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Modeling the contribution of 
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Gamma oscillations nested in a theta rhythm are observed in the hippocampus, 
where are assumed to play a role in sequential episodic memory, i.e., memorization 
and retrieval of events that unfold in time. In this work, we present an original 
neurocomputational model based on neural masses, which simulates the 
encoding of sequences of events in the hippocampus and subsequent retrieval by 
exploiting the theta-gamma code. The model is based on a three-layer structure 
in which individual Units oscillate with a gamma rhythm and code for individual 
features of an episode. The first layer (working memory in the prefrontal cortex) 
maintains a cue in memory until a new signal is presented. The second layer (CA3 
cells) implements an auto-associative memory, exploiting excitatory and inhibitory 
plastic synapses to recover an entire episode from a single feature. Units in this 
layer are disinhibited by a theta rhythm from an external source (septum or Papez 
circuit). The third layer (CA1 cells) implements a hetero-associative net with the 
previous layer, able to recover a sequence of episodes from the first one. During 
an encoding phase, simulating high-acetylcholine levels, the network is trained 
with Hebbian (synchronizing) and anti-Hebbian (desynchronizing) rules. During 
retrieval (low-acetylcholine), the network can correctly recover sequences from 
an initial cue using gamma oscillations nested inside the theta rhythm. Moreover, 
in high noise, the network isolated from the environment simulates a mind-
wandering condition, randomly replicating previous sequences. Interestingly, in 
a state simulating sleep, with increased noise and reduced synapses, the network 
can “dream” by creatively combining sequences, exploiting features shared by 
different episodes. Finally, an irrational behavior (erroneous superimposition 
of features in various episodes, like “delusion”) occurs after pathological-like 
reduction in fast inhibitory synapses. The model can represent a straightforward 
and innovative tool to help mechanistically understand the theta-gamma code in 
different mental states.
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1 Introduction

Episodic memory (EM) refers to remembering specific autobiographical events and 
their temporal context, a crucial cognitive function that enables us to navigate our daily 
lives. It is known that the hippocampus plays a crucial role in encoding and retrieving 
temporal episodes (Eichenbaum, 2017a). Working memory (WM) indicates the capacity 
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to maintain and manipulate data for a short period, which is 
essential for many cognitive processes. While a traditional 
viewpoint assumes that this kind of memory just retains transitory 
data from the external world to drive imminent behavior, a broader 
perspective, which is becoming increasingly important recently 
(Hoskin et  al., 2019; Beukers et  al., 2021), considers a stricter 
relationship between working memory and other kinds of memory, 
especially the episodic one. Remarkably, Beukers et  al. (2021) 
recently proposed that WM and EM collaborate to support complex 
behavioral patterns and that the relationship between EM and WM 
can parsimoniously explain much experimental evidence on 
working memory. However, how these functions are implemented 
in the brain remains a matter of active research. Consequently, 
substantial effort has been devoted to identifying the neural 
mechanisms behind them.

Recent work in neuroscience has indicated that neural oscillations 
with different frequencies and their phase relationships play a relevant 
role in many cognitive functions, including memory. In particular, 
fluctuations in the theta and gamma bands and their entrainment (the 
so-called theta-gamma code) are involved in WM and EM, as 
evidenced by the massive bibliography in the field (see Nyhus and 
Curran, 2010; Wang, 2010; Lisman and Jensen, 2013; Fries, 2015; 
Abubaker et  al., 2021; Mysin and Shubina, 2022 for recent 
review papers).

An influential model hypothesizes that the theta-gamma 
entrainment is used for temporally coding objects or episodes within 
a sequence. In this model (Lisman and Idiart, 1995; Lisman, 2005; 
Lisman et al., 2005), cell assemblies that represent individual items 
fire in a highly synchronized way in the gamma band (> 30 Hz), while 
their phase defines the sequential order of these items within a slower 
theta rhythm (~ 4 Hz). Many results in rodents’ hippocampus reveal 
that high-frequency gamma oscillations are nested within slower 
theta oscillations (Soltesz and Deschênes, 1993; Belluscio et al., 2012; 
Colgin, 2016), fire at specific phases of the theta cycle, and, if an 
external input varies, exhibit a progressive phase shift (named 
precession phenomenon; Skaggs et al., 1996; Tsodyks et al., 1996; 
O’Keefe and Burgess, 2005). More recently, similar results have been 
confirmed in humans in the hippocampus and other parts of the 
cortex (Canolty et al., 2006; Chaieb et al., 2015; Heusser et al., 2016; 
Abubaker et al., 2021), suggesting that the theta-gamma code can 
have a broader role in realizing relational networks useful in many 
cognitive problems. In particular, theta-gamma may control the 
relationship between WM and EM and implement their 
reciprocal interactions.

Furthermore, brain rhythms can be altered in some neurological 
disorders, such as epilepsy, Alzheimer’s disease, or schizophrenia 
(Kitchigina, 2018; Yakubov et al., 2022); a study of their functional role 
can thus provide new indications and cues into the etiology of these 
pathological states. In particular, schizophrenia is characterized by 
abnormalities in theta and gamma oscillations (Spencer, 2008; 
Senkowski and Gallinat, 2015); the latter can contribute to symptoms 
and cognitive alterations by impinging on episodic and 
working memory.

Finally, a significant and partially new field of study concerns the 
role of these rhythms during sleep and the associated memory 
consolidation, particularly dreaming (Brodt et al., 2023), and during 
the imagination of new events in a wandering mind (O’Callaghan 
et al., 2021).

The previous analysis underlines the importance of a deeper 
understanding of gamma and theta oscillations’ role in memory and 
the necessity for a more systematic comprehension of the mechanisms 
subserving rhythmic cooperation in the brain. Neurocomputational 
models inspired by biology are playing an increasing role in 
this domain.

Most previous models of theta-gamma are devoted to simulating 
individual neuron behavior and studying place cells in the 
hippocampus (see Ursino et al., 2023, for a summary of these models). 
However, a different approach can be equally valuable, simulating 
neural activity on a larger mesoscopic scale and in a larger assembly 
of neural populations. This approach can better reveal some more 
general principles of functioning in which a distributed code involves 
large groups of neurons.

Mainly, neural mass models (NMMs) are a mathematical 
description of neural dynamics at a population level. These can 
simulate phenomena at different mesoscopic scales, ranging from 
local field potentials to an entire cortical region, using just a few state 
variables. Moreover, despite their simplicity (compared with detailed 
neuron models), they can include connectivity and synaptic dynamics, 
incorporate different families of neuronal populations, and account 
for the main non-linear phenomena in a straightforward but 
biologically founded way. Hence, they represent a good compromise 
between simplicity and biological reliability. In particular, NMMs 
helped to mimic the generation and transmission of brain rhythms in 
different frequency bands in physiological and pathological conditions 
(Wendling et al., 2002; David and Friston, 2003; Sotero et al., 2007; 
Bhattacharya et al., 2011; Cona et al., 2011; Cona and Ursino, 2015; 
Bensaid et al., 2019).

In recent years, we  investigated the role of theta and gamma 
oscillations in memory with multi-layer neural mass models, 
analyzing the possibility of storing and recovering a sequence of 
episodes (Cona and Ursino, 2013) or representing trajectories in an 
allocentric space (Cona and Ursino, 2015). In our last work, 
we analyzed the role of theta and gamma rhythms in working memory 
(Ursino et  al., 2023). In this model, a theta rhythm is generated 
internally to a first layer of NMMs due to reciprocal Hebbian auto-
associative excitatory synapses that store the representation of objects, 
while the gamma rhythm is generated in a subsequent layer by 
creating Hebbian and anti-Hebbian inhibitory synapses (i.e., synapses 
targeting fast GABA-ergic interneurons). Finally, the reconstruction 
of a sequence of items with an assigned temporal order is due to 
Hebbian hetero-associative excitatory synapses from a downstream to 
an upstream layer. After training, the model can maintain up to nine 
items simultaneously in memory by desynchronizing their gamma 
activity or, in a different functioning mode, replicate a sequence of 
items using a gamma rhythm nested inside a theta rhythm.

