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Activity-dependent dendrite 
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cortex
Naoki Nakagawa 1,2* and Takuji Iwasato 1,2*
1 Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan, 2 Graduate 
Institute for Advanced Studies, SOKENDAI, Mishima, Japan

For neural circuit construction in the brain, coarse neuronal connections are 
assembled prenatally following genetic programs, being reorganized postnatally 
by activity-dependent mechanisms to implement area-specific computational 
functions. Activity-dependent dendrite patterning is a critical component 
of neural circuit reorganization, whereby individual neurons rearrange and 
optimize their presynaptic partners. In the rodent primary somatosensory 
cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory 
neurons extensively remodel their basal dendrites at neonatal stages to ensure 
specific responses of barrels to the corresponding individual whiskers. This 
feature of barrel cortex L4 neurons makes them an excellent model, significantly 
contributing to unveiling the activity-dependent nature of dendrite patterning 
and circuit reorganization. In this review, we  summarize recent advances in 
our understanding of the activity-dependent mechanisms underlying dendrite 
patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse 
imaging, and the role of activity-dependent Golgi apparatus polarity regulation 
in dendrite patterning. We also discuss the type of neuronal activity that could 
contribute to dendrite patterning and hence connectivity.
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Introduction

The sophisticated neural circuits underlying proper brain function in animals are first 
formed as coarse neuronal connections during embryonic development. Later, such immature 
connections are reorganized during postnatal stages, establishing a precise connectivity 
tailored to each brain area. Morphological and functional neuron remodeling, depending on 
neuronal activity evoked either spontaneously or by extrinsic stimuli, causes this postnatal 
circuit reorganization (Goodman and Shatz, 1993; Katz and Shatz, 1996; Wong and Ghosh, 
2002). Particularly, activity-dependent remodeling of the dendritic pattern is key for circuit 
reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. 
Dendrite refinement has been observed in various neuronal types in diverse brain regions and 
species, and is therefore considered a general mechanism for building functional neural 
circuits (Cline, 2001; Wong and Ghosh, 2002; Emoto, 2011).

The activity-dependent mechanisms underlying dendrite patterning have been studied in 
a wide range of models, including tectal neurons in Xenopus tadpole, retinal ganglion cells in 
chick and cat, olfactory bulb mitral cells in mouse, and cortical neurons in mouse, cat, and 
ferret (Harris and Woolsey, 1981; Katz and Constantine-Paton, 1988; Bodnarenko and 
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Chalupa, 1993; Kossel et al., 1995; Wong et al., 2000; Matsui et al., 
2013; Fujimoto et al., 2023). Among them, spiny stellate neurons, the 
major type of layer 4 (L4) excitatory neurons, in the primary 
somatosensory cortex (barrel cortex) of mice and rats have attracted 
attention as a model of activity-dependent dendrite patterning 
(Woolsey and Van der Loos, 1970; Erzurumlu and Gaspar, 2012; 
Iwasato and Erzurumlu, 2018).

In rodents, facial whiskers are an important sensory organ 
whereby animals perceive their environment. Tactile stimuli to 
whiskers reach the barrel cortex L4 via the dorsal principal trigeminal 
(dPrV) nucleus in the brainstem and the ventral posterior medial 
(VPM) nucleus in the thalamus (Figure 1A) (Fox, 2008; Iwasato and 
Erzurumlu, 2018). In barrel cortex L4, the information from each 
whisker is processed by an array of neurons called “barrel,” whose 
arrangement represents the spatial pattern of whiskers in the face. 
Termini of thalamocortical axons (TCAs) that transmit inputs from a 
whisker are distributed only within the corresponding barrel. L4 spiny 
stellate neurons are preferentially located at the edge of each barrel and 
expand their basal dendrites asymmetrically toward the barrel center 
(Figure 1B) (Harris and Woolsey, 1981; Simons and Woolsey, 1984). 

This asymmetric dendritic projection pattern, formed in an activity-
dependent manner essentially during the first postnatal week, 
underlies precise tactile information processing in rodents (Nakazawa 
et al., 2018; Iwasato, 2020; Nakagawa and Iwasato, 2023); therefore, 
understanding how this unique dendritic asymmetry is established 
during postnatal development is of importance.

In this review, we  summarize recent advances in our 
understanding of the activity-dependent mechanisms underlying 
dendrite patterning and postnatal circuit reorganization based on 
studies using whisker-barrel circuits.

