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The olfactory tubercle (OT) is a unique part of the olfactory cortex of the

mammal brain in that it is also a component of the ventral striatum. It is crucially

involved in motivational behaviors, particularly in adaptive olfactory learning.

This review introduces the basic properties of the OT, its synaptic connectivity

with other brain areas, and the plasticity of the connectivity associated with

learning behavior. The adaptive properties of olfactory behavior are discussed

further based on the characteristics of OT neuronal circuits.
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Introduction

The olfactory cortex (OC) can be subdivided into areas with distinct structural
and functional properties (Neville and Haberly, 2004). The olfactory tubercle (OT) is a
component of both the OC and the ventral striatum with medium spiny neurons as its
principal neurons; it receives massive dopamine signals from the midbrain (Millhouse and
Heimer, 1984; Ikemoto, 2007; Wesson and Wilson, 2011; Mori, 2014). Accordingly, it is
involved in odor-guided motivated behaviors, particularly in adaptive learning (Ikemoto,
2007; Wesson and Wilson, 2011; Wesson, 2020). Its input and output connectivity suggests
that it lies downstream of the olfactory input–behavioral output pathway, integrates
information from various brain regions, and sends outputs to areas related to motivated
behaviors (Haberly and Price, 1978). Previously, we showed that the OT has distinct
functional domains that represent learned odor-induced attractive and aversive motivated
behaviors (Murata et al., 2015). We here introduce our recent study that synaptic inputs
to the OT exhibit domain-specific structural plasticity induced by olfactory learning (Sha
et al., 2023). Along with this, several characteristics of the neural circuits of the OT and
their plasticity are discussed to increase our understanding of the neural mechanisms of
olfactory learning.

The olfactory tubercle as a regulator of motivated
olfactory behaviors

The OC receives direct synaptic inputs from neurons projecting from the olfactory bulb
(OB) (Neville and Haberly, 2004) and consists of several distinct areas. In the ventral view
of the rodent brain, the OT is readily identified as a round bulge posterior to the olfactory
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FIGURE 1

Inputs and outputs of the olfactory tubercle (OT). (A) Ventral view of
the brain of a mouse. The OT locates posterior to the anterior
olfactory nucleus (AON) and medial to the piriform cortex (PC).
(B) Inputs and outputs of the OT. The OT receives synaptic inputs
from various brain areas, and sends outputs reciprocally to those
brain areas and massively to the ventral pallidum (VP). OB, olfactory
bulb; OC, olfactory cortex; EC, entorhinal cortex; CoA, cortical
amygdala; Amy, amygdala; PFC, prefrontal cortex; LH, lateral
hypothalamus; MDT, mediodorsal thalamus; PVT, paraventricular
thalamus; VTA, ventral tegmental area.

peduncle and medial to the piriform cortex (PC) (Figure 1). As
a component of the OC, the OT has a three-layered structure
in which axons of OB neurons project to the most superficial
layer (layer I). It has properties that are distinct from those
of other areas of the OC. While most principal neurons in
the OC are glutamatergic pyramidal cells, those of the OT are
GABAergic medium spiny neurons (Millhouse and Heimer, 1984).
The OT receives massive dopaminergic inputs from the ventral
tegmental area (VTA) in the midbrain (de Olmos and Heimer,
1999; Ikemoto, 2007). These properties indicate that the OT is also
a component of the striatum, constituting ventral striatum with the
nucleus accumbens (NAc). OT neurons express large amounts of
acetylcholine esterase (AchE), a characteristic shared with striatal
neurons of the NAc and dorsal striatum (Butcher et al., 1975). In
the rodent brain, the OT strongly stains with AchE and has a clear
boundary separating it from the PC laterally and the diagonal band
medially (Paxinos and Franklin, 2019).

