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The brain can be seen as a self-organized dynamical system that optimizes

information processing and storage capabilities. This is supported by studies

across scales, from small neuronal assemblies to the whole brain, where

neuronal activity exhibits features typically associated with phase transitions in

statistical physics. Such a critical state is characterized by the emergence of

scale-free statistics as captured, for example, by the sizes and durations of

activity avalanches corresponding to a cascading process of information flow.

Another phenomenon observed during sleep, under anesthesia, and in in vitro

cultures, is that cortical and hippocampal neuronal networks alternate between

“up” and “down” states characterized by very distinct firing rates. Previous

theoretical work has been able to relate these two concepts and proposed that

only up states are critical whereas down states are subcritical, also indicating

that the brain spontaneously transitions between the two. Using high-speed

high-resolution calcium imaging recordings of neuronal cultures, we test this

hypothesis here by analyzing the neuronal avalanche statistics in populations

of thousands of neurons during “up” and “down” states separately. We find

that both “up” and “down” states can exhibit scale-free behavior when taking

into account their intrinsic time scales. In particular, the statistical signature of

“down” states is indistinguishable from those observed previously in cultures

without “up” states. We show that such behavior can not be explained by

network models of non-conservative leaky integrate-and-fire neurons with

short-term synaptic depression, even when realistic noise levels, spatial network

embeddings, and heterogeneous populations are taken into account, which

instead exhibits behavior consistent with previous theoretical models. Similar

di�erences were also observed when taking into consideration finite-size scaling

e�ects, suggesting that the intrinsic dynamics and self-organizationmechanisms

of these cultures might be more complex than previously thought. In particular,

our findings point to the existence of di�erent mechanisms of neuronal

communication, with di�erent time scales, acting during either high-activity or

low-activity states, potentially requiring di�erent plasticity mechanisms.
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up and down states, critical brain dynamics, neuronal avalanches, dissociated cultures,
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1 Introduction

The description of neuronal dynamics within the framework of

critical phenomena has become commonplace amongst physicists

in the last decade or so (Chialvo, 2010; Massobrio et al., 2015;

O’Byrne and Jerbi, 2022). The first signatures of criticality in the

brain were depicted as neuronal avalanches in organotypic cortical

cultures (Beggs and Plenz, 2003, 2004), where sequences of high-

frequency neuronal activations across a small population could

be described by scale-free statistics of their sizes and durations

distributions. Nowadays, similar critical signatures have been

observed across many systems and preparations: from power-law

statistics of correlations in whole-brain recordings (Tagliazucchi

et al., 2012; Haimovici et al., 2013; Ponce-Alvarez et al., 2018) to

neuronal avalanches in slices (Gireesh and Plenz, 2008), dissociated

cultures (Pasquale et al., 2008; Yaghoubi et al., 2018), and in

vivo (Petermann et al., 2009; Bellay et al., 2015; Yu et al., 2017;

Priesemann et al., 2013; Curic et al., 2021; Rabus et al., 2023). They

indicate the emergence of complex spatiotemporal dynamics with

statistics compatible with a system being in the neighborhood of a

critical point, in particular, near a second-order phase transition, or

of a critical region (Moretti and Muñoz, 2013).

From a statistical physics point of view, neuronal avalanches

are interpreted as a branching process (Beggs and Plenz, 2003;

Korchinski et al., 2021), where an active neuron has a finite

probability of activating its neighbors. When each active neuron

induces, on average, the firing of a single neighbor, the system is

thought to be in a critical state, where the activity neither explodes

nor always dies out quickly. This results in a scale-free distribution

of activation sequences observables, namely the size and duration

of the neuronal avalanches. A key assumption in this picture is

that there exists a separation of time scales, where the spontaneous

activations of neurons (those that initiate an avalanche) happen

much more slowly than the spreading of that avalanche across the

population, i.e., there only exists a single avalanche at any given

time. However, in most neuronal systems, that is far from the

truth (Orlandi et al., 2013; Williams-García et al., 2017), and many

avalanches can coexist simultaneously, resulting in a more difficult

interpretation of the observed statistics (Korchinski et al., 2021).

Until recently (Yaghoubi et al., 2018; Yu et al., 2017),

neuronal avalanches had mostly been described in systems

where the network switches between periods of high and low-

frequency activity such that the periods of high activity dominated

the neuronal avalanche statistics. In vivo and in some slice

preparations, such a switching behavior corresponds to the so-

called “up” and “down” states, i.e., slow cortical oscillations

present during slow-wave sleep (Sanchez-Vives and McCormick,

2000) that are initiated by pyramidal neurons near layer V and

propagate toward the other cortical layers. In other preparations,

like dissociated cultures (Orlandi et al., 2013), the bistable behavior

is more akin to hippocampal sharp wave-ripples (Levenstein

et al., 2018), which also have a well-defined size and duration.