The central assumption of the previous model, however, was that 
both theta and gamma rhythms are generated at a network level as a 
consequence of Hebbian training.

Although this is a plausible hypothesis, several recent data 
support a different scenario, i.e., that theta oscillation in the 
hippocampus emerges from a complex interplay between local 
mechanisms and an external rhythmic drive (Etter et  al., 2023; 
Mysin and Shubina, 2023; Robinson et al., 2023). In this regard, 
particular emphasis has been given to a role by the medial septum 
(MS). Manipulation of MS GABAergic neurons is critical in pacing 
theta rhythm (Robinson et al., 2023), whereas lesion of the MS or its 
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pharmacological inactivation abolishes theta rhythmicity in the 
hippocampus (Boyce et  al., 2016). Furthermore, in several 
conditions of cognitive relevance, such as quiet wakefulness or slow 
wave sleep, the hippocampus exhibits a non-theta activity. The 
importance of non-theta states for information processing in the 
hippocampus has been stressed by Mysin and Shubina in a recent 
review paper (Mysin and Shubina, 2023); suggesting that transitions 
between different hippocampal states occur within seconds. As 
further summarized in the “Discussion,” the previous results can 
be explained only with difficulty using the previous model. Hence, 
we need a more flexible model to explain theta rhythmicity and 
simulate the passage from theta to non-theta states faster and 
more straightforwardly.

Accordingly, this work presents a model alternative to the one 
described in Ursino et al. (2023) in which rhythms are generated 
independently of training. Each unit in the model might intrinsically 
oscillate with a gamma rhythm due to its fixed internal connections 
(specifically, local connections between pyramidal and fast GABAergic 
interneurons), while the theta rhythm is received from an external 
source (simulating the MS). In this more straightforward scenario, 
Hebbian synapses only reconstruct items from partial cues but are 
unnecessary for rhythm generation.

With this model, the interaction between WM and EM and the 
function of the theta-gamma code are assessed by training the model 
with sequences of episodes and investigating its capacity to recover 
them entirely from an initial cue. In addition, conditions simulating 
isolation from the external world (imagination and dreaming states, 
including non-theta slow-wave sleep) are also considered, as well as a 
dysfunction (such as schizophrenia) involving impairment of fast 
inhibitory connections. Finally, a comparison between the present and 
the older model is performed (see “Discussion”), and some testable 
predictions are proposed to validate the main hypotheses and 
discriminate the present model from previous ones.

2 Methods

The basic element of the network is the neural mass model, named 
“computational Unit” in the following. By linking several such Units, 
sophisticated networks can be  realized to mimic complex 
cognitive processes.

2.1 The neural mass model

2.1.1 The single computational Unit
It consists of four neural populations (pyramidal neurons, 

excitatory interneurons, and GABA-ergic inhibitory interneurons 
with slow and fast synaptic dynamics), reciprocally interconnected via 
feedback connections. The basic idea is that neurons of the same 
population exhibit common behavior (i.e., they share similar inputs 
and exhibit synchronized activity). Consequently, their global activity 
can be described using only a limited number of state variables.

Due to the interaction between excitatory and inhibitory 
populations, a single Unit can simulate different brain rhythms. In this 
work, parameters to individual Units have been assigned to mimic two 
possible intrinsic rhythms: a gamma rhythm (~ 40 Hz) or a theta 
rhythm (~ 4 Hz).

2.1.2 Connections among Units
Besides generating an individual oscillation, Units can transmit or 

receive information via long-range connections originating from 
pyramidal neurons, thus realizing complex networks. Specifically, in 
the present model, each post-synaptic Unit can receive three different 
kinds of connections coming from pyramidal neurons in the 
pre-synaptic Units:

 i Glutamatergic synapses targeting the pyramidal neurons of the 
post-synaptic Unit (excitatory connection). In the following, 
these will be  represented with the symbol WpYX , where 
superscripts X and Y stand for the pre-synaptic and post-
synaptic layers, respectively.

 ii Glutamatergic synapses targeting the fast inhibitory 
interneurons of the post-synaptic Unit (thus realizing a 
bi-synaptic inhibitory connection: pyramidal→fast 
inhibitory→pyramidal). In the following, these will 
be represented with the symbol Wf YX .

 iii A third kind of synapses, represented in the following with the 
symbol Af YX , reaches post-synaptic fast inhibitory 
interneurons from pre-synaptic pyramidal neurons, but with 
very fast dynamics. These synapses, too, realize a bi-synaptic 
inhibition of the target pyramidal population.

The three connections described above play different roles in the 
model; hence are all necessary. Specifically, connections of type (i) are 
used to recover features in an object starting from an initial cue or to 
recover a new episode from a previous episode in a sequence. Briefly, 
they are essential to recuperating information in memory. 
Connections of type (ii) help synchronize features within the same 
episode so that all features in the same episode oscillate in phase with 
a gamma rhythm. Connections of type (iii) are essential to 
desynchronize features (therefore also named “desynchronizing 
synapses” in the following) in different episodes so that two episodes 
do not appear superimposed.

A detailed mathematical description of the single neural mass 
model and its interconnection mechanisms can be  found in 
Supplementary material or in previous work by the authors (Ursino 
et al., 2010). The basic architecture of the computational Unit and 
connections between different Units are shown in Figure 1.

2.2 Structure of the model

The model consists of three layers of multiple computational Units 
(in the following named “WM,” “L1,” and “L2”), oscillating with a 
gamma rhythm. In addition, a single external Unit (called “Theta 
generator”) generates a theta rhythm. A block diagram of the three-
layer arrangement, along with its operation modes (see also 
“Functioning modes” below), is shown in Figure 2.

Each Unit in each layer codes for a single feature, and these 
features are replicated identically in each layer. Hence, the layers have 
the same number of Units. In the authors’ minds, these features may 
represent any sensory experience (i.e., visual, olfactory, auditory, etc.) 
or even a more complex cognitive aspect (e.g., an emotion, a motor 
gesture, etc.). An episode consists of a variable number of features 
occurring together, while a temporally ordered succession of episodes 
represents a sequence.
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A feature is considered correctly recovered when the spike density 
of pyramidal neurons in the corresponding Unit oscillates with a 
gamma rhythm. Furthermore, each episode is considered correctly 
recovered when all the Units representing its component features 
oscillate in a highly synchronized manner.

In particular, each layer of the network receives excitatory forward 
synapses of type (i) (see above) from the previous layer (linking each 
Unit that codes for a specific feature with the corresponding Unit 
coding the same feature in the next layer). Furthermore, all Units in 
layer “L1” receive an excitatory synapse from the “Theta generator.” 
These synapses are fixed and thus not subject to training.

All other synapses implementing feedback associative mechanisms 
among Units are plastic and trained through Hebbian and anti-
Hebbian learning mechanisms (see “Training of the network” below).

In the following, the layers that make up the model architecture 
will be described in greater detail, and some assumptions on their 
possible anatomical location will also be given.

2.2.1 The working memory layer
The “WM” layer is the first module of the network, consisting of 

75 Units (one for each distinct feature used in this work). In the 
normal Retrieval functioning mode, Units coding for some particular 

FIGURE 1

Single computational Unit and its possible interconnections. (A) Scheme of the neural mass model used to simulate the dynamics of each Unit. Blue 
and green continuous lines indicate glutamatergic excitatory synapses; red dash-dotted lines indicate GABAergic faster inhibitory synapses, while 
brown dotted lines indicate GABAergic slower inhibitory synapses. Symbols “Cij” denote the synaptic contacts among the neural populations, where 
the first and the second subscript designate the post-synaptic and pre-synaptic populations, respectively. Symbols “up” and “uf” represent inputs to the 
pyramidal neurons and fast inhibitory interneurons, respectively. These inputs can came from synapses of pyramidal neurons from other Units or from 
the environment (“E” and “I”), or from noise (“np” and “nf”). (B) An example of glutamatergic excitatory connection between Units, from the pyramidal 
neurons of the source Unit to the pyramidal neurons of the target Unit (named Wp in the present model, left column), and an example of bi-synaptic 
inhibitory connection, from the pyramidal neurons of the source Unit to the fast inhibitory interneurons of the target Unit (which, in turn, inhibits 
pyramidal neurons in the target Unit, right column). In the present model, the latter may be either of glutamatergic Wf  type (as shown) or Af type (with 
almost instantaneous dynamics). For more details, see Supplementary material.
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FIGURE 2

