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The olfactory epithelium (OE) is directly exposed to environmental agents

entering the nasal cavity, leaving OSNs prone to injury and degeneration.

The causes of olfactory dysfunction are diverse and include head trauma,

neurodegenerative diseases, and aging, but the main causes are chronic

rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced

airflow due to local inflammation, inflammatory cytokine production, release

of degranulated proteins from eosinophils, and cell injury lead to decreased

olfactory function. It is well known that injury-induced loss of mature OSNs

in the adult OE causes massive regeneration of new OSNs within a few

months through the proliferation and differentiation of progenitor basal cells

that are subsequently incorporated into olfactory neural circuits. Although

normal olfactory function returns after injury in most cases, prolonged olfactory

impairment and lack of improvement in olfactory function in some cases poses a

major clinical problem. Persistent inflammation or severe injury in the OE results

in morphological changes in the OE and respiratory epithelium and decreases

the number of mature OSNs, resulting in irreversible loss of olfactory function. In

this review, we discuss the histological structure and distribution of the human

OE, and the pathogenesis of olfactory dysfunction associated with CRS and

viral infection.
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Introduction

The sense of smell is extensively used in everyday life, from the perception of danger
signals, such as smoke and noxious gases to the detection of spoiled food and the
psychosocial effects of food (Croy et al., 2014; Rebholz et al., 2020).

The etiology of olfactory dysfunction varies widely and includes chronic rhinosinusitis
(CRS), upper respiratory tract viral infection, head trauma, allergic rhinitis, and aging.
However, among these, CRS and viral infection account for about 60% of all cases
(Seiden, 2004; Rombaux et al., 2016). In CRS and viral infections, olfactory perception
is reduced due to decreased airflow caused by mucosal swelling and polyp formation,
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as well as by injury to olfactory sensory neurons (OSNs)
by pathogens such as viruses, bacteria, eosinophil granule
products, and inflammatory cytokines (Kern, 2000; Seiden, 2004;
Wrobel and Leopold, 2004).

Different types of olfactory epithelium (OE) injury and OE
regeneration after injury have been reported (Imamura and
Hasegawa-Ishii, 2016). Irrespective of the type of OE injury,
tissue regeneration is usually complete within 1–2 months after
injury (Kikuta et al., 2015; Imamura and Hasegawa-Ishii, 2016).
However, some patients with CRS experience a decreased sense
of smell despite having an open olfactory cleft and normal
nasal airflow, or show no improvement in olfactory function
despite polyp removal (Apter et al., 1992; Kikuta et al., 2016).
Similarly, olfactory dysfunction caused by viral infections takes
time to improve and may persist for months to a year and
more (Liu et al., 2023). Therefore, understanding the anatomical
or histological characteristics of the human OE, as well as the
histological changes and pathophysiology after injury, is essential
for developing appropriate treatment strategies for prolonged
olfactory dysfunction.

This review describes the histological features of the human
OE and discusses the pathogenesis of olfactory dysfunction
associated with CRS and viral infections, as well as persistent
olfactory dysfunction.

Odor reception in humans

The ciliary membranes of the OSN contain olfactory receptors
(ORs), which are responsible for odor detection. ORs are members
of the G-protein-coupled seven-transmembrane receptor family
and constitute the largest gene family (Buck and Axel, 1991; Buck,
2000) in the human genome with nearly 400 OR-coding genes
(Zozulya et al., 2001; Young et al., 2002; Zhang and Firestein, 2002;
Godfrey et al., 2004; Malnic et al., 2004). The OE is divided into
zones I, II, III, and IV (from the dorsomedial to ventral region),
which contain densely packed OSNs.