As a component of the ventral striatum, it is crucially involved
in motivated behaviors (Millhouse and Heimer, 1984; Ikemoto,
2007; Wesson and Wilson, 2011; Mori, 2014). Electrical self-
stimulation of the OT is rewarding in rats (Prado-Alcalá and
Wise, 1984; Fitzgerald et al., 2014). The OT is a hotspot for
cocaine self-administration (Ikemoto, 2003). In addition, as a
component of both the OC and ventral striatum, it is involved
in odor-motivated behaviors. Innate odor preference is altered by
electrical stimulation of the OT (Fitzgerald et al., 2014). In one
study, preference for opposite-sex urinary odors was disrupted by
suppression of OT activity (DiBenedictis et al., 2015). Activation of
the dopaminergic pathway from the VTA to the medial part of the
OT reinforces odor preference (Zhang et al., 2017a).

Further, many studies have revealed adaptive properties of the
OT. For example, odor-reward association learning potentiates the
firing of OT neurons in response to a rewarded odor (Gadziola
et al., 2015, 2020; Millman and Murthy, 2020). In one study,
following odor-reward or odor-punishment training, neuronal
activity in the OT was enhanced in a learning-dependent manner
in response to the learned odor (Murata et al., 2015). These
observations are consistent with the general notion that the
ventral striatum plays crucial roles in the learning, reinforcement,

and adaptive modulation of motivated behaviors (Robbins and
Everitt, 1996; Averbeck and Costa, 2017). Note that OT-mediated
motivated behaviors are not solely odor-guided ones. Therefore,
it has been proposed that the OT be called the “tubular
striatum” based on its tubular morphology and striatal properties
(Wesson, 2020).

Synaptic connectivity of the OT

The OT belongs to the OC because it receives direct synaptic
inputs from OB projection neurons (White, 1965; Scott et al., 1980).
However, the overall connectivity of the OT seems different from
that of other areas of the OC. While cortical areas have reciprocal
connections with other brain areas, the basis of the input to and
output from the OT seems that it receives synaptic inputs from
various brain areas and sends synaptic outputs to areas linked to
motivated behavioral output.

In addition to inputs from the OB, the OT receives intracortical
associational inputs from many brain areas (Figure 1B). The PC
is the broadest area of the OC and is the source of massive
synaptic inputs to the OT (Haberly and Price, 1978; White et al.,
2019). Other OC regions project to the OT, including the anterior
olfactory nucleus and entorhinal cortex (Haberly and Price, 1978).
The prefrontal cortex sends projections to the OT (Berendse and
Groenewegen, 1990; Cansler et al., 2023). The amygdala is a
complex structure that represent the core of emotions and both
cortical and deep amygdaloid nuclei project to the OT (Novejarque
et al., 2011). The lateral hypothalamus, which contains various
neuropeptide-producing cells, and the paraventricular thalamus
(PVT), which mediates motivated behaviors, project to the OT
(Groenewegen and Berendse, 1990; Moga et al., 1995). The VTA
sends dopaminergic projections to the OT (Ikemoto, 2007).

Contrasting the OT inputs from multiple brain regions, the
major output from the OT is considered to the ventral pallidum
(VP) (Heimer, 1978) (Figure 1B), a subregion of the ventral
basal forebrain complex that regulates emotions, motivation, and
motivated behaviors (Soares-Cunha and Heinsbroek, 2023). The
VP connects to the reticular formation and extrapyramidal motor
systems, and is thought to be a key regulator of motivational
behavioral output (Mogenson and Yang, 1991). It is also thought
to regulate motivated behaviors via its projections to the lateral
hypothalamus and mediodorsal thalamic nuclei (Leung and
Balleine, 2015; Faget et al., 2018). Therefore, the OT–VP pathway
is considered the central route through which the OT contributes
to motivated behaviors.