Dendritic patterning of L4 spiny stellate 
neurons in the neonatal barrel cortex

The activity transmitted through TCAs is critical for dendritic 
patterning of barrel cortex L4 spiny stellate neurons. Removing 
glutamatergic synaptic transmission from TCA termini by knocking 
out both VgluT1 and VgluT2, two major vesicular glutamate 
transporters in the brain, in the sensory thalamus impairs formation 

FIGURE 1

Whisker-barrel circuit and dendrite refinement of barrel cortex layer 4 spiny stellate neurons. (A) A schematic diagram of the mouse whisker-barrel 
system. The tactile information received by the whiskers is topographically conveyed to the contralateral barrel cortex layer 4 (L4) through the 
brainstem and the thalamus. dPrV: dorsal principal trigeminal nucleus, VPM: ventral posterior medial nucleus. (B) Barrel cytoarchitecture. In each barrel, 
the termini of thalamocortical axons (TCAs) that transmit sensory inputs from the corresponding single whiskers form distinct clusters in barrel cortex 
L4. Spiny stellate neurons, the major excitatory neurons in barrel cortex L4, are located primarily at the edge of TCA clusters, thereby showing the 
“barrel” shape. Spiny stellate neurons expand their basal dendrites selectively toward a corresponding single barrel to establish synapses with the 
corresponding TCA termini. Dendrites drawn only in some neurons for simplicity. (C) Dynamics of formation of asymmetric dendrite patterns in L4 
spiny stellate neurons. At P3, a spiny stellate neuron has more dendritic trees in the inner domain (green) than in the outer domain, but inner and outer 
dendritic trees are equally primitive in morphology. Between P3 and P6, many short dendritic trees emerge and disappear both inside and outside the 
barrel (“challenger” dendritic trees, indicated by yellow arrowheads). During this extensive turnover, only a few trees (indicated by magenta arrowheads) 
are stabilized and elaborated to be “winners.” Importantly, winners are selected only from the challengers that emerge in the barrel-side (green). Note 
that late-born dendritic trees can become winners.
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of cortical layers, barrel maps, and L4 neuron dendrite morphology 
(Li et al., 2013). Similarly, when thalamocortical synaptic transmission 
is reduced by a thalamus-specific double knockout of RIM1 and 
RIM2, which regulate synaptic vesicle fusion, barrel formation and L4 
neuron dendritic asymmetry become impaired (Narboux-Neme et al., 
2012). These results suggest a critical role of TCA-derived activity for 
barrel circuit formation, including dendritic patterning of L4 neurons.

Gene knockouts also indicated that the dendrite refinement of L4 
spiny stellate neurons relies on the postsynaptic N-methyl-D-
aspartate-type glutamate receptor (NMDAR) activity induced by 
presynaptic thalamocortical inputs. Knockout of either NR1 or NR2B 
subunits of NMDAR causes impaired asymmetry of dendritic 
projections (Iwasato et al., 2000; Datwani et al., 2002; Espinosa et al., 
2009; Mizuno et al., 2014). NMDAR is a tetrameric complex composed 
of two NR1 subunits and two NR2 subunits; NR1 is the essential 
subunit and NR2B the modulatory subunit, dominant in the neonatal 
brain (Nakanishi, 1992; Mori and Mishina, 1995). Genetic approaches 
in mice identified dozens of molecules related to synaptic transmission 
and its downstream signaling cascade implicated in barrel formation 
and dendrite refinement of L4 spiny stellate neurons. Such genes 
include metabotropic glutamate receptor 5, protein kinase A (PKA), 
PKA-anchoring protein 5, adenylyl cyclase 1, phospholipase C-β1, Ras 
GTPase-activating proteins, Fibroblast growth factor receptors, 
Tropomyosin receptor kinase A, BTB/POZ domain-containing 3, LIM 
domain-only 4, neurogenic differentiation 2, retinoic acid-related 
orphan receptor alpha (RORα) and RORβ (Abdel-Majid et al., 1998; 
Hannan et al., 2001; Barnett et al., 2006; Inan et al., 2006; Ince-Dunn 
et al., 2006; Kashani et al., 2006; Watson et al., 2006; Iwasato et al., 
2008; Lush et al., 2008; She et al., 2009; Jabaudon et al., 2012; Matsui 
et al., 2013; Ballester-Rosado et al., 2016; Huang et al., 2017; Huang 
and Lu, 2018; Vitalis et al., 2018; Zhang et al., 2019; Clark et al., 2020; 
Rao et al., 2022). Using mitral cells in the mouse olfactory bulb, Imai 
and colleagues recently reported that strong NMDAR activation in 
prospective winner dendrites locally suppresses RhoA activity, 
protecting the dendrite from depolarization-induced, neuron-wide 
RhoA activation, which acts as a dendrite retraction signal (Fujimoto 
et  al., 2023). This system also works in barrel cortex L4 neurons 
(Fujimoto et al., 2023).

