by 
ice-cold 4% paraformaldehyde (PFA) in PBS. The brain was 

decapitated and postfixed in 4% PFA overnight. Each brain was 
soaked in 30% sucrose in PBS at 4°C until it sank. The brains were 
sectioned at 40 μm thickness using a freezing microtome. After 
rinsing with PBS, sections were incubated in a 1 M hydrochloride 
solution for 30 min at 45°C and washed with PBS for 15 min. 

FIGURE 1

Experimental design and characterization of VPA mouse model. (A) Timeline of the experimental procedures, illustrating the administration of valproic 
acid (VPA) or saline at embryonic day (E) 13.5, followed by behavioral testing, BrdU administration, and immunohistological analysis at specific postnatal 
days. (B) Survival rate of VPA-exposed mice compared to controls. Prenatal exposure to 450 mg/kg VPA significantly decreased survival, whereas 
150 mg/kg VPA showed similar survival rates to controls. (C) Representative DAPI-stained coronal sections of dorsal and ventral hippocampus, showing 
no significant morphological differences between control and VPA-exposed mice. (D) Body weights of VPA-exposed and control mice measured at 
several time points indicate no significant differences across groups. Scale bars = 1 mm. Results are presented as mean ± SEM.
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Non-specific immunoglobulin binding was blocked by incubating 
the sections in a blocking buffer (PBS containing 2% donkey serum 
albumin and 0.3% Triton) for 60 min at room temperature. Brain 
sections were incubated in the blocking buffer containing the 
primary antibodies, rat anti-BrdU (ab6326, Abcam, 1:200 dilution), 
mouse anti-NeuN (MAB377, Roche, 1:1,000 dilution), and rabbit 
anti-DCX (ab18723, Abcam, 1:5,000 dilution) for 24–48 h at 
4°C. The sections were washed three times for 5 min each at room 
temperature and incubated with the secondary antibodies, Alexa-
488-conjugated donkey anti-mouse IgG (Thermo production, 
1:400 dilution in PBS with 0.3% Triton X-100), Alexa-594-
conjugated donkey anti-rat IgG (Thermo production, 1:400 
dilution in PBS with 0.3% Triton X-100), and Alexa-594-
conjugated goat anti-rabbit IgG (ab150080, Abcam, 1:1,000). After 
rinsing, brain sections were incubated with DAPI in the dark, 
and coverslipped.

Fluorescence images were taken with a fluorescent microscope 
(BZ-X800, Keyence) or a confocal microscope (SP8, Leica) equipped 
with a ×10 and ×20 objective lens. Digital zoom up to 3× was used to 
check the overlapping signals. To estimate the number of BrdU/NeuN 
double-positive newborn neurons in the hippocampus, we divided the 
hippocampus into two compartments according to a mouse brain 
atlas: the ventral hippocampus (Bregma −2.80 to −4.04 mm) and the 
dorsal hippocampus (Bregma −0.94 to −2.80 mm). The border 
we used here has been used in some other laboratories (Mohammad 
et al., 2018; Bauman et al., 2019; Ávila-Gámiz et al., 2023; Zhou et al., 
2024), even though there is a variation of the border of the dorsal and 
ventral hippocampus used in different laboratories using 
electrophysiological and anatomical techniques (Botterill et al., 2021; 
Chockanathan and Padmanabhan, 2021).

We then quantified newborn neurons separately within each 
compartment. For each mouse, we  analyzed six to eight sections, 
calculating the total number of BrdU+/NeuN+ cells in the dorsal and 
ventral DG separately. The total cell number was calculated by 
averaging the cell count per slice and multiplying it by the number of 
slices. The total number of newborn neurons in the whole DG was 
calculated by summing the counts from the dorsal and ventral 
segments. For the density of DCX positive cells, we quantified DCX+ 
newborn neurons and measured the length of the DG in both dorsal 
and ventral segments, as previously described (Zhou et al., 2024). For 
each mouse, we analyzed four to nine sections, calculating the total 
number of DCX+ cells in the dorsal and ventral DG separately. 
We then divided the total cell count by the corresponding total length 
of each area. The value thus obtained (cell number/mm) should reflect 
the density of DCX-positive immature neurons in the dorsal, ventral 
and whole DG separately.