Architecture of the network in the different functioning modes. In the panels, red arrows indicate trained synapses, blue arrows fixed synapses, grey 
arrows the inputs used during training, and black arrows the inputs during the different functioning modes. Please note that pictures in these panels are 
used for representational purposes only. Indeed, features within an episode can also represent different sensory modalities or other more complex 
cognitive processes. (A) During the Retrieval functioning mode, the external perception (i.e., the result of integrating multisensory information from the 
outside world) indirectly reaches layer “L1” through the “WM” layer. Moreover, the activity in the “L1” layer is modulated by the “Theta generator,” which 
oscillates autonomously with the theta rhythm. “L1” can recall stored episodes, starting from their partial representation, through excitatory and 
inhibitory synapses, WpL L1 1  and WfL L1 1 . Additionally, excitatory synapses WpL L1 2 , along with the desynchronizing synapses Af L L1 1 , allow the 
reconstruction of temporal sequences of episodes, which may also include common features. This overall mechanism occurs exploiting the 
phenomenon of theta-gamma coupling. The activity of the “L2” layer is considered the model’s output. (B) During the Training phase, the perception is 
now provided directly to the “L1” and “L2” layers, as in conditions of high-cholinergic drive. Two successive episodes of a time sequence are provided, 
once and simultaneously, to the two layers. This allows the formation of an auto-associative network within layer “L1” and a hetero-associative network 
from layer “L2” to “L1.” (C) During the Isolation from the external world operation mode, layer “L1” is disconnected from the “WM” layer and receives 
only high random input noise. Moreover, the strength of some synaptic connections can be altered (to simulate the effect of neurotransmitter changes 
or pathological conditions). The network can autonomously recall sequences of previously stored episodes (“Imagination”), create new oneiric 
combinations of them (“Dreaming”), or exhibit superimpositions of episodes as in neurocognitive disorders (“Schizophrenia”).
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features are excited with a high input (in addition to noise), signaling 
that the corresponding feature has been detected in response to an 
external stimulus. The other Units receive only noise (with zero mean 
value) and are silent, signaling that this feature has not been detected. 
No lateral connection exists between features in this layer. In fact, the 
aim of “WM” is just to maintain information in memory even when 
the external input ceases by protecting it from interference and 
updating it as soon as a new input arrives. Our model realizes this 
behavior, which is typical of working memories (Balaban and Luria, 
2017), through an auto-excitatory loop for pyramidal neurons 
(described with the internal parameter “Cpp,” see 
Supplementary material). Furthermore, this auto-excitation is reset to 
zero once a new input reaches the “WM” layer (see also Ursino 
et al., 2023).

A natural location for the “WM” layer is the prefrontal cortex 
(PFC). In fact, numerous works in the literature suggest a neural 
interaction between the ventromedial PFC and the hippocampus 
during memory tasks (Eichenbaum, 2017b; Campbell et al., 2018; 
Barry et al., 2019). An auto-excitatory loop to maintain information 
in working memory can be  realized via a basal ganglia-thalamus 
gating mechanism that allows for selective updating of the prefrontal 
cortex, as discussed by Nir-Cohen et al. (2020). In particular, these 
authors discuss the involvement of these structures in opening the 
gate and replacing the present content in WM with new information.

The activity of “WM” is then transmitted to the second layer of 
the network, the “L1” layer.

2.2.2 Layer 1
Layer “L1,” as the previous, consists of 75 Units, initially 

disconnected from one another. We  assume that, in the normal 
Retrieval operating mode, all Units of the “L1” layer are inhibited but 
receive rhythmic disinhibition from the “Theta generator,” realizing a 
theta-gamma code.

After Training, this layer behaves as an auto-associative network, 
capable of retrieving the complete information of an episode starting 
from a partial representation. To this end, excitatory (WpL L1 1), 
inhibitory (Wf L L1 1), and desynchronizing (Af L L1 1) synapses linking 
the different Units within “L1” are trained, during a learning phase, 
using Hebbian and anti-Hebbian training mechanisms (see “Training 
of the network” below). After Training, the various features become 
interconnected with each other, depending on the particular events 
previously experienced, and the balance between excitation and 
inhibition allows all features of an episode to be recovered and to 
oscillate in synchronism with the gamma rhythm (~ 40 Hz).

The “L1” layer could be  located in the CA3 region of the 
hippocampus, where the presence of auto-associative solid feedback 
synapses is well documented (Bliss and Collingridge, 1993) or it can 
simulate a larger portion, including the perirhinal/entorhinal regions 
(Eichenbaum, 2017b) as well. The presence of fast synapses can 
be justified by the presence of more rapid AMPA synapses or by plastic 
gap junctions. The latter have been recently documented between 
principal hippocampal cells (Schmitz et  al., 2001; Molchanova 
et al., 2016).

2.2.3 Theta generator layer
In the present model, contrarily to our previous work, the theta 

rhythm is not generated internally to a layer but is produced externally 
by another Unit, named “Theta generator,” and then transmitted to 

each Unit in “L1” through a glutamatergic excitatory synapse, thus 
disinhibiting their activity. This simple portion of the model was 
implemented through a single neural mass model, autonomously 
oscillating in theta rhythm (~ 4 Hz) by providing particular values of 
the internal parameters of the populations (see 
Supplementary material).

Recent literature shows that the medial septum can play a role in 
the genesis of theta waves in the hippocampus (Pignatelli et al., 2012). 
Another hypothesis is that a theta-rhythmic signal may resonate 
throughout Papez circuit, which involves different structures, 
including the mammillary bodies, the mammillothalamic tract, the 
anterior thalamic nuclei, the cingulate cortex, and the 
parahippocampal gyrus (Vertes et al., 2001).

2.2.4 Layer 2
Finally, the “L2” layer, together with “L1,” realizes a hetero-

associative network to correctly reconstruct a complete sequence of 
episodes, starting from an initial one. During Training (see below), 
excitatory connections (WpL L1 2) are formed from Units in “L2” to 
Units in “L1,” specifically between the features of a particular episode 
in “L2” and the features of the subsequent episode in “L1.” This 
network also consists of 75 neural mass models.

A possible location for the “L2” layer may be in the CA1 cells of 
the hippocampus. In fact, CA1 activity seems essential for the 
temporal memorization of a chain of episodes (Hoge and Kesner, 
2007; Mankin et al., 2012). The presence of bidirectional synapses 
between CA3 and CA1 can occur through the lateral entorhinal 
cortex, as shown in Eichenbaum (2017b). Moreover, the presence of 
Granger causality from CA1 to CA3 cells has been detected recently 
(Sandler et al., 2015).

2.3 Training of the network

All feedforward synapses in the model (i.e., from one layer to the 
subsequent one and from the “Theta generator” to the “L1” Units) are 
fixed. This simplifying assumption will be critically discussed in the 
last section. Conversely, feedback synapses are trained. As stated 
above, these are the internal synapses within the layer “L1” (excitatory 
connections WpL L1 1, inhibitory connections Wf L L1 1 and 
desynchronizing connections Af L L1 1) and the synapses from “L2” to 
“L1” layer (excitatory connections WpL L1 2).

During Training, simulating an encoding phase, we provided the 
information of each episode to layers “L1” and “L2” by stimulating 
pyramidal neurons and fast inhibitory interneurons of the 
corresponding features for 250 ms. In particular, we used the following 
strategy to memorize a sequence of N episodes in an assigned 
temporal order. Naming the episodes in a sequence as: Ep_1, Ep_2,…, 
Ep_N, during each training step the following inputs are provided:

 ( )( )“ ” “ ”L1 : _ ; L2 : _ 1 with 1,2, 1− = … +Ep k Ep k k N

In which Ep_0 and Ep_(N + 1) represent “null” episodes, i.e., no 
feature is stimulated. The direct use of inputs to “L1” and “L2” can 
be justified based on experimental evidence showing that, during the 
encoding of memory content in the hippocampus, high levels of the 
neurotransmitter acetylcholine facilitate a direct connection between 
the cortex and the hippocampal nuclei, in particular CA1 and CA3, 
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while connections between CA1 and CA3 are temporally suppressed 
(Hasselmo, 2006; Decker and Duncan, 2020). Notably, each pair of 
episodes is provided only once as network input, leading to 
successful storage.