Theoretically, this phenomenon has often been described in

terms of synchronization (Penn et al., 2016) or as spontaneous

switching around a bifurcation (Millman et al., 2010). However,

both cortical up and down states and hippocampal short-wave

ripples have a strong spatial component, initiating at specific sites

and propagating throughout the tissue, reminiscent of a classical

spatially-extended excitable system (Orlandi and Casademunt,

2017).

The specific hypothesis of spontaneous switching around a

bifurcation implies that the dynamics in the high-activity state are

critical whereas it is subcritical in the low-activity state (Millman

et al., 2010). Here, we test this hypothesis explicitly in neuronal

cultures that do show alternating activity behavior by analyzing

the two different states separately. We find that both high-

activity and low-activity states can exhibit similar critical signatures

if appropriate time scales are chosen for defining neuronal

avalanches. These results point to the existence of different

mechanisms of neuronal communication, with different time

scales, acting during either high-activity or low-activity states. We

also show that detailed model simulations of dissociated cultures

follow the aforementioned hypothesis and are, thus, incompatible

with the experimental observations for the low-activity state. This

suggests the existence of processes with long timescales (of the

order of a few hundred ms) that play a significant role in shaping

the dynamics during the low-activity state that are currently not

captured by existing models.

2 Materials and methods

2.1 Hippocampal cultures

Cultures from dissociated hippocampal neurons and glial cells,

prepared from newborn P0 Sprague-Dawley rats, were plated on

Si chips of 1 mm thickness, and 1 cm2 surface area, placed on

individual 24-well plate wells; as described previously (Colicos

et al., 2001; Girotto et al., 2013). Each chip was Matrigel-coated

(Beckton Dickinson) and placed in Basal Medium Eagle (BME).

Cells were initially plated at a density of 30,000 cells/ml. The culture

medium was not changed during the first week and every 4 days

thereafter.

2.2 Calcium imaging

Cultures were grown for up to 2–3 weeks before imaging. Prior

to imaging, cultures were incubated with Fluo-4 calcium indicator

for 20 min. Afterward, cultures were washed and placed in an

individual well with an extracellular bath solution (EBS) containing

135 mM NaCl, 10 mM glucose, 3 mM CaCl2, 5 mM KCl, 2 mM

MgCl2 and 5 mM Hepes, pH was adjusted to 7.3 with NaOH,

and osmolarity to 310 mOsm with Sorbital. Calcium imaging was

performed following References (Colicos et al., 2001; Yaghoubi

et al., 2018). In brief, we used a high temporal resolution camera

that allowed us to record neuronal activity at 200 fps (Hammamatsu

Orca-Flash 4.0) on an upright microscope with low magnification

(field of view of L ≈ 500 µm). We recorded the spontaneous, non-

stimulated fluorescence neuronal activity of up to 1,500 neurons

for 20 min (pixel resolution of 0.65µm/pixel). With this setup we

are able to record most neuronal activity within a large field of view

with single-cell resolution and a temporal resolution comparable

to the fastest time-scales of synaptic integration; avoiding several
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FIGURE 1

Calcium imaging analysis workflow. (A) 1,000–1,500 cells are automatically segmented within the field of view based on their average fluorescence.

Inset: Zoom in on the field of view with four characteristic cells highlighted. Right: Timeseries from the same 4 highlighted cells as well as their

inferred spike trains (black bars) before (B) and after (C) PTX application. For this particular example, we imaged the same cells before and after PTX.

Only a smaller time window out of the 20 min recordings is shown.

of the drawbacks caused by spatial and temporal sub-sampling and

hidden neurons (Ribeiro et al., 2014; Levina and Priesemann, 2017).

2.3 Pharmacology

In a subset of experiments, we blocked inhibitory connections

by performing bath application of picrotoxin (PTX), a

noncompetitive GABAA receptor antagonist, with a concentration

of 50 µM during 15 min at room temperature after the first

imaging session. Cultures were then typically imaged in a different

field of view for an additional 20 min.

2.4 Data preprocessing

Data preprocessing of calcium imaging experiments was

performed as previously described in Fernández-García et al.

(2020) using the NETCAL software (Orlandi et al., 2017) platform

(see Figure 1). In brief, cell ROIs were automatically detected using

a simple thresholding procedure on the time-averaged image of the

recording and posteriorly cleaned up with morphological opening

operations. Time series for each ROI were extracted, detrended,

and normalized to 1F/F0 units (where F0 was computed prior to

the detrending operation). Spike inference was performed using the

OASIS algorithm (Friedrich et al., 2017). See Table 1 for a summary

of the list of recording experiments and their properties.

2.5 Mathematical model and simulations

The dynamics of cultures from dissociated neurons were

modeled and simulated following (Orlandi et al., 2013; Orlandi and

TABLE 1 Summary of the properties of di�erent recordings.