2.5 Statistical analysis

All data in graphs were presented as means ± SEM. Student’s t-test 
was used for two-group comparisons. Most of the statistical analysis 
between manipulated and unmanipulated animals was performed by 
unpaired t-test. When we compared the values within a single animal 
group (in three chamber test), we  used paired t-test. Statistical 
significance is indicated by asterisks (*p  < 0.05, **p  < 0.01, 
***p  < 0.001). Statistical analysis was performed using Graphpad 
Prism 8.

3 Results

3.1 Prenatal valproic acid exposure induces 
a social interaction deficit

To generate a VPA mouse model of ASD, a single injection of VPA 
(150 mg/kg, 300 mg/kg, 450 mg/kg, or 600 mg/kg) was administered 
to pregnant females at E13.5 (Figure 1A), as previously described 
(Larner et al., 2021). Mice administered with 300 mg/kg or 600 mg/
kg died shortly after birth. Mice treated with 450 mg/kg survived for 
some time post-birth, but their survival rate was lower compared to 
control mice or those administered 150 mg/kg (Figure 1B). Therefore, 
we selected a dose of 150 mg/kg VPA for further experiments. Prenatal 
exposure to VPA could induce congenital malformations and 
decreased body weight in a dose-dependent manner (Rodier et al., 
1996; Dufour-Rainfray et al., 2010; Kataoka et al., 2013; Sivasangari 
and Rajan, 2022). However, no gross abnormalities in morphology 
were observed (Figure 1C), and growth curves were consistent across 
the groups (Figure 1D).

We next evaluated the effects of prenatal VPA exposure on social 
interaction, a core ASD behavior, using the three-chamber social 
interaction test (Crawley, 2004). This test uses a box divided into three 
compartments through which the mouse can freely move. In each of 
the two end compartments, a small cup-like cage is placed. One of 
these cages contains a novel juvenile mouse (Stranger 1 = S1), while 
the other cage is left empty (E). The test mouse is placed in the central 
compartment, and subsequently, the time spent in S1, E, and the 
central compartment is recorded (Figure 2A). Wild-type mice are 
known to contact the stranger mouse more frequently than the empty 
cage, which serves as an indicator of sociability (social preference). In 
the sociability phase, the interaction time with a stranger (S1) was 
higher in control mice than in VPA mice (Figures 2B–D).

In the three-chamber test, in addition to the social preference test, 
the social novelty preference is also assessed. After the social 
preference test, a new stranger mouse (S2) is placed in the cage that 
was previously empty (Figure 2E). At this point, the previous stranger 
mouse (S1) becomes a familiar mouse, as it has already been exposed 
to the test mouse. During this phase, the test mouse’s contact with 
either the familiar mouse (S1) or the stranger mouse (S2) is compared. 
Typically, wild-type mice interact more with S2 than with S1, which 
indicates social novelty preference. In the social novelty phase, while 
the control mice interacted more with the new stranger (S2), VPA 
mice exhibited a reduced preference for S2, suggesting a social deficit 
in VPA mice (Figures 2F–H).

3.2 Adult hippocampal neurogenesis is 
reduced in the VPA mouse model

Alteration of adult neurogenesis in the hippocampus has been 
implicated in animal models of ASD (Bicker et  al., 2021; Barón-
Mendoza et  al., 2024). The dorsal and ventral areas of the 
hippocampus are thought to have different functions. The dorsal 
hippocampus is primarily involved in spatial cognition, while the 
ventral hippocampus is believed to play a role in cognitive functions 
related to social behaviors and emotions. This is further supported 
by their distinct neural projections to cortical and subcortical 
regions. To assess the effect of prenatal VPA exposure on adult 
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hippocampal neurogenesis, we  performed immunofluorescent 
labeling for BrdU and the neuron-specific marker NeuN to identify 
adult-born neurons in these regions. We found a significant reduction 
in the number of BrdU/NeuN double-positive cells in VPA mice 
compared to control mice across all hippocampal regions 
(Figures 3A,B).