Mechanisms of dendritic patterning 
revealed by in vivo time-lapse imaging

It is generally assumed that spiny stellate neurons in barrel cortex 
L4 exhibit symmetrical dendritic patterns during early neonatal stages 
but subsequently acquire asymmetrical dendritic patterns by simply 
eliminating outer dendrites and adding new inner dendrites and/or 
elaborating existing inner dendrites (Greenough and Chang, 1988; 
Espinosa et  al., 2009; Emoto, 2011; Iwasato, 2020). This view was 
challenged by in vivo imaging approaches in the neonatal mouse 
cortex (Mizuno et al., 2014; Nakazawa et al., 2018; Iwasato, 2020; 
Wang et al., 2023). In these studies, L4 neurons were sparsely labeled 
and each was imaged repeatedly in the neonatal barrel cortex using 
two-photon microscopy.

In the mature barrel cortex, L4 excitatory neurons are classified by 
the absence and presence of apical dendrites into spiny stellate and star 
pyramid neurons, respectively (Simons and Woolsey, 1984; Lübke 
et al., 2000; Staiger et al., 2004). Importantly, spiny stellate neurons, 

the major L4 neurons, show asymmetric dendritic patterns but star 
pyramid neurons have symmetric dendrites. However, at early 
postnatal stages such as postnatal day 3 (P3), prospective spiny stellate 
neurons also have an apical dendrite, which hampers distinguishing 
spiny stellate neurons from star pyramid neurons by conventional 
histological analyses in brain slices. On the other hand, longitudinal 
in vivo imaging of the same neurons in the brain allows retrospective 
identification of prospective spiny stellate neurons in early postnatal 
development by their morphological features at later developmental 
stages such as P6; thus allowing to analyze the dendritic morphology 
of spiny stellate neurons in early postnatal stages (Nakazawa et al., 
2018; Iwasato, 2020).

Longitudinal in vivo imaging of L4 neurons in the mouse barrel 
cortex revealed that at P3, a spiny stellate neuron has a larger number 
of inner dendritic trees, which originate from the barrel-side half of 
the soma, than outer dendritic trees (Nakazawa et al., 2018). However, 
at this age both inner and outer dendritic trees are equally primitive 
in morphology (Figure 1C). Between P3 and P6, the ratio of inner to 
outer dendritic trees does not change. However, during this period, 
dendritic trees show extensive turnover both inside and outside the 
barrel. Many newly emerged dendritic trees (i.e., “challenger” 
dendritic trees) quickly disappear. Among them, only a few are 
stabilized and elaborated and become winners. Importantly, these 
winners are primarily selected from challengers emerging inside the 
barrel. L4 spiny stellate neurons have multiple winner dendritic trees, 
and even late-born dendritic trees can become winners (Nakazawa 
et  al., 2018). Thus, L4 spiny stellate neurons establish highly 
asymmetric dendritic patterns not by eliminating outer dendritic trees 
and adding new inner trees and/or elaborating existing inner trees 
during neonatal stages. In contrast, L4 spiny stellate neurons produce 
many challenger dendritic trees in various directions, and only a few 
winners are selected from the challengers that emerge in the 
appropriate direction. These winners are then stabilized and elaborated 
(Figure 1C).

Most L4 spiny stellate neurons, which are located at the barrel 
edge, can receive appropriate TCA inputs only from a specific 
direction toward the barrel center. On the other hand, L4 spiny stellate 
neurons located in the barrel center can receive appropriate TCA 
inputs from any direction. Such barrel-center spiny stellate neurons 
show much lower dendritic tree turnover than barrel-edge spiny 
stellate neurons (Nakazawa et al., 2018). In barrel-center spiny stellate 
neurons, most dendrites are stable and mildly grow, establishing 
dendritic projections without orientation bias. Thus, spatially biased 
presynaptic TCA inputs may play a key role regulating dendritic 
dynamics and dendritic orientation. When appropriate presynaptic 
partners are available only in a specific direction, neurons produce 
many dendritic trees in all directions, and select a few winners among 
dendritic trees that emerge in the right direction.