Recording
#

Type #
Cells

〈ISI〉up
(ms)

〈ISI〉down
(ms)

1 E + I 1,374 216 2,955

2 E + I 1,510 211 1,438

3 E 1,426 210 419

4 E + I 825 86 449

5 E 813 407 1,444

6 E + I 998 70 245

7 E 1,001 248 613

8 E + I 893 106 620

9 E 875 404 1409

This includes the presence (E + I) or absence (E) of active inhibitory cells as well as the average

interspike interval (ISI) per neuron 〈ISI〉 during the up and down states.

Casademunt, 2017). In brief, for the ’homogeneous’ simulations

(simulations 1 and 2), single neuron dynamics are modeled by a

quadratic integrate and fire model with adaptation (Alvarez-Lacalle

and Moses, 2009; Izhikevich, 2003, 2007), i.e.,

Cv̇ = k(v− vr)(v− vt)− u+ I + I0 + η, (1)

τau̇ = b(v− vr)− u, (2)

if v ≥ vp, then v← vc, u← u+ d. (3)

Here, Equation 1 corresponds to the dynamics of the soma

membrane potential v(t) and vr = −60 mV and vt = −40 mV

are the resting and threshold potentials, respectively. C = 100

ms is the normalized membrane capacitance and u models an

inhibitory current that represents internal slow currents generated

by the activation of ion channels. I accounts for the synaptic
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inputs from other neurons. I0 represents the spontaneous release

of synaptic vesicles (minis). The time between successive minis is

often modeled as a memoryless, exponential process (Fatt and Katz,

1952). Hence, the number of minis released in a given interval

will follow a Poisson process. The rate of this process depends on

the experimental conditions (Ivenshitz and Segal, 2010), but in our

simulations, and following previous work (Orlandi et al., 2013), we

selected a frequency of λ = 0.1 ms−1, which is chosen to produce a

spontaneous firing rate of the neurons of the order of 0.1 Hz. Each

mini generates a current with amplitude gm = 30 mVwhich decays

exponentially with a time constant τm = 10 ms. η is a white noise

term with autocorrelation 〈η(t)η(t′)〉 = 2gsδ(t − t′) with gs = 30

mV. Equation 2 is the evolution of the slow currents and τa = 33

ms, k = 0.7 mV−1, b = −2 and d = 100 mV are parameters that

control recovery and adaptation.

Every time a given neuron i fires, it produces an (excitatory or

inhibitory) current on its output neighbors of the form

Ii(t, tm) = gDi(tm) exp

(

t − tm

τ

)

2(t − tm) (4)

where tm is the spike time and g is the synaptic strength. Its

value for excitatory synapses is used as a control parameter to

obtain the desired time interval separating subsequent up states

(which is achieved for g ≈ 40 mV) while the inhibitory strength

is fixed at −50 mV. τ is the characteristic time constant (10 ms

for excitatory currents and 20 ms for inhibitory ones). 2(t) is the

Heaviside function and D short-term synaptic depression (STD).

The evolution of STD is described by

Ḋ =
1

τD
(1− D)− (1− β)Dδ(t − tm), (5)

where τD (2 s for excitatory and 0.2 s for inhibitory cells), is

the synaptic recovery time and β (0.8 for excitatory and 0.95 for

inhibitory cells) controls the level of depression after each spike.

To mimic the experimental cultures and establish realistic

connectivity patterns, neurons were placed randomly on a square

region with 10 mm sidelength until a density of ρ = 800

neurons/mm2 was reached (80,000 neurons total). For each neuron,

an axon was grown as a biased random walk with total length given

by a Rayleigh distribution with variance 900 µm2. Starting from

the cell body a starting angular direction was picked randomly and

a segment of 10 µm was grown. At the end of the segment, a

new direction was chosen centered on the previous one following

a Gaussian distribution with a standard deviation of 15 ◦. This

process was repeated until the desired total length was reached.

For each neuron, a dendritic tree was modeled as an effective

circular area of interaction with a radius obtained from a Gaussian

distribution with mean 150 µm and standard deviation 40 µm. If

an axon crossed the dendritic tree of another neuron, a connection

was established with probability 0.13. Finally, 20 % of the neurons

were randomly chosen to be inhibitory and the remaining ones

excitatory.

For the “heterogeneous” simulations (simulations 3 and 4) we

lowered the standard excitatory population to 70% and added 10%

of excitatory bursty cells (accomplished by changing vc = −40 and
d = 50). To all excitatory cells, we changed the resting membrane

potential to a base value of vr = −62mV and added an offset drawn

from a Rayleigh distribution with standard deviation σ = 2 mV, to

add variability to the firing rates consistent with experimental data.