Several studies suggest how the transmission of current sensory 
information from the entorhinal cortex to the hippocampus may 
be facilitated by a faster gamma rhythm (> 40 Hz) (e.g., Bieri et al., 
2014 and Newman et  al., 2013). However, some recent findings 
challenge this hypothesis (see, for example, Yamamoto et al., 2014), 
and further evidence is needed to better understand the functional 
significance of fast gamma in the entorhinal-hippocampal network 
(Colgin, 2015). Therefore, in the current model, we  decided to 
perform a simple Training where incoming information constantly 
excites the activity of pyramidal and GABAfast neurons in the “L1” 
and “L2” layers. In the future, an improved model could take into 
account these aspects, e.g., by implementing a “fast” gamma rhythm 
driven by higher sensory/integrative areas to the entorhinal cortex 
during encoding.

All the glutamatergic synapses (i.e., the excitatory WpL L1 1, the 
inhibitory Wf L L1 1, and the excitatory WpL L1 2) are trained with a Hebb 
rule, based on the correlation between the pre-synaptic and post-
synaptic activities. Conversely, the fast synapses Af L L1 1, used to 
desynchronize different episodes, are trained with an anti-Hebbian 
mechanism. The latter allows us to obtain an extremely rapid 
desynchronization so that features belonging to different episodes 
inhibit themselves during the reconstruction of a sequence. A detailed 
mathematical description of the two different learning rules can 
be found in Supplementary material.

We also implemented a normalization mechanism, i.e., the sum 
of synapses of a specific type entering a computational Unit must not 
overcome a given threshold. This simulates the physiological 
limitation of neurotransmitters and allows the network to work with 
episodes consisting of a different number of features (4, 5, or 6 in the 
present paper, see Supplementary material) while maintaining a 
similar behavior.

Since auto-associative networks exhibit optimal behavior in the 
presence of orthogonal patterns, and, moreover, many authors claim 
that the dentate gyrus orthogonalizes input patterns before they are 
stored in CA3 cells (Knierim and Neunuebel, 2016; Kesner, 2018), 
we  performed a first training procedure using three sequences 
composed of five orthogonal episodes each (i.e., five episodes per 
each sequence without any common feature, see Figure  3A). 
However, our model exhibits a richer and more complex behavior 
(see “Isolation from the external world” below) in the presence of 
some shared features. For this reason, we also performed a second 
training procedure, still with five episodes, but now with one or two 
shared features per episode (i.e., from 20 to 35% of the total episode 
can be  shared). Figure  3B illustrates this particular set of 
non-orthogonal sequences. Specifically, Episode 2 (belonging to the 
first sequence) shares two features with Episode 14 (third sequence), 
Episode 3 (first sequence) has one feature in common with both 
episodes 7 and 9 (second and third sequence), and Episode 9 
(second sequence) has one feature in common with Episode 14 
(third sequence). Since in the present simulations we  are using 
either orthogonal episodes or episodes which share only a few 
features, some sort of previous orthogonalization is implicitly 
assumed. In the future, a new layer could be  implemented to 
explicitly analyze the role of the dentate gyrus in orthogonalization 

of input patterns and the processing of episodes sharing 
common features.

Of course, longer sequences (with more than five episodes) can 
be trained equally well. However, the length of recalled sequences in 
this model would still be  a maximum of five episodes due to the 
implemented mechanism of theta-gamma coupling. Similarly, more 
complex episodes (consisting of more than six features) can 
be correctly encoded and retrieved by the network. We tested that the 
model is still able to manage up to 50 features per episode correctly 
(unpublished results).

2.4 Functioning modes

The model has been used with three different operating modes: (i) 
“Training,” (ii) “Retrieval,” and (iii) “Isolation from the external world.”

 i As described above, in the Training modality, the network 
learns all the associative synapses with Hebbian and anti-
Hebbian rules (Figure 2B).

 ii In the Retrieval mode, the network, after Training, can 
complete an episode starting from a single input feature and 
reconstruct a temporal sequence of different episodes. 
Specifically, the input from the outside world is retained in 
memory in the “WM” layer and then transferred to the “L1” 
layer. If this input represents one of the features of a specific 
stored episode, the “L1” layer reconstructs the overall episode. 
Then, the integrated action of the “L1,” “L2” layers, and “Theta 
generator” recovers the overall sequence of episodes by 
exploiting the theta-gamma coupling (Figure  2A). The 
sequence is repeated at each theta cycle until a reset signal 
arrives to the “WM.”

 iii In the modality Isolation from the external world, the network 
is isolated from the environment by disconnecting the “L1” 
layer from the “WM” layer (see Figure 2C), and all neurons in 
“L1” receive a strong positive input noise (with uniform 
distribution ranging between a minimum and a maximum) in 
addition to the previous zero mean value noise given in the 
Retrieval mode (see Supplementary material). To simulate 
some special conditions of the human mind (imagination and 
dreaming), or pathological cases (like schizophrenia), the 
amplitude of noise and the strength of synapses has been 
changed compared with the Retrieval to account for a possible 
effect of neurotransmitters (for instance, during sleep) or 
pathological changes. Specifically:

 a in the condition named “Imagination,” the noise level to “L1” 
neurons has been increased, still maintaining the same synapse 
values as in the Retrieval phase;

 b in the condition named “Dreaming,” noise to “L1” neurons has 
been further increased, and all synapses have been reduced by 
2/3. Furthermore, three different possibilities were considered: 
the first two with the presence of theta modulation (but 
different gamma frequencies), the third not; and

 c in the condition named “Schizophrenia,” noise is still increased 
and all fast synapses Af  within the “L1” layer have been 
reduced to simulate some impairment in fast inhibitory 
mechanisms.
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A deeper justification of all these changes will then be made in the 
“Discussion” section.

2.5 Quantitative model assessment

To quantitatively evaluate the model performance, we compared 
the activity of each pyramidal neuron in layer L2 to an assigned 
threshold. We consider that an episode is wholly recovered within a 
given theta cycle if all features of that episode are simultaneously 
above the threshold for at least one integration step. Furthermore, 
we say that a sequence is recognized within a theta cycle if its episodes 
are recognized (according to the previous criterion) in the correct 
order. In the following, the threshold will be given a value as high as 
70% of the maximum activity of pyramidal neurons (i.e., 0.7*5 = 3.5).

Following the previous criterion, the model’s performance has 
been assessed by performing 10 simulations for each sequence, with 
a duration of 1.0 s, and using a different seed for the noise (i.e., 30 
simulations were performed). During each simulation, a feature of 
the first episode was given as an input, and the capacity to recover the 
overall sequence was evaluated during each theta cycle. The results 
are expressed as the percentage of correct episode retrieval, assessed 
separately for each episode in the sequence, from the first to the last.

The model assessment was first performed with the basal 
parameter values, using both the orthogonal and the non-orthogonal 
sequences, to evaluate the role of shared features. Since an essential 
characteristic of the present model is that theta and gamma oscillations 
are autonomously generated within the Units, subsequently, 
we evaluated model performance by changing the frequency of the 
theta rhythm generated by the “Theta generator” and then the 
frequency of the gamma rhythm generated in the “L1” and “L2” layers. 
This is a critical analysis since brain rhythm frequencies can be altered 
in different in vivo conditions. Finally, we also tested the robustness of 
the networks by changing the parameters involved in synaptic 
training mechanisms.