Many recent studies, including those employing transsynaptic
tracing, have revealed various projection targets of the OT,
including the PC and anterior olfactory nucleus in the OC (Zhang
et al., 2017b), mediodorsal thalamus (Siegel et al., 1977; Price and
Slotnick, 1983), posterolateral part of the hypothalamus (Scott
and Chafin, 1975), and VTA (Zhang et al., 2017b). Thus, rich
reciprocal connections between the OT and other brain areas
actually exist. Nonetheless, the prominent property of the OT
appears to be its massive output to the VP. This fits with the
notion that the OT plays crucial roles in motivational behavior and
lies downstream of the sensory input–behavioral output pathway,
thereby gathering information from various brain regions and
sending output to the VP.
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Plasticity of the synaptic
connections of the OT underlying
learning-dependent activation of
specific OT domains

Previously, we showed that the OT has functional domains that
are activated following odor-guided learning. In principle, neutral
odors that do not elicit motivated behaviors do not significantly
activate the OT. When mice are trained to associate a neutral
odor with a food reward and thus become attracted to that odor,
the odor stimulus activates the anteromedial domain of the OT
(amOT). By contrast, when trained to associate the same odor with
electrical shocks to the foot, they become averse to the odor, which
activates the lateral domain of the OT (lOT) (Murata et al., 2015). In
agreement with this pattern, involvement of the medial part of the
OT in odor-attractive behaviors has been reported (DiBenedictis
et al., 2015; Zhang et al., 2017a).

The learning-dependent activation of specific OT domains
raises questions regarding the underlying plastic mechanisms.
Because activation of a brain area depends on synaptic inputs from
other brain areas, synaptic inputs to a given OT domain may be
potentiated during olfactory-motivated behavior learning, and this
may induce domain-specific activation. As a first step to address
this possibility, we used optogenetics to activate specific inputs to
the OT and examined their plasticity (Sha et al., 2023).

Of various synaptic inputs to the OT, inputs from the OB
were chosen as being representative of peripheral sensory inputs
while inputs from the PC were chosen as being representative
of intracortical association inputs. These neurons were modified
to express channelrhodopsin-2 fused with fluorescent mCherry
protein to enable their photoactivation and morphological analysis
(Figure 2). We analyzed the size of the axonal boutons in the
photoactivated neurons that terminated in the OT domains, as their
size generally correlates with synaptic strength (Murthy et al., 2001;
Sammons et al., 2018).

Photoactivation of pyramidal cells in the PC alone did not
induce specific behavior in mice. In this case, there were no
differences in the sizes of axonal boutons terminating in the amOT
and lOT. When photoactivation was associated with a food reward,
however, the mice showed food-searching behavior in response
to photoactivation. In these mice, the boutons that terminated in
the amOT, but not in the lOT, increased in size (Figure 2). By
contrast, when the photoactivation was associated with electrical
shock, the mice adopted shock-avoiding behavior in response to
photoactivation. In these mice, the boutons that terminated in
the lOT, but not in the amOT, increased in size. Similar OT
domain-specific size development of axonal boutons was observed
in OB projection neurons. These observations indicate that both
intracortical inputs from the PC and sensory inputs from the
OB have plastic potential to induce structural changes in an OT
domain-specific manner.

The structural plasticity of the intracortical synapses in the
PC is consistent with their role in learning-dependent control
of OT activity (White et al., 2019) and with the general notion
that plasticity in cortical networks underlies information storage,
learning, and adaptive behavior (Feldman, 2009). The structural
plasticity of sensory synapses from the OB to the OT domains

FIGURE 2

OT domain-specific plasticity of axonal boutons induced by
olfactory learning. (A) When photoactivation of PC pyramidal
neurons and OB projection neurons was associated with a food
reward, the axonal boutons terminating in the anteromedial (am)
OT domain increased in size. (B) When photoactivation of PC
pyramidal neurons and OB projection neurons was associated with
electrical shock, the axonal boutons terminating in the lateral (l) OT
domain increased in size.

is intriguing, because several studies have shown that sensory
synapses in the OC appear to be hardwired, particularly in the
PC, compared to intracortical association synapses (Kanter and
Haberly, 1990; Poo and Isaacson, 2007; Johenning et al., 2009;
Bekkers and Suzuki, 2013). Odor information from the external
environment can reach the OT via as little as two synaptic steps,
from olfactory sensory neurons to OB projection neurons and
then to OT neurons. Learning-dependent plasticity of the sensory
connections from the OB to the OT domains may represent
strong adaptive linkage of odor information to behavioral outputs
(Doty, 1986).