Each simulation had a fixed run length of 1 h and was

simulated with a first-order Euler algorithm with a time step

of 0.1 ms. Random numbers were generated with the MTGP32

implementation of the Mersenne Twister for the GPU (Saito and

Matsumoto, 2013) and initialized with a random seed for each

simulation. In total, we ran simulations in 4 different conditions:

simulations 1 and 2 corresponded to homogeneous networks, and

3 and 4 to heterogeneous ones. In simulations 2 and 4 wemimicked

the effect of blocking inhibition by setting the strength of inhibitory

connections to 0.

2.6 Detection of up and down states

The detection of up and down states is done based on

thresholding the population firing rate. The firing rate for

each frame is defined as the number of spikes in that frame

normalized by the number of neurons. A Gaussian kernel

with σ = 5 frames for experimentally recorded data and

σ = 20 frames for simulated data is used to smooth the

firing rate traces. To separate up and down states we used

a Schmitt trigger (Taub and Schilling, 1977), thresholding the

normalized activity with an upper threshold = 0.001 and a lower

threshold = 0.0003. We kept the same criteria for all recordings

and simulations.

2.7 Neuronal avalanches and scaling
collapse procedure

Following the standard approach for spiking data (Friedman

et al., 2012; Pasquale et al., 2008), a neuronal avalanche is defined as

the largest sequence of consecutive time bins containing spikes in

every single time bin, separated by time bins during which none

of the neurons in the culture fire (see Supplementary Figure S1

for some examples). The avalanche duration, T, corresponds to

the number of time bins and the avalanche size, S, is the total

number of spikes over the duration of an avalanche. Based on

this definition, for a fixed number of neurons, it is expected

that the choice of the size of the time bin affects the avalanche

statistics, specifically the size S and duration T of avalanches.

To capture this, we follow here the standard finite size scaling

approach used in the context of phase transitions (see, for

example, Christensen and Moloney, 2005). In our context, its

original formulation in terms of a varying number of neurons

can be recast in terms of a varying size of the time bin. It is

based on the hypothesis that for a fixed number of neurons,

the effect of temporal bin size on scale-free avalanche statistics

(e.g., avalanche size distribution, P(S)) can be taken into account

as follows:

P(S) ∼ S−τ × f(S/binβS ). (6)

This functional form indicates, for suitably chosen scaling

exponents τ and βS, the distributions for different bin sizes can

be collapsed onto the scaling function f by plotting P(S) × Sτ
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vs S/binβS . In the case of exponential-like avalanche statistics

(τ = 0), one can achieve a similar data collapse with a

scaling exponent βS when plotting P(S) × binβS vs S/binβS . In

both cases, to numerically determine the values of the scaling

exponent(s) the distinctive features of each graph need to align

horizontally for the largest arguments aka the right-hand side of

the graph (Christensen and Moloney, 2005), which is typically

assessed by eye as we do here and allows us to estimate the

uncertainties.

To replicate the experimental field of view (which covers only

a small fraction of the whole culture) in the simulations, we only

analyzed the avalanche statistics of neurons within a circular patch

of radius r = 0.5 mm for the E simulations and r = 0.8 mm in the

E + I simulations. This radius was chosen to ensure that the total

activity rate in the up states was of the order of 1 event per frame

or time step (0.1 ms). Each of these patches contained in total 400

to 1,000 neurons. To increase the number of avalanches and obtain

reliable estimates of the avalanche statistics, for each simulation and

each experiment, we randomly selected 100 different local patches

consisting of 50% of the neurons and combined the avalanches

from all patches into a single distribution. This approach also allows

us to obtain avalanche statistics for different temporal bin sizes.

2.8 p-value estimation for power-law
distributions

After identifying the optimal exponents α and β , using the

scaling collapse procedure (Equation 6), our next step is to assess

the validity of the power-law model as a hypothesis for the specific

recording or simulation. To achieve this, we check whether we

can identify an extended range for the size or duration in the

avalanche distribution function that gives a reasonably high p-

value (> 0.1). A detailed description of the process of identifying

the range is presented in the captions of Supplementary Figure S2.

To find the p-value, we first used the Kolmogorov-Smirnov (KS)

statistic. KS statistic quantifies the distance between two probability

distributions (Press et al., 2007), which is defined as the maximum

distance between the cumulative distribution functions (CDFs) of

the two distributions (here data and fitted model):

de = max |Se(x)− Pe(x)|, Xlow ≤ x ≤ Xhigh (7)

Here, Se(x) is the CDF of the empirical data, and Pe(x) is

the CDF corresponding to the fitted model. The fitted model

is estimated using the power-law scaling procedure related to

Equation 6. The reported p-value is the probability of observing

a KS value bigger than de for synthetic data generated by the

fitted model and provides a measure of whether it is likely that

the empirical data do indeed follow the fitted model. One can

show that its value can be calculated from the following theoretical

expression (Deluca and Corral, 2013):

p−value = 2

∞
∑

i=1
(−1)i−1 exp

[

−2i2(de
√
n+0.12de+0.11de/

√
n)2

]

,

(8)

where n is the number of samples in the data set. As mentioned

above, to enhance our statistics we identified avalanches over

100 iterations (for both experimental and simulation data). The

reported p-value is calculated over each of those iterations. The

reported p-value is the mean ± standard error of the mean (SEM),

where the mean value and SEM are calculated over 100 iterations.