Adult hippocampal neurogenesis is tightly regulated by the 
process of proliferation, migration, differentiation, survival, and 
maturation of neurons (von Bohlen und Halbach, 2011; Kempermann 
et al., 2015). During these stages, neuronal stem cells in the SGZ of the 
dentate gyrus give rise to NPCs that express the early neuron-specific 
marker DCX. To further clarify the stages at which impairment of 

FIGURE 2

Social interaction deficits are observed in VPA-exposed mice. (A) Diagram of the three-chamber social preference test. S1 represents a stranger mouse, 
and E represents an empty cage. (B) Representative heatmap images depicting exploratory behavior in control and VPA-exposed mice during the 
social preference test. (C) Time spent in each area during the social preference phase indicates reduced interaction with S1 in VPA-exposed mice 
compared to controls. (D) Social preference index (S1–E) showing significantly diminished social preference in VPA mice. (E–H) Social novelty 
preference phase: diagram of the test (E), heatmap images (F), and quantification (G,H) showing reduced interaction with a novel stranger (S2) in VPA-
exposed mice, suggesting impaired social novelty recognition. Results are presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, unpaired 
student’s t-test was applied to compare Con vs. VPA; paired student’s t-test was applied to compare S1 vs. E.
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adult hippocampal neurogenesis occurs, we performed fluorescence 
immunostaining using an antibody against DCX. As a result, 
DCX-positive cell density was significantly decreased throughout all 
hippocampal regions in VPA mice compared to control mice 
(Figures 3C,D). These results suggest that prenatal VPA exposure 
reduces adult neurogenesis in the hippocampus in mice due to a 
decrease in NPCs.

3.3 Prenatal nicotine exposure induces a 
social interaction deficit and impairs adult 
neurogenesis in the ventral hippocampus

We previously reported that PNE mice exhibited characteristics 
of attention-deficit/hyperactive disorder and ASD (Zhou et al., 2024). 
To further investigate social deficits in PNE mice, we performed a 
three-chamber social interaction test (Figure 4). In the sociability 
phase, both control and PNE mice exhibited preference to the stranger 
(S1) mice than empty cage (E) (Figures 4B–D). On the other hand, in 
the social novelty phase, PNE group spent less interaction time with a 
new stranger (S2) and more interaction time with a now familiar 

mouse (S1) compared to control group (Figures 4F–H), suggesting 
that the social novelty preference was impaired in PNE mice.

We next evaluated adult neurogenesis in the dorsal and ventral 
areas of hippocampus in PNE mice. PNE mice exhibited a decreased 
number of newborn neurons (BrdU+/NeuN+) in the ventral 
hippocampus compared to controls (Figures 5A,B). We did not detect 
the differences between control and PNE mice in dorsal area of 
hippocampus (Figures 5A,B). These results were consistent with our 
previous study in PNE mice (Zhou et al., 2024). Cell density of DCX+ 
immature neurons was reduced in the ventral, not in the dorsal, 
hippocampus in PNE mice (Figures 5C,D).

3.4 IQSEC2 KO and NLGN3-R451C KI mice 
show impaired adult neurogenesis in the 
ventral hippocampus

Based on these results, we hypothesized that impaired adult 
neurogenesis in the ventral hippocampus is a common 
characteristic in ASD model mice. Both IQSEC2 KO mice and 
NLGN3-R451C KI mice exhibited autistic behaviors in our 