Because we used artificial optogenetic stimulation, it
remains unclear whether similar plastic changes occur during
physiological odor stimulation and learning. Nonetheless, the
results demonstrate the highly plastic potential of synaptic inputs
to the OT domains, which likely underlie the OT domain-specific
activation and the expression of appropriate motivated behaviors
in a learning-dependent manner. Note that Figure 2 is just a
schematic diagram and it is not yet evident whether individual
PC and OB neurons send bifurcated axonal projections to both
amOT and lOT, or distinct presynaptic populations innervate these
functionally distinct OT domains. It remains to be determined
whether the plastic change is regulated in individual axonal
boutons or in individual neurons. This knowledge may help
understand how odor valence is encoded and plastically modulated
in the olfactory neuronal circuitry.

Perspectives on the plasticity of
synaptic connections in the OT

Regarding the functional plasticity of the OT synapses, odor-
evoked firing activity of OT neurons in awake mice is modulated
by the activation of PC to OT inputs (White et al., 2019).
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In addition to the glutamatergic synaptic inputs, neuromodulators
play crucial roles in synaptic plasticity. Dopamine is central
to OT-mediated odor learning (Zhang et al., 2017a). Excitatory
postsynaptic potentials induced by the lateral olfactory tract
stimulation are potentiated by the simultaneous dopamine release
(Wieland et al., 2015), and phasic dopamine increases the intensity
of excitatory stimulus responses of OT neurons (Oettl et al.,
2020). Because dopaminergic input to the medial and lateral OT
appears to have a distinct role in neuronal activity (Bhimani et al.,
2022), OT domain-specific dopaminergic input may be involved
in OT domain-specific plasticity. The OT receives a variety of
neuromodulatory signals other than dopamine (Cansler et al.,
2020), and biased neuromodulatory signals among OT domains are
suggested (Nogi et al., 2020). Given that neuromodulators convey
information on various states of the brain and body, the neural
mechanisms governing the reception of such information and its
integration with synaptic plasticity in the OT during olfactory
behavior learning are key to understanding the highly adaptive
properties of the OT.

The OT contains D1- and D2-type dopamine receptor-
expressing neurons, which have distinct functions in the processing
of odor information. Odor-attractive behavior is accompanied by
the activation of D1 cells in the amOT, while odor-aversive behavior
is accompanied by the activation of D1 cells in the lOT (Murata
et al., 2015). Conversely, the activation of D2 cells in the amOT
induces aversive behavior (Murata et al., 2019). The differential
synaptic plasticity of D1 and D2 cells during olfactory learning has
been revealed (White et al., 2019; Gadziola et al., 2020; Martiros
et al., 2022). Understanding the structural and functional plasticity
of synaptic inputs to D1 and D2 cells during olfactory learning
would reveal the differential and combinatory roles of D1/D2
cell-mediated neural pathways in the OT.

Compared to synaptic inputs, there is limited knowledge of
synaptic outputs from the OT and their plasticity. Regarding
output from the NAc to the VP, cocaine-induced synaptic
potentiation/depression has been reported (Baimel et al., 2019).
Examining the domain specificity, cell type specificity, and
plastic properties of the output from the OT to the VP would
provide further insight into the plastic control of olfactory-
motivated behaviors. Understanding the function of the OT in
the neural network involving cortical and subcortical brain areas
and neuromodulatory signaling systems would reveal the neural
mechanisms of the adaptive control of odor-guided behaviors.

Lastly, contribution of the OT to innate olfactory behaviors
would be worth pursuing. Influence of the OT activity on the
preference for conspecific urinary odors (DiBenedictis et al., 2015)
suggests OT’s involvement in innate behaviors. In the central
amygdala, the same neuronal population controls innate and
learned odor-fear behaviors in opposing directions (Isosaka et al.,
2015). Comparing the regulatory mechanisms of innate and learned
olfactory behaviors in the OT would facilitate the understanding of
how these two types of behaviors are related and differentiated in
the mammalian brain.
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