See Supplementary Figure S2 for a representative example of the

procedure and Supplementary Table S2 for fitting details.

3 Results

3.1 Neuronal cultures

The overall activity of two to three-week-old neuronal cultures

typically switches between high activity periods or “up states” and

low activity periods or ‘down states‘ as shown in Figure 2. The

up states—often also referred to as network bursts—occur quasi-

periodically and involve the vastmajority of all neurons. As Figure 2

also shows, their duration is quite regular as well. The activity

during up states can be understood as a set of causal cascades of

induced firings across the observed population of neurons in the

culture, often modeled as a branching process (Beggs and Plenz,

2003). The cascade of neuronal activity is studied in the framework

of neuronal avalanches as described in the Section 2. Previous

studies have found that neuronal avalanches exhibit statistics of

a branching process at or close to its critical point (Beggs and

Plenz, 2003; Friedman et al., 2012). In the often-observed case of

a mean-field branching process, the activity propagates on a tree-

like network without feed-back loops and the avalanches follow a

scale-free behavior, i.e.,

P(S) ∼ S−τ (9)

P(T) ∼ T−α (10)

〈T〉(S) ∼ Sγ (11)

where P is the probability distribution function (PDF) of the

associated variable and τ = 1.5, α = 2.0, and γ = 0.5 are the

critical mean-field exponents (Friedman et al., 2012). These critical

exponents—whether they take on mean-field values or not—are

necessarily related through the scaling relation

(α − 1)/(τ − 1) = γ−1, (12)

which provides an additional test for the presence of critical

behavior.

Here, we study the avalanche statistics of the up state and the

down state separately. Due to the vastly different activity levels, the

corresponding ISIs per neuron are also vastly different. For our

experimentally recorded data the single cell ISIs are: ISIup state =
217 ms ± 43 ms and ISIdown state = 1, 065 ms ± 302 ms (mean

± SEM), as follows from Table 1. Nevertheless, we find similar

statistical features across up and down states if the different activity

levels are taken into account by choosing the time bins to define

neuronal avalanches appropriately, being significantly larger for

the down state. Examples of distributions of avalanche sizes and

durations as well as the relation between sizes and durations

are plotted in Figure 3 (see also Supplementary Figures S3–S5).

Indeed, for both the up and down state in Figure 3, we recover

Equations 9, 10, 11 and the exponents are close to the mean-field

values. As Table 2 shows (see also Figure 3), this is often even

true for the up state when we block all inhibitory connections
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A B C

FIGURE 2

(A) Example of a raster plot for an experimental recording (top panel) and its corresponding normalized firing rate (bottom panel) are depicted. The

up and down states are identified by thresholding the firing rate, where bins of data with firing rate > threshold are identified as up state and bins of

data with firing rate less threshold are identified as down state (see section 2 for details). We define Tup and Tdown to measure the lengths of up and

down states as visualized in the bottom panel. (B) Probability Density Functions (PDFs) of Tup, Tdown, Tup/ < Tup >, and Tdown/ < Tdown > are shown,

where each curve represents one of the experimental recordings or simulations (see legends). (C) The mean values of Tup and Tdown for all the

recordings and simulations are shown. Error bars correspond to 75 percentiles and the same color coding as panel (B) is used.

by the application of a saturating concentration (50 µM) of

picrotoxin (see Section 2 for details). Overall, we find that

the majority of experimental recordings have an up state that

is consistent with power-law statistics in their sizes over an

extended range (see Supplementary Table S1). Such power-law

behavior is slightly less prevalent in the down state (Table 2,

Supplementary Table S1), but still prominent. Moreover, in all

cases the scaling relation (Equation 12) holds within the statistical

uncertainties (Supplementary Figure S6), consistent with critical

behavior.

Our analysis of the experimental data shows in particular that

the statistical behavior of the neuronal avalanches in the down state

can be statistically indistinguishable from the up state, especially if

one focuses on τ , see Figure 3 and Table 2. Note that the different

ranges in duration and sizes (see also Supplementary Table S1)

are due to the shorter relative duration of the down states with

respect to their corresponding ISI, as a comparison with the case of

experimental recordings with continuously low steady-state activity

(which can be interpreted as a system without an up state and

instead being exclusively in a down state) (Yaghoubi et al., 2018)

confirms.