In many vertebrates including humans, OR genes are classified
into two classes, class I and class II, based on differences in
their amino acid sequences (Glusman et al., 2001; Imai et al.,
2010). OSNs expressing class I genes (class I OSNs) are distributed
within zone 1, corresponding to the dorsomedial region of the OE,
while OSNs expressing class II genes (class II OSNs) are widely
distributed in zones II-IV (Mori and Sakano, 2011). The presence
of a zone structure in the OE has not been confirmed in human,
but in the macaque, a higher primate phylogenetically related to
humans, OSNs expressing specific ORs are scattered throughout
the OE but are restricted to specific zones, suggesting the presence
of a zone structure (Ressler et al., 1993; Horowitz et al., 2014;
Mori and Sakano, 2021).

Cellular composition of the
human OE

The human OE lacks the distinct laminar structure observed
in the mouse OE. The OSN density is very low and the OSNs
are sparsely distributed (Omura et al., 2022). Furthermore, OSN

density is not uniform; mature OSNs are abundant and present at a
relatively high density near the cribriform plate (dorsal to the nasal
cavity), but their density gradually decreases with distance from the
cribriform plate (Figure 1).

The human OE is composed of five cell types: immature or
mature OSNs, sustentacular cells (SCs), microvillar cells (MVCs),
tubular cells of Bowman’s glands, and basal cells (BCs) (Moran
et al., 1982; Morrison and Costanzo, 1990; Féron et al., 1998;
Kalinke et al., 2011).

OSNs are bipolar neurons that extend one dendrite on the
surface of the OE to the mucus layer and project one unmyelinated
axon to the olfactory bulb (OB) (Yee et al., 2010). Individual OSN
dendrites have olfactory vesicles at their tips and are attached to 10–
15 non-motile, elongated cilia. The axons of OSNs cross the basal
membrane and merge to form non-myelinated nerve bundles called
fascicles (Jafek, 1983; Morrison and Costanzo, 1990).

SCs are tall cells with a nucleus on the apical side that extend
their projections from the surface of the epithelium to the basal
layer (Jafek, 1983; Morrison and Costanzo, 1990). Two or more
neighboring SCs wrap around the dendrites of OSNs, structurally
and electrically isolating the OSN (Bryche et al., 2020). They are also
involved in supplying glucose to OSNs and maintaining ion balance
within the OE (Vogalis et al., 2005; Lemons et al., 2017; O’leary
et al., 2019; Ualiyeva et al., 2020). Furthermore, SCs defend the OE
by phagocytosing and detoxifying olfactory toxins using metabolic
enzymes such as cytochrome P450 and glutathione S-transferase.
They also contribute to local immunity by producing inflammatory
cytokines when local inflammation persists (Jafek, 1983).

MVCs are non-neuronal cells with rigid microvilli and
some express TRPM5. TRPM5-postive cells express choline
acetyltransferase and the vesicular acetylcholine transporter (Ogura
et al., 2011; Saunders et al., 2014) and stimulate SCs by
releasing acetylcholine, which protects the OE by promoting the
metabolism and removal of olfactory toxicants (Ogura et al., 2011;
Genovese and Tizzano, 2018).

Bowman’s glands are spaced across the basal membrane at
regular intervals and are responsible for the production and
secretion of mucus, which covers the luminal surface of the OE.

BCs are spherical stem cells that differentiate into OSNs
(Morrison and Costanzo, 1990). Unlike in mice, there is no
distinction between horizontal basal cells (HBCs) and globose basal
cells (GBCs) in human (Graziadei and Graziadei, 1979; Holbrook
et al., 2011), but morphologically, human BCs resemble GBCs in
mice (Hahn et al., 2005).

Distribution of the human OE

In human, the proportion of the nasal cavity occupied by the
OE is markedly lower than that in rodents; in rats, the OE accounts
for about 50% of the nasal cavity, whereas in human, it occupies
about 3% (Gross et al., 1982).