3 Results

3.1 Encoding and retrieval of temporal 
sequences

3.1.1 Orthogonal sequences
Figure 4 shows the synapses obtained by training the network 

with three different sequences of five episodes, all orthogonal. 
Specifically, Figure 4A shows the strengths of connections between all 
features of the second sequence (Units from 25 to 50). After Training, 
the “L1” layer realizes an auto-associative network due to the 
formation of excitatory WpL L1 1 and inhibitory Wf L L1 1 synapses 
between all features of the same episode (top left and right figures). In 
addition, desynchronizing synapses Af L L1 1  are created in the same 
layer between features of different episodes (bottom left figure). 
Finally, the bottom right figure shows the excitatory WpL L1 2 synapses 
from “L2” to “L1” layer that realize a hetero-associative network 
linking one episode in “L2” to the temporally following episode in 
“L1.” Interestingly, thanks to the normalization mechanism, the weight 
of synapses entering each Unit decreases with the richness (i.e., the 
number of features) of its episode. To better clarify the synapse 
pattern, Figure 4B shows the strength of connections entering Unit 30 
(belonging to the seventh episode, second sequence), corresponding 
to row number 30 of each figure in Figure 4A. This feature receives 
excitatory and inhibitory synapses from all other features of Episode 
7, desynchronizing synapses from all other stored episodes, and 
excitatory feedback synapses from Episode 6 (the temporally 
preceding one).

After Training, the network can work in the Retrieval mode 
operation; that is, it can recall an entire ordered sequence of episodes, 
starting from a single input feature. Figure 5 shows a simulation of the 
network in this modality. Figure 5A reports the temporal activity of 
the pyramidal neurons (zp) of three layers of the network: Working 
Memory, “Theta generator,” and Layer 2 (the activity in Layer 1 is not 
shown for briefness since it is a noisy version of the same activity as in 

FIGURE 3

Combination of sequences learned from the network. Each circle corresponds to a particular feature (i.e., the number of circles for each episode 
corresponds to the number of features that constitute it). Common features between episodes are indicated with different colored circles. (A) Three 
sequences with orthogonal episodes (i.e., episodes without shared features). (B) Three sequences with shared features (i.e., non-orthogonal episodes). 
Specifically, the second episode of the first sequence has two features in common with the 14th episode (fourth of the third sequence), the third 
episode of the first sequence has one feature shared with both the seventh episode (second of the second sequence) and the 12th episode (second of 
the third sequence), and the ninth episode (fourth of the second sequence) has one feature in common with the 13th episode (third of the third 
sequence). All colors and hatching styles are consistent with those used in all figures in this work.
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Layer 2). During the simulation, the first episode of each sequence is 
provided as input (see Supplementary material) to the “WM” layer for 
a short time (50 ms). The “WM” is able to maintain this information 

in memory, even when the input has ceased, and to reset when a new 
input is provided. The “Theta generator” layer oscillates autonomously 
with a theta rhythm (~ 4 Hz) and acts as a disinhibitor on the “L1” 

FIGURE 4

Synapses obtained after network training (orthogonal features). (A) Strength of the four different types of synapses (from top to bottom, left to right: 
WpL L1 1 , WfL L1 1 , Af L L1 1 , WpL L1 2 ), linking all features belonging to the second sequence (five episodes, features from 25 to 50). Each row of the matrix 
represents a post-synaptic feature, and each column a pre-synaptic feature. For better understanding, the different episodes are marked in the upper 
left figure. The right and left upper figures show that each feature of a particular episode is linked to the other features of the same episode (via 
excitatory and inhibitory connections). On the bottom left figure, features of a particular episode inhibit all features belonging to different episodes, via 
desynchronizing connections. On the bottom right figure, features of a specific episode receive excitatory connections from the features of the 
temporally preceding episode. Interestingly, due to the normalization mechanism, the strength of connections between Units differs according to 
episode richness. (B) Set of connections entering the post-synaptic Unit n° 30 (that codes for the first feature of episode 7) from all other Units in the 
network. All synapses are shown on the same graph through different colors ( WpL L1 1  in red, Wf L L1 1  in blue, Af L L1 1  in purple, and WpL L1 2  in green). The 
episodes belonging to the second sequence are explicated in the graph. The 30th feature receives excitatory and inhibitory synapses from all other 
features in the same episode (from 31 to 35), excitatory synapses from all features of the preceding episode (the sixth, from 26 to 29), and 
desynchronizing synapses from all other stored episodes (even of different sequences). To better highlight these latter connections, the Af L L1 1  
synapses received from the features of episodes 8, 9, and 10 are zoomed in the black box.
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layer. The latter, together with the “L2” layer, entirely reconstructs the 
first episode from a single feature, and recalls all subsequent episodes 
in the sequence. The process occurs through oscillations with the 
gamma rhythm (~35 Hz) and, together with the slower rhythm 
transmitted by the “Theta generator,” generates the so-called theta-
gamma code. “L2” is considered the output of the network. Figure 5B 
shows a zoomed plot of pyramidal neurons’ activity in layer “L2.” The 
first feature, given as input, recalls all the remaining features of the 
same episode, which in turn recall the first feature again with a slight 
delay. Thereafter, each episode recalls all the features of the next one 

in a highly synchronized manner, and the overall sequence repeats 
during each theta cycle until a new input resets the overall sequence.

3.1.2 Non-orthogonal sequences (shared 
features)

Figure 6 shows the new pattern of synapses entering Unit 71 (now 
common between Episode 2 and Episode 14). The network can 
correctly store even episodes that are non-orthogonal.

Figure 7 shows the temporal activity of layer “L2”s pyramidal 
neurons during the recovery of three non-orthogonal sequences in 

FIGURE 5

Retrieval operation mode (orthogonal features). (A) Temporal activity of the pyramidal neurons of three layers of the network: “WM,” “Theta generator,” 
and “L2,” during Retrieval operation mode, in the presence of orthogonal episodes. A value of 5  Hz is the maximum discharge value of the Units in the 
model. During the simulation three different features, belonging to the first episode of each sequence (Episode 1, Episode 6, and Episode 11), are 
provided for a short time as input to the network. The five episodes constituting each sequence are represented through a list of colors (in order blue-
orange-green-red-black), while the different sequences are distinguished through different hatching styles (Sequence 1: continuous, Sequence 2: 
dashed, Sequence 3: dotted). The Working Memory layer can maintain the information of the input feature even when no longer provided and updates 
itself as soon as a new input is given. The “Theta generator” oscillates autonomously with a theta rhythm and acts as a rhythmic disinhibitor for the “L1” 
layer. The activity of the “L2” layer is considered the network output (“L1” activity is not shown for brevity since it behaves similarly but more irregularly). 
The network reconstructs the first episode of the sequences starting from a single feature and recalls the subsequent episodes by oscillating with a 
gamma rhythm modulated by the slower theta rhythm. In the third row, the output of the “WM” layer is reported again in transparency to better show 
the network update. (B) A zoom of the second sequence of episodes (from Episode 6 to Episode 10), between 0.54 and 0.7 s. The first feature of the 
sixth episode recalls all other features of the same episode, which in turn recalls the first feature again, slightly delayed. Then, each episode recalls all 
features of the following episodes, highly synchronized with a gamma rhythm. The sequence stops after half of the theta cycle.
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the Retrieval operation mode. Even in the presence of episodes that 
share one or two features (approximately from 20 to 35% of the 
entire episode), the network is able to correctly evoke the whole 
sequences in a very similar manner as in Figure  5. It should 
be noted, however, that features shared between multiple episodes 
are recalled by the network with a slight delay (compared to 
orthogonal features).

3.2 Quantitative model assessment

3.2.1 Basal conditions
Model assessment with basal parameter values is reported in 

Table  1 for the orthogonal sequences and the non-orthogonal 
ones. The results can be  summarized as follows: (i) The first 
episode of each sequence is correctly recovered in about 70% of 
the theta cycles. The reason is illustrated in the last line of 
Figure 5. The feature given as input recovers all the other features 
of the first episode with a slight delay; these features, in turn, 
excite the first feature again with a further smaller delay. In about 
1/3 of cases, the superimposition between the first feature and the 
others does not satisfy the strict requirement we impose for object 
recognition. (ii) The second and third episodes of any sequence 
are always correctly recovered; (iii) in sporadic cases (98–99% of 
success), the fourth episode is not recovered; more frequently, the 
last (i.e., the fifth) episode is not recovered (88–89% of success). 
This is due to an interruption of the on phase of the theta cycle 
while the network is still processing the last portion of 
the sequence.