As outlined in the Section 2, in this study we take advantage of a

scaling analysis that also yields critical exponents denoted as βS and

βT that can capture finite size behavior. This provides us with an

additional tool for characterizing the dynamics of neuronal systems

within the framework of neuronal avalanche statistics. As depicted

in Figures 4A, B (see also Supplementary Figure S7), we studied

the scaling properties of two types of distributions: (i) Power-law

scaling which gives us βS (βT) and τ (α), and (ii) Exponential-like

scaling that gives us only βS (βT), for avalanche sizes (durations).

The estimate of the exponents becomes more reliable when the

scaling collapse is obtained for a wider range of varying bin sizes.

The summary of all estimated exponents for (i), along with the

corresponding p-values for the reported critical exponents τ and α,

(see Section 2 for details) for both up and down states, are plotted in

Figure 4C. While the variation in τ and α is rather small, especially

in the up state, this is not the case for βS and, to a lesser degree,

for βT . This higher variability is also visible in Figure 4D, which

displays the corresponding mean values and uncertainties for all

exponents for both the up and down states. Figure 4E displays the

mean values of βS and βT for distributions exhibiting exponential-

like scaling (ii), which exclusively occurs in the down state, see

Table 2.

3.2 Model simulations

The similarity between the up state and the down state in

terms of the neuronal avalanches for our experimental recordings

suggests that either (a) there are different mechanisms of

information processing in this neuronal system with different

associated time scales, or (b) the concept of neuronal avalanches is

not specific enough to establish insight into the differences between

up and down states. To investigate this further, we employed several

computational models that try to mimic the behavior and dynamics

of neuronal cultures as described in Section 2.

In the literature, various computational models exist to describe

up and down state dynamics. From mostly theoretical (Millman

et al., 2010), to those mimicking the conditions of anesthetize

animals (Holcman and Tsodyks, 2006), sleep (Bazhenov et al.,

2002), or acute slices (Jercog et al., 2017; Camassa et al., 2022)

among others. For the case of cultures from dissociated neurons,

the up and down dynamics are better described with their own

model. This is because in dissociated cultures, a down-to-up state

transition can only occur after enough time has passed for the

system to recover from a previous up state (Opitz et al., 2002).
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A B

FIGURE 3

Example distributions of neuronal avalanche sizes and durations for up and down states of experimental data and simulated data are plotted for

di�erent temporal bin sizes, where the bin size of 1 corresponds to the temporal resolution of the recordings (5 ms) and the simulations (0.1 ms),

respectively. (A) The up state is from experimental recording 3, the down state is from recording 1. (B) Simulation 1 is shown but all simulations

exhibit almost identical avalanche statistics.

Once the system has recovered, spontaneous activations can be

quickly amplified in a feedback loop due to the presence of

recurrent connections, as described by Orlandi et al. (2013). On

the other hand, transitions from up to down state are mediated

primarily by the depletion of neurotransmitters caused by the high-

frequency firings during the up state (Staley et al., 1998; Opitz

et al., 2002). The models used here are able to reproduce most

of these macroscopic observables as Figure 2 shows. However,

when applying the samemethodology to characterize the avalanche

statistics as in the experimental data, there are important

differences. In the simulations, the avalanches observed during

the up states followed power-law distributions with slopes of

τ ≃ −1.5 and α ≃ −1.8 for sizes and durations, respectively,

see Figure 3B left and Table 2. These avalanche statistics also

satisfied the scaling relation (Equation 12) within the statistical

uncertainties (Supplementary Figure S6). During the down state,

however, the avalanche statistics were always far from a power-law

distribution, suggesting a sub-critical or exponential-like behavior

instead (see Figure 3B right). As a result, the down state in the

simulated data is absent from Figure 4D.

Although the scaling exponents τ and α were largely consistent

during the up states with those observed experimentally (see

Table 2), the scaling exponents βs and βT differed substantially

from the experimental ones as follows from Figures 4D, E. The

measured exponents across the different simulation conditions

were robust, with little variability. The presence or absence of

inhibitory connections, as well as heterogeneous cell populations

(see Section 2), produced no significant differences in the avalanche

statistics. Changes in connectivity strength, synaptic depression

parameters (depression strength and recovery time constant), and

the presence of other synaptic currents (NMDA), produced no

changes in the reported exponents either (not shown). Similarly,

although the metric properties of the network structure have a large

impact on the presence of the up down transition (Orlandi and

Casademunt, 2021), changes in connectivity, i.e., between metric-

embedded to a random graph, also resulted in no changes in any of

the exponents.