FIGURE 3

Reduction of adult hippocampal neurogenesis is observed in VPA-exposed mice. (A) Representative immunofluorescence images showing BrdU (red) 
and NeuN (green) co-labeling in dorsal and ventral hippocampus of control and VPA mice. BrdU/NeuN double-positive cells indicate newborn 
neurons. Inset represents zooming in of the location indicated by a square on the main image. Arrows indicate BrdU/NeuN double-positive cells. Scale 
bars = 100 μm or 20 μm (insets). (B) Quantification reveals a significant reduction in the number of BrdU+/NeuN+ cells in both dorsal and ventral 
hippocampus of VPA mice compared to controls. (C) Immunofluorescence images of doublecortin (DCX, red)-positive cells in dorsal and ventral 
hippocampus. The brain structure was visualized with DAPI (blue). Inset represents zooming in of the location indicated by a square on the main image. 
An arrow indicates DAPI/DCX double-positive cells. Scale bars = 100 μm or 20 μm (inset). (D) The cell density of DCX-positive immature neurons 
shows a significant decrease in both dorsal and ventral hippocampus of VPA mice compared to controls, indicating impaired neurogenesis. Results are 
presented as mean ± SEM, *p < 0.05, **p < 0.01, Student’s t-test.
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previous studies (Tabuchi et  al., 2007; Mehta et  al., 2021; Cao 
et al., 2022). To address the hypothesis, we employed the same 
strategies using BrdU, NeuN, and DCX immunostaining on 
IQSEC2 KO and NLGN3-R451C KI mice. In IQSEC2 KO mice, 
the number of BrdU/NeuN double-positive cells significantly 
decreased in the ventral hippocampus (Figure 6A). However, the 

cell density of DCX positive cells was similar between the dorsal 
and ventral areas (Figure  6B). In NLGN3-R451C KI mice, the 
number of BrdU+/NeuN+ cells was significantly decreased in the 
ventral, but not dorsal, hippocampus (Figure 6C). The density of 
DCX positive cells was also selectively decreased in the ventral 
hippocampus in NLGN3-R451C KI mice (Figure  6D). These 

FIGURE 4

Social behavior deficits are observed in prenatal nicotine-exposed (PNE) mice. (A) Diagram of the social preference test setup. (B) Heatmap images of 
exploratory behavior in PNE and control mice during the social preference phase. (C,D) Quantification of time spent in each area (C) and contact 
preference (D) during the social preference phase indicates no significant difference between PNE and control mice. (E–H) Social novelty preference 
test: diagram (E), heatmap images (F), and quantification (G–H) show reduced preference for a novel stranger (S2) in PNE mice, indicating impaired 
social novelty recognition. Results are presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, unpaired student’s t-test was applied to compare 
Con vs. VPA; paired student’s t-test was applied to compare S1 vs. E.
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results suggest that the reduction of adult hippocampal 
neurogenesis in the ventral area may be the common phenotype 
in autistic model mice.

4 Discussion

In this study, we conducted the comprehensive and region-specific 
evaluation of adult hippocampal neurogenesis in the ventral and 
dorsal regions across various ASD mouse models exhibiting social 
interaction deficits. VPA mice exhibited severe ASD-like behaviors, 
characterized by reduced social preference and social novelty 
preference in the three-chamber test, and impaired adult hippocampal 
neurogenesis in both dorsal and ventral DG regions. Furthermore, 
we found that PNE mice exhibited a reduced social novelty preference, 
and that the adult hippocampal neurogenesis was selectively impaired 
in the ventral DG, consistent with our previous findings (Zhou et al., 
2024). To our knowledge, no previous studies have examined adult 
hippocampal neurogenesis in IQSEC KO mice. In this study, 
we observed the region-specific impairment of adult hippocampal 
neurogenesis in IQSEC2 KO mice and NLGN3-R451C KI mice.

Since Rodier et  al. (1996) successfully developed the 
VPA-exposure mouse model, VPA mice have been widely used as 
models for ASD Typically, 300–600 mg/kg of VPA is commonly 
administered to pregnant females at E12.5–13.5 (Larner et al., 2021; 
Alavi et al., 2024). However, teratogenic effects, such as ear and tail 
malformations, are observed in rodents subjected to 500 or 600 mg/
kg (Dufour-Rainfray et al., 2010; Favre et al., 2013; Kataoka et al., 
2013; Sivasangari and Rajan, 2022), and high mortality of dams 
exposed to 600 mg/kg has been reported in rats (Sabers et al., 2014), 
although significant mortality in offspring at 300–600 mg/kg is 
uncommon. In our study, we initially administrated various dosages 
of VPA intraperitoneally on E13.5. Unexpectedly, high mortality was 
observed, prompting us to use the lower dosage of 150 mg/kg for 
subsequent experiments. This observed mortality may be attributed 
to species differences, the administration route, the duration of VPA 
exposure, and its broad HDAC inhibitory activity (Larner et al., 2021). 
Additionally, the effects of VPA on neuronal development may vary 
depending on the timing of VPA administration during embryonic 
days 12.5–14.5 (Schneider and Przewłocki, 2005; Kataoka et al., 2013). 
By using 150 mg/kg, we excluded the fatal and morphological effects 
of the drug on offsprings.