3.2.2 Sensitivity analysis of the frequency of the 
theta rhythm

The same analysis, concerning the non-orthogonal sequences 
only, has been repeated by altering the frequency of the theta rhythm 
produced by the “Theta generator’’. This has been realized by changing 
the glutamatergic and slow GABAergic synapses’ time constants by 
the same multiplicative factor. Of course, increasing the time constants 
reduces the frequency, whereas their reduction makes the rhythm 
faster. Results are summarized in Table 2.

As well expected, decreasing the theta frequency improves the 
capacity to recover the fourth and the fifth episodes during a cycle. 
Conversely, the capacity to recover the first and second episodes 
moderately deteriorates. Moreover, as illustrated in Figure 8A, the 
sequence restarts within the same cycle due to the increase in the 
period. Indeed, all our sequences are composed of five episodes. If the 
theta frequency is reduced to 2.5 Hz, eight episodes can be embedded 
within the same cycle. A lower theta frequency is optimal only if 
longer sequences must be recovered, i.e., a strict relationship exists 
between sequence length and theta period.

Conversely, if the theta frequency increases up to 5 Hz, only the 
first three episodes of each sequence can be  restored quite well, 
whereas the fourth is restored only in 50% of cases and the last rarely. 
If the frequency is increased to 6 Hz, just the first two episodes are 
recovered with difficulty (50% of success).

3.2.3 Sensitivity analysis of the frequency of the 
gamma rhythm

We also tested the effect of an increase in the gamma frequency, 
an internal property of Units in layers L1 and L2. This increase (up to 

FIGURE 6

Synapses entering into Unit 71 (non-orthogonal features). In the presence of non-orthogonal episodes (see Figure 3B), feature n° 71 is shared by the 
second and 14th episodes. Accordingly, this feature receives excitatory and inhibitory synapses from all features of both episodes (Episode 2: features 
from 7 to 10, and feature 70; Episode 14: features from 66 to 70), excitatory synapses from all features of both preceding episodes (Episode 1: features 
from 1 to 4; and Episode 13: features 44, 61, 62, 64, and 65), and desynchronizing synapses from all other episodes. Due to the normalization 
mechanism, the strength of the incoming synapses to this shared feature is about half that of a not shared feature (see Figure 4 for a comparison).
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45 Hz) was realized by decreasing the time constant of fast GABAergic 
interneurons in both layers, and this change was tested both in case of 
increased theta frequency and basal conditions.

The first interesting result (Table 2) is that the network can restore 
up to four episodes in the same theta cycle with good accuracy, even 
if the theta frequency is increased from 4 to 5 Hz, provided the gamma 
frequency is simultaneously increased. We did not test higher gamma 
frequencies because these cannot be realized with the present neural 
mass model.

Then, we tested model behavior with a high gamma frequency 
(45 Hz) and basal parameter values (i.e., a theta frequency as low as 
4 Hz). In this condition, network behavior seems excellent (even better 
than in Table  1, when the gamma frequency was 35 Hz). All five 
episodes within a sequence are correctly restored with a percentage of 
success higher than 95%. However, as illustrated in Figure 8B, there is 
a drawback: in several cases, a spurious episode belonging to other 
sequences appears mixed in with the correct episodes. During 
recovery of the first sequence, this occurs as to episodes 14 and 15 

FIGURE 7

Retrieval operation mode (non-orthogonal features). Temporal activity of pyramidal neurons in layer “L2” of the network, during the Retrieval 
functioning mode, in the presence of some non-orthogonal episodes sharing common features. A simulation lasting 1.5  s is reported during which 
three different features, belonging to the first episode of each time sequence, are provided as input to the network. Again (see also Figure 5), the five 
episodes constituting each sequence are represented through a list of colors, while the sequences are distinguished through different hatching types. 
Moreover, additional colors (i.e., purple, brown, and light blue) represent shared features between episodes (see also the legends). Each row represents 
the reconstruction of a single sequence. The network can correctly evoke the three sequences, including shared features, and behaves similarly to 
Figure 5 about orthogonal features. Worth noting that the shared features are evoked with a little delay compared with the distinctive ones.

TABLE 1 Percentage of success in recovering the different episodes within a sequence, with basal parameter values.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5

Orthogonal 

sequences

Sequence 1 77.50 100.0 100.0 100.0 90.0

Sequence 2 57.5 100.0 100.0 100.0 90.0

Sequence 3 75.0 100.0 100.0 97.5 87.5

Mean 70.0 100.0 100.0 99.167 89.167

Non-orthogonal 

sequences

Sequence 1 77.5 100.0 100.0 100.0 90.0

Sequence 2 60.0 100.0 100.0 97.5 90.0

Sequence 3 77.5 100.0 100.0 95.0 82.5

Mean 71.67 100.0 100.0 97.5 87.5

Episodes recognized in more than 66% of trials are marked in green, while episodes recognized in more than 50% than trials (but less than 66%) are marked in yellow, to give an immediate 
outline of network capacity.
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(which belong to the third sequence), while during recovery of the 
third sequence, this occurs as to episodes 2 and 3. The reason is that 
some episodes have shared features. In the presence of fast gamma 
dynamics, these shared features evoke a new episode quickly despite 
inhibitory connections from the correct sequence.

3.2.4 Robustness analysis of Hebbian and 
anti-Hebbian learning rules

Finally, we  tested the effect of changes in synaptic training 
mechanisms for all four implemented synapse types (i.e., WpL L1 1; 
Wf L L1 1; Af L L1 1; and WpL L1 2). The increase (decrease) in synaptic 
values was realized by either increasing (decreasing) the synaptic 
learning factor, decreasing (increasing) the synaptic thresholds, or 
increasing (decreasing) the maximum saturation value, leading to 
different final synaptic values. The results, summarized in 
Supplementary material, suggest that the network is quite robust to 
changes in the synaptic training mechanisms. However, we just want 
to emphasize how, in the case of non-orthogonal sequences, excitatory 
synapses cannot be  increased excessively to avoid the recovery of 
spurious terms (due to shared features).

3.3 Isolation from the external world

3.3.1 Imagination
Figure 9A shows the behavior of the network while “L1” receives 

a high random noise with uniform distribution, with all synapses 
maintained at the same value as in the previous simulations. In these 

conditions, the network, without influences from the external world, 
casually recalls the previously stored sequences (even with shared 
features), which appear in random order. The authors find interesting 
affinities between this simulation and a state of imagination or 
mind-wandering.

3.3.2 Dreaming
Figure 9B shows the results of a simulation when the network is 

still disconnected from the outside world, but this time layer “L1” 
receives a higher (than the “Imagination” mode), random noise input 
and a 2/3 reduction in all the synapses was assumed. Differences in 
neurotransmitter levels could justify the latter; for instance, a mild 
decrease in cholinergic tone during sleep compared with retrieval or 
other neurotransmitter changes. Interestingly, the network can no 
longer retrieve the correct sequences of episodes but instead exploits 
shared features to generate new “dreamlike” combinations. Specifically, 
common features between episodes 3 and 12 are exploited to generate 
two completely new sequences (initial part of the first sequence + last 
part of the second sequence, and initial part of the second 
sequence + last part of the first sequence). Furthermore, since our 
previous sensitivity analysis revealed that this “dreamlike” behavior 
can become even more evident if the gamma rhythm is accelerated, 
we repeated the same simulation using a gamma frequency as high as 
45 Hz (Figure 9C). In this condition, all three sequences are combined 
generating an even more complex scenario inside the same theta 
wave. We find some similarities between this condition and some 
typical aspects of REM sleep (see “Discussion” for a more 
critical analysis).