4 Discussion

In this work, we present for the first time the simultaneous

characterization of neuronal avalanches in dissociated neuronal

cultures during both up and down states. In several cultures,

the avalanche statistics during both up and down states show

critical behavior, as indicated by avalanche sizes and durations. In

addition, the associated critical exponents satisfy the corresponding

scaling relation (Equation 12), supporting the presence of critical

behavior. These exponents are largely within the range of

those of a critical mean-field branching process, in line with
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TABLE 2 Critical exponents for all of the recordings and simulations.

Fitted curve τ βS α βT γ

Experiments: up state

Recording 1 Power-law 1.3± 0.1 1.0± 0.2 1.8± 0.2 0.3± 0.1 0.48± 0.09

Recording 2 Power-law 1.6± 0.1 0.6± 0.1 2.1± 0.2 0.4± 0.1 0.41± 0.06

Recording 3 Power-law 1.8± 0.1 1.5± 0.1 2.1± 0.1 1.2± 0.1 0.78± 0.01

Recording 4 Power-law 1.5± 0.1 0.3± 0.1 1.9± 0.2 0.3± 0.1 0.54± 0.04

Recording 5 None NA NA NA NA 0.76± 0.04

Recording 6 None NA NA NA NA 0.56± 0.01

Recording 7 None NA NA NA NA 0.75± 0.04

Recording 8 None NA NA NA NA 0.63± 0.02

Recording 9 Power-law 1.7± 0.1 1.1± 0.1 1.9± 0.1 0.5± 0.1 0.77± 0.05

Experiments: down state

Recording 1 Power-law 1.5± 0.1 1.8± 0.1 1.7± 0.1 1.2± 0.1 0.73± 0.02

Recording 2 Power-law 1.3± 0.1 1.5± 0.2 1.6± 0.1 0.8± 0.2 0.72± 0.02

Recording 3 Exponential NA 0.7± 0.1 NA 0.2± 0.1 0.51± 0.07

Recording 4 Exponential NA 0.8± 0.1 NA 0.5± 0.1 0.78± 0.05

Recording 5 Power-law 1.1± 0.1 1.0± 0.1 1.2± 0.1 0.6± 0.1 0.70± 0.09

Recording 6 Exponential NA 1.1± 0.2 NA 0.6± 0.1 0.80± 0.05

Recording 7 Exponential NA 1.1± 0.1 NA 0.7± 0.1 0.71± 0.05

Recording 8 Exponential NA 0.8± 0.1 NA 0.5± 0.1 0.80± 0.06

Recording 9 Exponential NA 1.3± 0.1 NA 1.0± 0.1 0.75± 0.05

Simulations: up state

Simulation 1 Power-law 1.5± 0.1 2.4± 0.1 1.8± 0.1 2.0± 0.1 0.75± 0.01

Simulation 2 Power-law 1.6± 0.1 2.6± 0.1 1.8± 0.1 2.0± 0.1 0.74± 0.01

Simulation 3 Power-law 1.6± 0.1 2.4± 0.1 1.9± 0.1 2.2± 0.1 0.75± 0.01

Simulation 4 Power-law 1.6± 0.1 2.4± 0.1 1.8± 0.1 1.9± 0.1 0.73± 0.02

Simulations: down state

Simulation 1 Exponential NA 1.9± 0.2 NA 1.3± 0.2 0.80± 0.03

Simulation 2 Exponential NA 1.8± 0.2 NA 1.2± 0.2 0.82± 0.01

Simulation 3 Exponential NA 2.2± 0.2 NA 1.4± 0.2 0.83± 0.05

Simulation 4 Exponential NA 1.6± 0.2 NA 1.1± 0.2 0.83± 0.02

This table summarizes the exponents for all of the recordings and simulations. τ , α and βS and βT are calculated using the scaling procedure described in Section 2. In some cases, the power-law

behavior was too limited in range (less than one decade) to reliably estimate the exponents, explaining the absence of a fitted curve. γ is calculated using least-squares fitting on the log of

avalanche sizes and durations, where we use 95% confidence bounds to estimate the error.

those previously reported across many preparations (Beggs and

Plenz, 2003; Friedman et al., 2012; Yaghoubi et al., 2018).

The exponents associated with finite-size scaling show some

differences between up and down states. Yet, the variations are

large and the statistics is rather limited such that it is difficult

to make any definite statements. More importantly, we find

that the scaling relation βT = γβS (which follows directly

from Equation 11) holds within the statistical uncertainties in

almost all cases (Supplementary Figure S6), providing further

evidence of criticality. The mechanisms by which these cultures

can self-organize to maintain critical avalanche statistics across

very different activity regimes are still unknown. If differences

in the exponents were indeed present, this would further

indicate that the two activity regimes are associated with distinct

universality classes.

Of particular note is the fact that the temporal bins or time

scales necessary to establish critical behavior based on neuronal

avalanches are significantly different between up and down states.