The human nasal cavity consists of three nasal concha
(superior, middle, and inferior). The OE is localized in the
superior nasal concha, particularly in a limited area corresponding
to its upper anterior two-thirds (Omura et al., 2022). In mice,
the respiratory epithelia (RE) and OE are clearly distinguishable
and are not histologically intermingled. However, in human, the
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FIGURE 1

OE structure and the distribution of the OE in mouse and human. (A) Uniform distribution of the mouse OE. In mouse, OSNs are arranged in a
laminar pattern and are evenly distributed in both the dorsal and ventral regions of the OE. OSN, olfactory sensory neuron; OE, olfactory epithelium;
OB, olfactory bulb; BC, basal cell; MVC, microvillar cell; SC, sustentacular cell. (B) Heterogeneous distribution of the human OE. The human OE
lacks a well-defined stratified structure and is generally more sparsely distributed. It also has a lower density of OSNs than mouse. The dorsal surface
of the OE contains more mature OSNs, while the ventral surface contains fewer mature OSNs.

boundary between RE and OE is unclear and is characterized
by patchy areas of mixed RE and OE (Nakashima et al., 1984;
Morrison and Costanzo, 1990; Omura et al., 2022). Areas of
OE degeneration and respiratory epithelialization increase with
age (Nakashima et al., 1984; Paik et al., 1992), but do not
necessarily correlate with loss of olfactory function, because
OE degeneration and OSN reduction are also observed in
adults with normal olfactory function (Nakashima et al., 1984;
Omura et al., 2022).

OE injury is associated with CRS

CRS is defined as a chronic inflammatory disease of the
sinus mucosa that persists for more than 3 months (Fokkens
et al., 2020), and is the most frequent etiology of olfactory
dysfunction (Rombaux et al., 2016). Approximately 60–80% of
CRS patients experience a decreased sense of smell (Banglawala
et al., 2014). CRS phenotypes are classified into two types: CRS
with nasal polyps (CRSwNP) and CRS without nasal polyps
(CRSsNP) (Fokkens et al., 2020). CRSwNP causes a high rate
of olfactory dysfunction and is associated with eosinophil-driven
inflammation, eosinophilic cationic proteins (ECPs), and injury
to OSNs by inflammatory cytokines released from eosinophils
(Epstein et al., 2008; Li et al., 2010; Acharya and Ackerman, 2014;
Yan X. et al., 2020).

In animal models of CRS, in addition to the release of
inflammatory cytokines (such as TNF-a and interferon-c) from
SCs and OSN cell death, BC proliferation and differentiation
are arrested, resulting in neuroepithelium remodeling and the
replacement of neuroepithelium with RE (Jafek et al., 2002; Yee
et al., 2009; Lane et al., 2010; Goncalves and Goldstein, 2016;

Choi and Goldstein, 2018; Marin et al., 2022). Furthermore,
prolonged inflammation increases c-Jun N-terminal kinase activity,
a promoter of apoptosis, within the OSN and local eosinophil
infiltration (Victores et al., 2018). Intranasal administration of
ECP to mouse OEs for 2 weeks results in OSN apoptosis and
thinning of OEs, similar to previous observations in human (Kikuta
et al., 2021). Interestingly, ECP induces apoptosis not only in
OSNs but also in some BCs. In fact, histological analysis of
human OEs frequently showed massive infiltration of inflammatory
cells, such as lymphocytes, macrophages, and eosinophils, and
reduced numbers of OSNs and squamous metaplasia (Kern, 2000;
Rombaux et al., 2016; Wu et al., 2020; Marin et al., 2022).
Consistent with the location of direct injury to the OE, axonal
bundles may fail to extend from the OE beyond the basal
membrane and are observed within the OE as tangles of nerve
fibers (Holbrook et al., 2005). Indeed, the degree of the OE
inflammation and eosinophil infiltration correlates closely with
reduced olfaction in CRS patients (Soler et al., 2009; Kashiwagi
et al., 2019). Furthermore, persistent inflammation leads to
increased mucus secretion from Bowman’s glands, and disruption
of the balance of potassium and sodium ion concentrations
in the mucus reduces olfactory reception (Selvaraj et al., 2012;
Rombaux et al., 2016).