TABLE 2 Percentage of success in recovering the different episodes within a sequence, but different values for theta and gamma frequency.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5

Theta = 2.67 Hz

Gamma = 35 Hz

Sequence 1 73.3 100.0 96.67 100.0 100.0

Sequence 2 56.67 83.3 100.0 100.0 100.0

Sequence 3 53.3 90.0 100.0 96.67 100.0

Mean 61.11 91.11 98.89 98.89 100.0

Theta = 5 Hz

Gamma = 35 Hz

Sequence 1 80.0 100.0 88.0 68.0 2.0

Sequence 2 70.0 98.0 96.0 42.0 6.0

Sequence 3 76.0 100.0 96.0 46.0 6.0

Mean 75.3 99.3 93.3 52.0 4.67

Theta = 6 Hz

Gamma = 35 Hz

Sequence 1 50.0 61.67 6.67 3.33 0

Sequence 2 46.67 41.67 40.0 1.67 0

Sequence 3 65.0 51.67 23.33 0 0

Mean 53.89 51.67 23.33 1.67 0

Theta = 5 Hz

Gamma = 45 Hz

Sequence 1 96.0 100.0 98.0 88.0 8.0

Sequence 2 92.0 100.0 100.0 78.0 20.0

Sequence 3 100.0 100.0 96.0 82.0 20.0

Mean 96.0 100.0 98.0 82.67 16.0

Theta = 4 Hz

Gamma = 45 Hz

Sequence 1 95.0 100.0 97.5 97.5 97.5

Sequence 2 92.5 100.0 100.0 100.0 100.0

Sequence 3 95.0 100.0 100.0 97.5 95.0

Mean 94.17 100.0 99.17 98.33 97.5

The results refer to non-orthogonal sequences only. Episodes recognized in more than 66% of trials are marked in green, while episodes recognized in more than 50% than trials (but less than 
66%) are marked in yellow, to give an immediate outline of network capacity.
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Additionally, since an essential aspect of the present model is the 
possibility to modulate the theta rhythm, we  repeated the last 
simulations by maintaining a constant (not oscillating) input from the 
“Theta generator” (Figure  9D). In this condition, the network 
simulates a non-theta state of the hippocampus, more similar to that 
occurring during slow-wave sleep (see again “Discussion”). As evident 
in Figure 9D, the absence of theta modulation leads to the genesis of 
a single long combination of the different sequences. Notably, some 
intermediate results between all the latter modes can be obtained by 
varying the value of input noise, synapse reduction, and theta 
on-period length (unpublished results). In other words, depending 
on the chosen values, the network can retrieve the stored sequences 
more or less correctly and consequently generate fewer or more new 
combinations of them (within the same simulation).

3.3.3 Schizophrenia
Lastly, a third condition has been simulated by still providing high 

noise (as in “Dreaming” mode) to the network and reducing the 
desynchronizing synapses Af L L1 1 to a value half the original. This 
reduction in synapses may represent a pathological alteration 
connected with the weakening of some GABAergic inhibitory 
synapses (see “Discussion” section), such as in schizophrenia. Now, a 

different pattern can be seen. Indeed (see Figure 9E), the network still 
occasionally generates new combinations of sequences, but the 
primary drawback is that different episodes are recovered 
simultaneously and superimposed (i.e., features of different episodes 
are oscillating together, producing a distorted reality, like in 
“delusion”).

Interestingly, the network can still correctly recall the stored 
sequence of episodes if the value of synapses is reduced during the 
Retrieval operation mode. The particular behaviors described above 
characterize only states of isolation from the external world, like 
imagination or dreaming, where the randomness of noise (and, of 
course, the absence of environmental inputs) makes the network’s 
functioning more vulnerable.

4 Discussion

In the last decades, many results have been gathered, both in 
rodents and primates, as well as in humans, suggesting that the brain 
utilizes the precise time of neural activity to encode information. The 
theta-gamma code hypothesis (Lisman, 2005; Lisman and Jensen, 
2013), in particular, assumes that attributes of the same item can 

FIGURE 8

Quantitative model assessment. (A) Temporal activity of pyramidal neurons in layer “L2” of the network, during the Retrieval functioning mode, in the 
presence of non-orthogonal episodes and decreased theta frequency (about 2.5  Hz). A portion of the simulation is reported during which a feature 
belonging to the first episode of the third sequence is provided as input to the network. The five episodes are represented through a list of colors, while 
additional colors represent shared features between episodes (see also the legends and Figure 5). With decreased theta frequency, the capacity of the 
network to recover the fourth and the fifth episodes during a cycle is increased. Moreover, due to the increase period and the sustained input activity, 
the sequence restarts within the same cycle. Two subsequent theta cycles are shown to better highlight this behavior. (B) Temporal activity of 
pyramidal neurons in layer “L2” of the network, during the Retrieval functioning mode, in the presence of non-orthogonal episodes and increased 
gamma frequency (about 45  Hz). Two portions of one simulation are reported (in two different rows) during which a feature belonging to the first 
episode of the first and third sequences is provided as input to the network. With increased gamma frequency, and basal theta frequency (i.e., 4  Hz), the 
network behavior shows a drawback: in several cases, a spurious episode belonging to other sequences appears. For example, during the recovery of 
the first sequence, episodes 14 and 15 are recalled, while during the recovery of the third sequence, episodes 2 and 3 are retrieved. Also in this panel, 
each row shows two subsequent theta cycles.
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FIGURE 9

Isolation from the external world operation mode (non-orthogonal features). Average temporal activity of pyramidal neurons from layer “L2” of the 
network, during the Isolation from the external world mode operation, in the presence of stored non-orthogonal sequences. Only a few short 
segments are shown, extrapolated from a longer simulation. During this time, the “L1” layer receives a high uniform noise. Only the average activities of 

(Continued)
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be linked together using phase synchronization in the gamma band, 
while multiple items can be ordered sequentially through the phase of 
a modulating theta wave.

This encoding modality has been observed in several brain 
regions in humans, producing the idea that theta-gamma entrainment 
plays a broad function in cognition, subserving not only episodic and 
working memory but also motor command control (Spooner et al., 
2020), skill acquisition (Akkad et al., 2021), and speech comprehension 
(Lizarazu et al., 2019). However, the most significant results have been 
observed in the hippocampus (Colgin et al., 2009; Mysin and Shubina, 
2022), stressing the role of this mechanism in chronological episodic 
memory, i.e., the sequential organization of autobiographical episodes 
that unfold over time.

Despite the numerous neurocomputational models, which 
describe individual components of the hippocampus, the problem of 
how the theta-gamma code is organized at a mesoscopic level 
involving populations of neurons and how this mechanism reflects 
memory encoding can still benefit from a new synthetic perspective. 
In this regard, we use an approach based on neural masses, which 
provide information at a large scale, complementing the information 
provided by more detailed mechanistic models at a single neuron. In 
particular, models at a mesoscopic level can be  beneficial in 
summarizing the main principles of brain organization, pointing out 
possible relationships among areas or regions, and clarifying the role 
of connectivity patterns. Furthermore, due to their simplicity and 
synthetic attitude, they can help explain the impact of parameter 
changes and drive the development of new general ideas on the 
relationship between brain structure and cognition. On the other 
hand, detailed neuron models are indispensable to understanding 
mechanisms at the membrane, ionic channels, and synapses, studying 
pharmacological and neurotransmitter effects, and posing 
physiological constraints on more abstract models.

4.1 Limits of the previous model

In recent years, we developed a model in which working and long-
term memories are strictly interrelated, as suggested in several recent 
studies (Renoult et al., 2019; Köster and Gruber, 2022). A fundamental 
aspect of the previous model is that both the theta and gamma 
rhythms are not inherent properties of the network but are generated 
after training through plastic auto-associative synapses: the theta 
rhythm emerges as a consequence of excitatory Hebbian synapses 
trained to recover items in memory, which excite pyramidal neurons, 
subsequently inhibited by slow GABAergic interneurons; the gamma 
rhythm is produced in a downstream layer as a consequence of 

Hebbian and anti-Hebbian synapses which target fast GABA-ergic 
inhibitory interneurons.

As discussed in the “Introduction,” recent data show the presence 
of non-theta states in the hippocampus; hence, a question arises: how 
can the theta rhythm be suppressed or modulated in the previous 
model? To abolish the theta-rhythm, pyramidal neurons must remain 
excited despite the inhibition from slow GABAergic interneurons. 
This requires a higher sustained global excitation.