The time scales are closely related to the average interspike interval

per neuron, being significantly larger for the down state. As

the example of Figure 3A shows, the relative difference between

the temporal bin sizes for neuronal avalanches showing critical

behavior between up and down states largely corresponds to the

relative difference in the average interspike interval per neuron (see
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FIGURE 4

(A) The power-law scaling collapse procedure for finding the exponents is visualized for an example experimental dataset (recording 3, up state,

avalanche duration). For details of this procedure, see Section 2. (B) The exponential-like scaling collapse procedure for finding the scaling exponent

β for a sample experimental data is visualized (recording 3, down state, avalanche sizes). (C) Summary of the exponents for size and duration of all

recordings during up and down states are presented here. Each point represents an experimental or a simulated dataset. We have only included

recordings that exhibit power-law behavior over extended ranges as indicated in Table 2. p-values of the fitted power laws with exponents τ and α,

respectively, are shown in the bottom panels (mean + std of the ensemble of subpopulations). For each of the two columns, the same color scheme

as the top panel is preserved. (D) Average of all power-law exponents for the data sets in (C). (E) Average of βS and βT for all data sets that show

exponential-like behavior as the example in (B).

Table 1). While in non-biological systems adjusting the temporal

bin sizes over large ranges to evaluate avalanching or information

spreading is quite common (Notarmuzi et al., 2022), the range

considered for neuronal avalanches is rather limited, typically

covering 2–20 ms (see, e.g., Pasquale et al., 2008; Friedman et al.,

2012), which is comparable with the time scale of glutamatergic

synaptic transmission (Ivenshitz and Segal, 2010). This is consistent

with our time bins in the up state (see, for example, Figure 3A,

Supplementary Figures S3, S5). Yet, for the down state the time

bins necessary to recover neuronal avalanches exhibiting critical

behavior are of the order of hundreds of ms (see, for example,

Figure 3A, Supplementary Figure S4), suggesting communication

mechanisms other than fast glutamatergic synaptic transmission,

like those mediated by AMPA receptors, could be at play.

This hypothesis is consistent with our model findings.

There has been extensive theoretical and modeling work to

try and describe the up and down states as an emergent

property of neuronal systems. However, only a few models can

simultaneously reproduce the experimentally observed avalanche

statistics and switch between up and down states. These include

integrate-and-fire networks with structured connectivity through

learning (Scarpetta and Candia, 2014); networks with scale-free

connectivity coupled to a global field for the up and down

switching (Lombardi et al., 2014); self-organized criticality around

a saddle-node bifurcation (Millman et al., 2010); and a mesoscopic

model on the verge of a synchronization transition (Santo et al.,

2018). However, only Millman et al. (2010) treated the avalanche

statistics of up and down states separately. They introduced a self-

organized critical model with noise-driven, spontaneous transitions

between up and down states. The transitions occur around a

bifurcation such that the down state is subcritical and the up

state is critical. Such a framework, however, is not applicable to

our experimental system since its predictions are inconsistent with

several experimental observations. Namely, (i) up states possessing

characteristic durations, with a well-defined mean and variance

(see, for example, Figure 2); (ii) the down states presenting a well-

defined duration (usually called the interburst interval, IBI) that is

correlated with the slow time-scale of synaptic depression (Cohen

and Segal, 2009; Opitz et al., 2002); and (iii) the activity during

the down states being possibly critical, as reported here and

in Yaghoubi et al. (2018). Despite trying to take all of this into

account, our computational model was still unable to reproduce

some of the (new) experimental observations. Although the model

was able to successfully capturemany of the features of spontaneous

activity in neuronal cultures (Orlandi et al., 2013), e.g., up and

down transition statistics, distribution of states durations and their

temporal correlations, up state exponents, etc., it could neither

reproduce critical behavior observed during down states nor the

values of the finite-size scaling exponents associated with the up

states. For themodel to simultaneously reproduce critical avalanche

statistics during up and down states, its phase diagram would need

to have critical points at two very different levels of average activity.

The mechanism by which the model would be able to capture this

is still unknown.
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Conceptually, the fact that these cultures can dynamically

transition between different levels of activity and still remain

critical (or critical-like), suggests that we might have to move

away from the traditional picture of a critical mean-field branching

process, and even one of self-organization around a single

critical point (Zapperi et al., 1995). Since the observed avalanche

statistics need to be defined using substantially different time

bins between the up and down states—which is related to their

significantly different interspike intervals per neuron quantifying

their activity levels—a model that can dynamically adapt the time-

scales of synaptic integration (to maintain a constant effective

probability of inducing firings from a neuron to their neighbors)

could be a good candidate. Glial cells are known to modulate

synaptic plasticity across different time-scales (Sancho et al.,

2021) and have recently been shown to be involved in neural

communication across long time-scales (Mu et al., 2019), hence

being a likely candidate to support multi-scale critical dynamics.

Investigating this hypothesis remains an exciting challenge for

the future.
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