OE injury following viral infection

Post-viral olfactory dysfunction (PVOD) is the second most
common type of olfactory dysfunction and accounts for about 30%
of patients with olfactory dysfunction (Seiden, 2004). Many viruses
have been reported to infect OSNs, including influenza A virus
(Van Riel et al., 2014), herpes virus (Esiri, 1982), paramyxo virus
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(Van Riel et al., 2015), parainfluenza virus (Van Riel et al., 2015),
adeno virus (Yamada et al., 2009), and Japanese encephalitis virus
(Yamada et al., 2009), based on the analysis of samples and tissues
obtained from experimentally inoculated animals. These viruses
utilize various receptors such as the sialic acid (e.g., influenza
virus, parainfluenza virus, and adenovirus) (Connor et al., 1994;
Villar and Barroso, 2006) and heparan sulfate receptors (e.g.,
herpes virus and Japanese encephalitis virus) (Eisenberg et al.,
2012; Perera-Lecoin et al., 2013) to enter the OSN. Although
these receptors are similarly expressed in human OSNs, it is still
unclear whether these viruses directly enter human OSNs. Seasonal
influenza virus A (H3N2), pandemic influenza virus A (H1N1), and
highly pathogenic avian influenza virus A (H5N1) have been shown
to attach to the apical side of human OSNs, and it is suggested
that these viruses can infect human OSNs (Van Riel et al., 2015).
Biopsies of the olfactory mucosa of patients with PVOD show
OE degeneration and morphological changes in the RE (Seiden,
2004). In addition, in the mucosal intrinsic layer below the basal
membrane, OSN axons are prominently replaced by collagen fibers
(Holbrook et al., 2005).

Olfactory tests employing combinations of odors with different
chemical structures has been used to characterize OE damage in
patients with PVOD (Kikuta et al., 2023). Olfactory stimulation
with β-phenylethyl alcohol, γ-undecalactone, and isovaleric acid,
known as the T&T olfactometer test in Japan, allows PVOD patients
to discriminate between different odors, while odor stimulation
with prosultiamine, known as the intravenous olfactory (IVO) test
in Japan, does not allow odor discrimination. The former group of
odors activates both class I and class II OSNs, while the latter odor
primarily activates class I OSNs (Takahashi et al., 2004; Igarashi
and Mori, 2005; Mori and Sakano, 2011; Kikuta et al., 2023). Thus,
it has been suggested that virus-induced OE injury may occur
heterogeneously in a cell type-dependent manner, with preferential
injury to class I OSNs (Kikuta et al., 2023).

Coronavirus disease 2019 (COVID-19) is caused by SARS-
CoV-2, but the mechanism of infection differs from that of other
viruses that cause the common cold (Belouzard et al., 2012). In
addition to the angiotensin-converting enzyme 2 (ACE2) receptor,
transmembrane protease serine 2 (TMPRSS2) activity is required
for SARS-CoV-2 infection (Hoffmann et al., 2020). Co-expression
of ACE2 and TMPRSS2 has been observed only in SCs, Bowman’s
glands, MVs, and BCs, but not in OSNs (Cooper et al., 2020).
In golden hamsters, SARS-CoV-2 infects intestinal cells but not
OSNs (Bryche et al., 2020). OE samples from COVID-19 patients
have been found to contain coronavirus antigens in cells within
the OE, and although the type of infected cell has not been
identified, their shape and antigen localization suggest that the virus
targets non-OSN cells (Cantuti-Castelvetri et al., 2020). However,
infection of non-OSN cells increases inflammatory cytokines in
the human OE (Torabi et al., 2020), and in experiments using
golden hamsters, shedding of OSN cilia was observed histologically
(Bryche et al., 2020).

Discussion

The human OE lacks a regular laminar structure, and a mixture
of the RE within the OE is observed even in people with a

normal sense of smell. With respect to OSN density, the dorsal
OE has a higher density of mature olfactory OSNs than the ventral
OE (Figure 1). The areas of low OSN density in the ventral
OE coincide with areas of high airflow, suggesting that airflow
is a chronic mechanical stimulus affecting the OE and that the
epithelium in this area of the OE may be degenerative. Since
mice show no such differences in OSN density, it is possible
that the human OE is especially susceptible to injury from
airflow stimulation.