FIGURE 5

Reduction of adult hippocampal neurogenesis is selectively observed in the ventral hippocampus of PNE mice. (A) Representative 
immunofluorescence images showing BrdU (red) and NeuN (green) labeling in the dorsal and ventral hippocampus of control and PNE mice. Inset 
represents zooming in of the location indicated by a square on the main image. Arrows indicate BrdU/NeuN double-positive cells. Scale bars = 100 μm 
or 20 μm (insets). (B) Quantification reveals a reduction in BrdU+/NeuN+ cells in the ventral hippocampus of PNE mice compared to controls. (C,D) 
DCX staining (red) (C) and quantification (D) show reduced cell density of DCX-positive immature neurons (per mm) in the ventral hippocampus of 
PNE mice. In Figure 5C, the brain structure was visualized with DAPI (blue). Inset represents zooming in of the location indicated by a square on the 
main image. An arrow indicates DAPI/DCX double-positive cells. Scale bars = 100 μm or 20 μm (inset). Results are presented as mean ± SEM, *p < 0.05, 
**p < 0.01, Student’s t-test.
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A deficit in sociability is a core feature of ASD and has been 
studied in the VPA mouse models (Kataoka et al., 2013; Fujimura 
et al., 2016; Larner et al., 2021). We observed the decreased social 
preference and social novelty preference in three-chamber test in our 
lower dosage VPA exposure model mice. This indicates that the 
low-dosage VPA method may be more suitable to create simple ASD 
model with minimal neurological complications.

Adult hippocampal neurogenesis is a complex and 
dynamic process involving multiple stages, regulated by various 
intrinsic and extrinsic factors. Dysregulation of the neurogenesis 
in the hippocampus has been proposed as an underlying 
mechanism of ASD (Bicker et al., 2021; Liu et al., 2023; Barón-
Mendoza et  al., 2024). VPA, an HDAC inhibitor, has the 
potential to disrupt neurogenesis by altering transcriptional 
regulation. Juliandi et al. reported that prenatal exposure to VPA 
caused an increase in immature newborn neurons in the 
hippocampus at E14.5, which depleted the NPCs pool and led to 
impaired neurogenesis at PND91 (Juliandi et  al., 2015). Kinjo 
et  al. found that continuous intraperitoneal VPA injections 
during embryonic development increased newly born neurons at 
P30 in both the anterior and posterior DG (Kinjo et al., 2019). 
Similarly, Watanabe et  al. observed an increase in newborn 
mature neurons at PND77 following prenatal VPA 
exposure (Watanabe et al., 2019). VPA dose-dependently reduces 
cell proliferation and induces cell differentiation in the NPCs 
through the upregulation of G1-phase cyclin-dependent kinase 
inhibitors, without affecting apoptosis (Hsieh et al., 2004; Juliandi 
et al., 2015; Fujimura et al., 2016). These findings suggest that 
prenatal VPA exposure may initially stimulate neurogenesis in the 

hippocampus during early development, but ultimately impair 
adult neurogenesis as result of a rebound phenomenon. In our 
study, we observed a decrease in the number of newborn neurons 
and a reduction in the cell density of immature neurons in 
DG. This could result from a later phase of neurogenesis 
disruption, where the timing of depletion may be influenced by 
VPA dosage.