A more recent in vivo imaging study, using 1-h interval for 
imaging of barrel cortex L4 neuron dendrites in the neonatal mouse 
(Wang et  al., 2023), further supports this view. This high time-
resolution imaging allows to accurately identify the same dendritic 
branches across imaging sessions, which is often difficult with the 
imaging intervals (8 h) used in previous experiments (Mizuno et al., 
2014; Nakazawa et  al., 2018). This new study found that many 
dendritic branches (and trees) emerge and are eliminated even within 
a few hours. Both inner and outer dendritic branches (and trees) 
emerge and are eliminated with no clear difference in frequency. These 
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results suggest that despite dendritic trees and branches being highly 
dynamic during neonatal stages, most of these rapid changes in 
dendritic morphology do not directly contribute to the formation of 
asymmetric dendritic patterns in spiny stellate neurons. Thus, L4 spiny 
stellate neurons establish highly asymmetric dendritic patterns 
through extensive trial-and-error emergence/elongation and 
elimination/retraction of dendritic trees and branches rather than 
simple emergence/elongation of inner dendritic trees/branches and 
elimination/retraction of outer dendritic trees/branches (Figure 1C).

Golgi polarity in thalamocortical 
activity-dependent dendritic patterning

As described above, during dendrite refinement of barrel cortex 
L4 spiny stellate neurons, only a fraction of dendritic trees that emerge 
inside the barrel is selected as winners from a large number of 
transient dendritic trees (challenger dendritic trees) generated during 
continuous turnover both inside and outside the barrel (Figure 1C). 
Why do inner dendritic trees, but not outer dendritic trees, 
become winners?

Recent evidence indicated a significant contribution of cell 
polarity in inner dendritic tree-specific winner emergence (Nakagawa 
and Iwasato, 2023). In fact, the Golgi apparatus distribution changes 
in L4 spiny stellate neurons during the neonatal stage. The Golgi 
apparatus in L4 spiny stellate neurons is positioned in the apical 
domain in early neonatal stages such as P3, but it is subsequently 
translocated and polarized to the lateral domain and oriented toward 
a single barrel by P5 (Figure  2A). This “lateral Golgi polarity” 
temporally matches with the progression of dendrite refinement: 
lateral polarity peaks on the active refinement stage (P5–P7) and 
disappears upon refinement completion (~P15). In contrast to spiny 
stellate neurons, star pyramid neurons do not show lateral Golgi 
polarity. The lateral Golgi polarity in L4 spiny stellate neurons relies 
on NMDAR activation, serving as an intracellular machinery that 
connects thalamocortical activity to dendrite patterning. Perturbing 
Golgi polarity results in less asymmetric dendrite patterning and 
lower response specificity to principal whisker stimulation.

How can a biased Golgi distribution in a neuron explain the fate 
of individual dendritic trees? The Golgi apparatus is a hub for 
intracellular vesicle transport and contributes to dendrite extension 
and elaboration (Horton et al., 2005; Ye et al., 2007). Indeed, during 
dendrite refinement in L4 spiny stellate neurons, the dendritic trees 
that harbor the Golgi at their base or inside are more elaborated than 
those without Golgi allocation (Nakagawa and Iwasato, 2023). 
Therefore, the laterally polarized Golgi distribution in neurons, biased 
toward the single barrel, may provide the chance of Golgi allocation 
only to inner dendritic trees and make them winners (Figure 2). It is 
likely that due to the physical capacity of the Golgi apparatus, when a 
few dendritic trees become winners, other dendritic trees can hardly 
be supported by the Golgi, making these trees short and/or transient, 
even in case of inner trees. As presynaptic TCAs are clustered in the 
barrel center, L4 neurons should make synapses predominantly on 
inner dendrites (Figure 2B), creating NMDAR signaling gradients and 
generating Golgi lateral polarity. On the other hand, losing NMDAR 
activity from a cell impairs lateral polarity of the Golgi apparatus 
(Nakagawa and Iwasato, 2023). In this situation, no dendrites become 
winners and most, both inside and outside the barrel, mildly grow, 

impairing the one-to-one functional relationship between a whisker 
and a barrel (Figure 2B).