The olfactory loss associated with CRS is caused by mechanical
obstruction of the olfactory cleft by polyps in the nasal cavity
and/or edematous changes in the nasal mucosa, resulting in
reduced airflow to the OE (Kern, 2000; Banglawala et al., 2014;
Rosenfeld et al., 2015; Gudis and Soler, 2016). In addition, direct
injury to the OE by inflammatory cytokines and degranulation
proteins from eosinophils also reduce olfactory function (Aiba
and Nakai, 1991; Doty and Mishra, 2001; Lane et al., 2010). In
mouse experiments, repetitive injury, such as chronic inflammation
and aging have been reported to activate HBCs, which depletes
their potential to produce OSNs (Håglin et al., 2020). Eventually,
HBCs produce respiratory epithelial cells instead of OSNs by
altering retinoic acid metabolism and are involved in respiratory
transformation (Håglin et al., 2020). Thus, severe inflammation and
BC damage to the OE leads to prolonged olfactory dysfunction
by reducing the number of functional OSNs and promoting
respiratory transformation (Figure 2). However, since respiratory
transformation is observed even in adults with normal olfactory
function, it is unclear to what extent OE degeneration must
progress before olfactory loss becomes apparent. Rats can detect
food odors even after more than 90% of the olfactory mucosa
has degenerated (Youngentob et al., 1997), suggesting that the
peripheral olfactory system has significant reserve capacity. If
this is also the case in humans, patients who are aware of their
decreased sense of smell may be in the final stages of extensive
OE degeneration.

It is unclear whether differences exist in olfactory dysfunction
between aging and CRS, but histological changes in OB may
produce differences in olfactory function. Human studies have
reported that OB volume, the thickness of the glomerular layer,
and the number of mitral cells and glomeruli decrease with age
(Bhatnagar et al., 1987; Meisami et al., 1998; Yousem et al.,
1998). Furthermore, cell division in the mouse subventricular zone
decreases with age, but granule cell density in the OB increases
with age (Enwere et al., 2004; Richard et al., 2010), suggesting
that granule cell turnover in the OB is reduced and granule
cells live longer in aging animals (Sui et al., 2012). Decreased
turnover of granule cells with aging may reduce the likelihood
of neural circuit reorganization. On the other hand, persistent
nasal inflammation in mice treated with lipopolysaccharide causes
marked atrophy of the OB and more intense damage in tufted
cells than in mitral cells (Hasegawa-Ishii et al., 2019, 2020).
Furthermore, peripheral immune cells have been shown to
transiently infiltrate the olfactory nerve layer, the glomerular
layer, and the external plexiform layer, suggesting that chronic
inflammation, including CRS, may also induce histological changes
in the OB (Asano et al., 2022). A detailed study of the relationship
between olfactory function and histological changes in the OB
may reveal differences in olfactory dysfunction between aging and
chronic inflammation.
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FIGURE 2

OE injury caused by CRS and viral infection. (A) Two types of the OE
injury. Left, normal human OE: OSN axons extend to the OB and
form synapses with projection neurons in the OB. Middle, CRS with
polyps: OE is injured by inflammatory cytokines and eosinophilic
cationic proteins from eosinophils, resulting in apoptotic cell death.
Right, viral infection: viruses (except COVID-19) infect OSNs directly
and cause apoptotic cell death. CRS, chronic rhinosinusitis; OSN,
olfactory sensory neuron; OE, olfactory epithelium; OB, olfactory
bulb; BC, basal cell; MVC, microvillar cell; SC, sustentacular cell;
ECP, eosinophilic cationic protein. (B) Histological changes after OE
injury. Persistent inflammation and basal cell damage in the OE can
inhibit axonal elongation of newly generated OSNs and/or result in
a transition from olfactory to respiratory epithelium, leading to
prolonged olfactory dysfunction.