PNE mice, induced by administering nicotine to pregnant 
animals, have been widely used as models for ASD. Nicotine 
impacts the developing hippocampus by dysregulating cholinergic 
function through binding α2β4 and α7 nAChRs, which are highly 
expressed in the hippocampus (Zeid et al., 2018). Although the 
effects of nicotine on adult neurogenesis remain unclear, α7 
nAChRs play a critical role in the survival, maturation, and 
integration of adult-born neurons in the DG, as demonstrated by 
the decreased survival rates and abnormal dendritic structure in 
new neurons of α7KO mice (Campbell et al., 2010). In the current 
study, we observed that PNE mice showed less preference for a 
new stranger than the control mice, consistent with results from 
previous study (Alkam et  al., 2013). We also confirmed in the 
previous study that PNE model mice exhibit autistic behaviors, 
such as increased anxiety and deficits in social interactions (Zhou 
et  al., 2024). Both studies revealed impairments in adult 
neurogenesis in PNE mice, a key feature associated with 
ASD. Given these results, the PNE mouse model may be a strong 
candidate for ASD research. However, it is also noteworthy that 
long-term nicotine exposure and subsequent withdrawal may 
enhance adult hippocampal neurogenesis, warranting further 
investigation (Cohen et al., 2015).

FIGURE 6

Reduction of adult hippocampal neurogenesis is selectively observed in the ventral hippocampus of IQSEC2 KO and NLGN3-R451C KI mice. (A,C) 
Quantification of BrdU+/NeuN+ double-positive cells in the hippocampus of IQSEC2-KO (A) and NLGN3-R451C KI (C) mice. Reduction in BrdU+/
NeuN+ cells is observed in the ventral hippocampus of both mouse models. (B,D) Quantification of DCX-positive cells in the hippocampus of IQSEC2-
KO (B) and NLGN3-R451C KI (D) mice. DCX-positive cell density was reduced in the ventral hippocampus of NLGN3-R451C KI mice compared to WT 
controls. Results are presented as mean ± SEM, *p < 0.05, **p < 0.01, Student’s t-test.
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The hippocampus is functionally segmented into two 
compartments: the dorsal segment is related to spatial navigation 
and memory, and the ventral segment is related to stress and 
emotion. The ventral region is particularly relevant to ASD-like 
characteristics due to its connections with the amygdala, 
hypothalamus, and medial prefrontal cortex (Guo et al., 2024). 
However, histological studies focusing on these regions separately 
are scarce. In this study, we found that the adult neurogenesis in 
the ventral DG was attenuated across various ASD mouse models, 
despite the distinct monogenic and epigenetic etiologies. 
Supporting our results, Gioia et al. reported that a reduction in 
neuroblast within the ventral hippocampus was associated with 
social behavior deficits in NLGN3-R451C KI mice (Gioia et al., 
2023). Additionally, we observed a decrease in DCX+ immature 
neurons in the ventral hippocampus of VPA, PNE, and NLGN3-
R451C KI mice, while no such change was observed in IQSEC2 
KO mice. This indicates that the former models are more likely 
affected by impaired proliferation or differentiation of immature 
neurons, whereas the latter may involve disruption in apoptosis or 
survival of mature neurons. VPA causes syndromic effects and 
influences broad brain regions through its HDAC inhibitory 
activity, raising the possibility that the observed impairments in 
adult hippocampal neurogenesis in both the ventral and dorsal 
regions in our study may not solely reflect ASD-specific 
mechanisms but could result from generalized neurotoxic effects. 
However, our results suggest that disturbed adult neurogenesis in 
the ventral hippocampus may contribute to the neuronal 
mechanisms underlying social behavior deficits in ASD, despite 
the different underlying pathways.

One of the limitations of this research is the methodology to 
estimate the total numbers of the BrdU/NeuN double-positive cells 
and DCX positive cells in the brain. Recently, brain transparent and 
3D-scanning techniques have been available to count all the cells in 
the whole brain (Mano et al., 2018). These methods will provide 
more information on the spatial distribution of adult neurogenesis 
in the hippocampus. Furthermore, considering the growing 
identification of genetic mutations in ASD patients, further research 
to include diverse genetic models will be crucial for deepening our 
understanding of ASD mechanisms.

5 Conclusion

In this study, we  confirmed ASD-like social interaction 
deficit in mice treated with the prenatal exposure to valproic 
acid and nicotine. Additionally, we found that the adult neurogenesis 
in the ventral DG was impaired across several autistic mouse models, 
including IQSEC2 KO mice and NLGN3-R451C KI mice. These 
results suggest that disrupted adult neurogenesis in the ventral 
hippocampus may be a hallmark of ASD pathology.
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