Thalamocortical activity in the neonatal 
barrel cortex

Dendritic refinement of L4 spiny stellate neurons largely relies on 
thalamocortical inputs (Narboux-Neme et al., 2012; Li et al., 2013). 
Although, in neonatal stages such as P6, barrel cortex L4 is innervated 
not only by TCAs but also by subplate neuron neurites, these subplate 
neurons also receive excitatory thalamocortical inputs (Higashi et al., 
2002; Piñon et al., 2009; Kanold, 2019). In other words, during early 
postnatal period, L4 neurons are activated by thalamic inputs directly 
or indirectly. Therefore, it is important to know the type of activity that 
TCAs transmit to barrel cortex during neonatal stages and where in 
the trigeminal pathway this activity arises from.

Spontaneous correlated activity plays critical roles in the 
refinement of neuronal circuits in the sensory systems of developing 
mammals (Katz and Shatz, 1996; Kirkby et al., 2013; Martini et al., 
2021; Nakazawa and Iwasato, 2021). In barrel cortex L4 of the neonatal 
mouse, there is spontaneous activity with a unique spatiotemporal 
pattern (Mizuno et al., 2018). L4 neurons that belong to the same 
barrel fire together, while those in different barrels fire in a different 
timing, providing the barrel-corresponding “patchwork” pattern to 
spontaneous activity. This patchwork-type spatiotemporal pattern of 
spontaneous activity is observed in the barrel cortex L4 during early 
postnatal stages such as P0 and P5 but not later (Mizuno et al., 2018; 
Nakazawa et  al., 2020). L4 neurons around P9 show broadly 
synchronized activity across barrel borders, and by P11, cortical 
spontaneous activity is desynchronized (Nakazawa et  al., 2020; 
Nakazawa and Iwasato, 2021).

Patchwork-type spontaneous activity is also observed in TCA 
termini during the first postnatal week (Mizuno et al., 2018); in fact, 
chemogenic silencing of the thalamus hampers detection of 
spontaneous activity in the cortex (Nakazawa et  al., 2020). These 
findings suggest that patchwork activity is transmitted to cortical L4 
neurons via TCAs. Cortical patchwork activity is also blocked by local 
anesthesia in the whisker pads but not by severing the infraorbital 
nerves (IONs) (Mizuno et al., 2018; Nakazawa et al., 2020). IONs are 
peripherally projecting processes of trigeminal ganglion (TG) 
neurons, which innervate the whisker follicles. These results suggest 
that the cortical spontaneous activity is generated in the periphery but 
downstream of IONs. Thus, it is highly likely that the spontaneous 
activity originates in the TG.

A recent study has established a calcium imaging system of the TG 
ex vivo and found that neurons in the whisker-innervated region of 
the TG fire spontaneously during neonatal stages (Banerjee et al., 
2022). This activity is blocked when chelating extracellular calcium. 
Most firing neurons have medium-to-large diameter, and likely are 
mechanosensory neurons. Although TG neurons fire sparsely and 
have no clear spatiotemporal pattern, some neuron pairs with highly 
correlated firing tend to be  located closely (Banerjee et al., 2022). 
Neurons that innervate the same whiskers are not clustered in the TG 
but close to each other (Erzurumlu and Jhaveri, 1992; da Silva et al., 
2011; Banerjee et al., 2022). Therefore, it is possible that TG neurons 
that innervate the same whisker pad together tend to fire together. If 
so, this may generate the patchwork pattern corresponding to the 
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barrel map in the barrel cortex. This hypothesis needs to be explored 
in future research.

Patchwork-type cortical activity is also generated by sensory 
feedback from self-generated whisker movements. Whisker and paw 
twitching are frequently observed in neonatal rodents during rapid 
eye movement (REM) sleep (Khazipov et al., 2004; Tiriac et al., 2012, 
2014; Dooley et al., 2020). The sensory feedback from the twitching of 
the whiskers and paws appears to be  a source of firing in the 
downstream trigeminal pathway. There is some degree of coupling 
between the twitching and the firing in the thalamus and cortex 
(Khazipov et al., 2004; Tiriac et al., 2012, 2014; Mizuno et al., 2018; 
Dooley et al., 2020). By using unit recording of the rat barrel cortex at 
P5, Blumberg and colleagues reported that about 12 and 23% of 
spontaneous whisker movements are accompanied with spindle bursts 