In contrast to olfactory loss caused by reduced airflow, which
can be improved by surgical treatment, no established treatment
currently exists for OE injury. Therefore, to develop a treatment
strategy, it is important to determine whether olfactory dysfunction
is due solely to reduced airflow or to concomitant OE damage. The
IVO test measures the time (defined as latency) and duration of
odor perception after intravenous administration of prosultiamine
and is widely used in clinical practice. Reduced airflow does not
prolong onset latency in the IVO test, but OE injury does, and
prolonged latency correlates with a reduction in the number of
mature OSNs (Kikuta et al., 2016). Accordingly, OE injury is
likely in cases with prolonged latency, and it is estimated that
approximately 60% of CRS cases are complicated by OE injury
(Kikuta et al., 2016).

The main mechanism of PVOD is decreased airflow caused
by swelling of the olfactory cleft mucosa by local inflammation,
increased mucus production, and changes in mucus composition
(Akerlund et al., 1995; Schlosser et al., 2016; Victores et al.,
2018; Cooper et al., 2020). Thus, in most cases, olfactory function
recovers with the disappearance of nasal symptoms (Hummel
et al., 1998a,b; Zhao et al., 2014), but in some patients, olfactory
loss may persist for more than a year. This is presumably
due to the OE damage caused by viral infection or the local

immune response (Duncan and Seiden, 1995; Welge-Lüssen and
Wolfensberger, 2006; Cavazzana et al., 2018). Viruses that invade
OSNs can be transported to the olfactory bulb (OB) via OSN
axons. However, OSN apoptosis, a defense mechanism against OE
damage, can prevent this propagation (Mori et al., 2002, 2004;
Kanaya et al., 2014). When mice are infected intranasally with
influenza H3N1 virus, apoptosis of the infected OSNs inhibits the
spread of the viruses. Conversely, infection with herpes viruses
does not induce OSN apoptosis and the viruses can spread
to the OB (Mori et al., 2002). Thus, OSN apoptosis may act
positively by preventing the entry of viruses into the central nervous
system via the OSN, but may also act negatively by promoting
olfactory dysfunction.

Olfactory dysfunction caused by COVID-19 is less severe than
that caused by other common cold viruses, with olfaction restored
in about 70% of cases within 2 weeks after the onset of initial
symptoms (Lechien et al., 2020; Yan C. H. et al., 2020). The
fact that COVID-19 infects SCs, MVs, and BCs, but not OSNs
may be one factor contributing to the favorable prognosis of
olfactory dysfunction in COVID-19 patients (Belouzard et al., 2012;
Cooper et al., 2020).

Regardless of the type of virus, severe injury to OSNs and
other components of the OE can result in incomplete regeneration,
and similar to the histopathology of CRS, degeneration and
morphological changes in the OE are observed (Seiden, 2004;
Figure 2). The histological changes that occur during the
regenerative process may be one of the factors contributing to the
prolongation of olfactory symptoms.

Since a variety of immune cells are known to be involved in
inflammatory responses in the OE, research into the types and
activities of the immune cells involved will be required to elucidate
the mechanisms before efficacious treatments for olfactory
dysfunction can be developed. However, various therapeutic
interventions with variable efficacy are available, including steroid
administration, which has anti-inflammatory effects, for the
treatment of olfactory dysfunction caused by CRS (Rudmik
et al., 2013; Chang and Glezer, 2018). Biological therapies
such as anti-IgE monoclonal antibody, IL-4 receptor alpha
subunit antagonist, and anti-IL-5 are promising treatments for
nasal polyps and could significantly improve olfaction (Gevaert
et al., 2013; Bachert et al., 2016, 2017). In addition, localized
intranasal administration of insulin in mice has been reported to
suppress OSN apoptosis and promote OE regeneration, suggesting
that insulin could have potential as a novel therapeutic agent
(Kikuta et al., 2021; Kuboki et al., 2021). In human, insulin
nasal spray has also been reported to be effective against
COVID-19-induced olfactory dysfunction (Cherobin et al., 2023).
Understanding the histological architecture of the human OE
and the pathophysiology of each disease will be fundamental
in establishing new therapies for controlling inflammation and
preventing irreversible OE damage.
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