of barrels, during wake and REM sleep, respectively. They also 
reported that more than half of barrel activity is preceded by whisker 
twitches (Dooley et al., 2020). In this study, time-resolution was quite 
high and wake and sleep were precisely distinguished. By calcium 
imaging focusing on L4 neurons of the P5 mouse barrel cortex, 
Mizuno et al., demonstrated that about 11% of spontaneous whisker 
movements were associated with firing of L4 neurons within the 
corresponding barrel, and about 11% of L4 neuron firing episodes 
accompany spontaneous movements of the corresponding whisker 
(Mizuno et  al., 2018). In this study, L4 neurons were identified 
accurately by using in utero electroporation-based cell labeling and 
TCA-red fluorescent protein (RFP) transgenic (Tg)-mediated L4 
labeling. In addition, each barrel was precisely identified in a cellular 
level by TCA-RFP Tg-mediated barrel map labeling.

FIGURE 2

Polarity shift of the Golgi apparatus instructs dendrite refinement. (A) In barrel cortex L4, spiny stellate neurons initially have apical Golgi polarity. 
During postnatal development (the first postnatal week), spiny stellate neurons de-construct the initial polarity and shift it to the lateral direction 
oriented toward a single barrel. Finally, after completing of circuit reorganization, spiny stellate neurons decrease the lateral Golgi polarity (adult). 
(B) During dendrite refinement in a spiny stellate neuron, NMDA receptors (NMDARs) are activated by thalamocortical inputs from a single barrel. The 
Golgi apparatus translocates toward the subcellular domain where NMDARs are activated [see also (A)]. Then, a few inner dendritic trees harbor the 
Golgi (at their base or inside) to be winners. In this way, the spiny stellate neuron establishes the asymmetric dendritic patterns, underlying the specific 
response to a single principal whisker (right, normal development). On the other hand, if the lateral Golgi polarization is impaired, the neuron has lower 
dendrite asymmetry, so that it responds to both principal and adjacent whiskers, compromising the whisker-dependent tactile discrimination in mice.
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Sensory input also generates cortical activity. Rodents do not see 
or hear during neonatal stages because the retina and cochlea are not 
functional yet. On the other hand, in rodents, tactile sensation is 
already present, albeit partially, at birth. Although rodents do not 
show exploratory and whisking behaviors until around P12–P14 (for 
the mouse) (Arakawa and Erzurumlu, 2015; van der Bourg et al., 
2017), even at birth, rodents already exhibit passive sensation from 
tactile organs, including the whiskers. Sensory inputs induced by 
whisker deflection are transmitted to the cortex via the brainstem and 
thalamus (Khazipov et  al., 2004; Akhmetshina et  al., 2016). The 
specific role of these three types of activity in neonatal animals in the 
refinement of barrel cortex circuits needs to be clarified in the future.

Discussion

Recent studies using the mouse barrel cortex L4, have increased 
our understanding of the activity-dependent mechanisms of dendrite 
refinement and circuit reorganization. Mouse genetics studies have 
discovered dozens of molecules involved in the dendrite refinement 
of the barrel cortex L4 spiny stellate neurons. However, our knowledge 
on how these molecules are spatiotemporally coordinated within a 
neuron to determine the fate of individual dendritic trees is still 
lacking. This could be overcome by labeling endogenous molecules 
and their activities with subcellular resolution in situ and analyzing 
their spatiotemporal changes and correlation with the behavior of 
individual dendrites during refinement.

Apart from the function of individual molecules, an important 
viewpoint has been introduced, which is the dynamics of subcellular 
structures such as the Golgi apparatus (Nakagawa and Iwasato, 2023). 
Triggered by thalamocortical input, molecular activities should 
be  converted to structural and functional changes of intracellular 
machinery, which drive morphological changes in neurons. Next, it 
will be  necessary to elucidate the activity-dependent mechanisms 
underlying Golgi recruitment to specific dendrite(s) in L4 spiny 
stellate neurons, and to understand how the polarized Golgi enables 
asymmetric dendrite growth.

Continuous improvement of in vivo imaging approaches is 
important as well. Unlike conventional “snapshot” analysis by 
histology, in vivo imaging in living neonates allows us to directly 
understand the ongoing process of dendrite refinement. Moreover, 

dissecting the rules underlying the behavior of individual dendrites 
during refinement help clarify how the molecules and organelles work 
within a neuron.

Combining these multidisciplinary approaches is required for 
understanding the whole picture of the activity-dependent 
mechanisms underlying dendrite patterning, a critical step in 
postnatal neural circuit reorganization.
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