In the previous paper, the model was used with two different 
modalities. In the first, named “semantic working memory,” the theta 
rhythm was suppressed using high values for the inputs, and the 
network could reconstruct and desynchronize up to nine objects 
simultaneously held in memory in a non-theta state. However, in a 
second modality, named “sequential order modality,” the network 
exploited a theta-gamma code to order items within a sequence. This 
condition, the same simulated in the present work, is observed in the 
hippocampus during active exploratory behavior, cognitive tasks 
requiring attention, locomotion, and rapid eye movement (REM) 
sleep (Mysin and Shubina, 2023). However, in this modality, the 
previous model cannot explain several phenomena well documented 
in the recent literature. First, the theta rhythm is rapidly suppressed 
during quiet wakefulness and slow wave sleep (SWS) when the 
hippocampus is isolated, a condition that we could not simulate with 
the previous internal mechanism for theta rhythm generation. Second, 
it is difficult to modulate the frequency of the theta rhythm (which, 
conversely, changes in various behavioral states, for instance, when a 
rodent is running inside a maze; Hinman et al., 2016). Third, the 
model cannot explain how the theta rhythm can be affected by pacing 
MS cells or by MS lesions. Finally, several authors hypothesized that 
different phases of the theta rhythm can be used for memory encoding 
and retrieval, respectively. This behavior has been ascribed to rhythmic 
acetylcholine changes (Hasselmo et al., 1995; Hasselmo, 2006). High 
acetylcholine levels can depress feedback synapses, thus avoiding 
interference between old and new memory traces. In contrast, low 
acetylcholine levels can favor activity spreading along feedback 
synapses, thus restoring memories through attractor dynamics. All 
these aspects suggest the presence of an external pacemaker for theta 
(and also for acetylcholine) and of a gamma rhythm able to adapt to 
theta changes.

In conclusion, the previous model is satisfactory when used as a 
semantic memory to segment different items without a theta rhythm. 
Conversely, it is not robust or flexible enough to simulate conditions 
associated with a sequential temporal code, mainly to explain the 
transition from theta to a non-theta condition, MS pacing or MS 
lesions, and rhythmic modulation of the encoding phase. Hence, 
we decided to modify the model, considering an external theta pacing.

all features belonging to the same episode are plotted (i.e., the y-axis now represents the percentage of features correctly retrieved at a given instant). 
Three different conditions are shown. (A) “Imagination”: the network can autonomously and randomly recall all the sequences previously learned 
during the encoding phase, with the correct order of episodes in each sequence. (B–D) “Dreaming”: the “L1” layer receives even higher uniform noise 
than the “Imagination” mode. In addition, all the synapses are decreased by 2/3: the network autonomously and randomly creates new sequences, 
combining the previously trained ones and exploiting common features between episodes. The randomness of the noise is crucial in achieving 
different combinations from time to time. The first panel reports a simulation at basal conditions for gamma and theta rhythm, the second panel a 
simulation with increased gamma frequency, and the third panel a simulation with basal gamma but without modulation by theta rhythm. 
(E) “Schizophrenia”: a high uniform noise is given to the “L1” layer (as in “Dreaming” mode). Moreover, desynchronizing synapses Af L L1 1  are reduced to 
one half: the network cannot correctly recover learned sequences, and presents superimpositions of episodes, which are even more pronounced due 
to common features.

FIGURE 9 (Continued)
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4.2 Present model

In the present work, we tested an alternative model based on more 
straightforward assumptions, considering that the gamma rhythm is 
generated internally at each computational Unit due to local 
not-trainable feedback connections between pyramidal and fast-
GABAergic populations (hence, parameters internal to each Unit have 
been modified compared with the previous work). Moreover, the theta 
rhythm is produced by an external oscillator, therefore exploiting 
another Unit with slower internal dynamics. Finally, Hebbian and 
anti-Hebbian auto-associative synapses are still used to reconstruct 
episodes from an external cue, but they are present in a single layer. 
Hence, the structure of the current model is much simpler than the 
previous structure. Nevertheless, it works satisfactorily to reconstruct 
an event characterized by different episodes that unfold in time with 
a given sequential order; the isolated and noisy network can also 
simulate other mental conditions, such as imagination or dreaming.

In the following, the main assumptions of the model are first 
discussed, emphasizing possible neurophysiological support 
concerning the hippocampal regions. Next, points that are still 
hypothetical will be  critically underlined. Finally, some testable 
predictions will be  enumerated, able to discriminate among the 
different models and furnish elements to validate or reject hypotheses, 
and lines for future improvements pointed out.

4.3 The structure of the model

The model exhibits a three-layer structure in which the same 
Units, coding for individual features, are identically replicated in each 
layer. Of course, this is a simplification of an actual multi-layer 
network. In multi-layer networks used in deep learning (Aggarwal, 
2018), the featural representation becomes progressively more general 
and abstract when moving from an upstream to a downstream layer. 
A similar computation is inspired by the visual processing pathway. 
However, we are not aware of whether a change in representation also 
occurs along the hippocampus (from CA3 to CA1). Hence, 
we retained a straightforward structure with constant feature coding. 
A different, more complex structure of the present network, in which 
the feature representation changes from one layer to the next, can 
be the subject of future studies.

In the typical Retrieval modality, the layer denoted “WM” receives 
the external input and implements a simple working memory to 
maintain the input and resets it as soon as a new input arrives. A 
possible location for this layer is the prefrontal cortex and/or the 
entorhinal cortex (Bolkan et  al., 2017; Eichenbaum, 2017b). 
We  included a positive self-loop for the pyramidal population to 
maintain information in the “WM” layer, realized through excitatory 
glutamatergic synapses. This loop is then interrupted at each new 
input to reset the memory content. Results in the literature suggest 
that a similar self-loop can be realized via reciprocal connectivity 
linking the prefrontal cortex, the thalamus, and the basal ganglia 
(Bolkan et  al., 2017; Nir-Cohen et  al., 2020). A more accurate 
modeling of this loop can be furnished in future work.

Layer “L1” implements a classic auto-associative memory, which 
can restore a complete episode from a single feature (provided this 
feature is not shared with other episodes). To this end, three different 
types of lateral synapses are potentiated during a training epoch 

(simulating an encoding phase), starting from an initial null value (see 
below). It is worth noting that in the previous model, excitatory and 
inhibitory synapses were separately trained in different layers (to 
realize the theta and gamma rhythms distinctly). Conversely, all lateral 
synapses in the present model are within layer “L1.” This layer likely 
mimics the region CA3 of the hippocampus, where recurrent synapses 
with Hebbian potentiation are well known (Treves and Rolls, 1994; 
Hasselmo et al., 1995). An essential suggestion of the model is that all 
three types of synapses (WpL L1 1, Wf L L1 1, and Af L L1 1) are required to 
achieve a correct behavior. Briefly, excitatory pyramidal-pyramidal 
glutamatergic synapses (WpL L1 1) are necessary to excite silent Units 
within a given episode starting from partial information; bi-synaptic 
inhibition (pyramidal-fast inhibitory-pyramidal, through 
glutamatergic synapses Wf L L1 1) are essential to avoid an excessive 
excitation within the network, thus preserving the gamma rhythm, and 
to favor synchronization among features within a same episode. 
Several recent studies, both experimental (Hasenstaub et al., 2005; 
Salkoff et al., 2015) and theoretical (Bartos et al., 2002; Vida et al., 2006) 
emphasize the role of inhibitory connections to favor synchronism 
among neural oscillators. Accordingly, if Wf L L1 1 synapses are reduced, 
poor gamma synchronization results. Finally, very rapid synapses 
(Af L L1 1, targeting fast inhibitory interneurons, with synapse dynamics 
smaller than 1 ms) are necessary to desynchronize items belonging to 
different episodes so that just one episode (with all its features 
synchronized) spreads out at each time. As said before, the presence of 
Hebbian glutamatergic synapses is well documented in CA3. Some 
authors recently (Schmitz et  al., 2001; Molchanova et  al., 2016) 
demonstrated the presence of gap junctions between CA3 cells, 
providing a mechanism for high-speed communications and 
synchronization. Our model suggests a role for gap junctions between 
pyramidal and fast interneurons to help desynchronization and also 
indicates that these synapses (or, alternatively, very fast AMPA 
synapses) should be anti-Hebbian. This point represents a subject for 
future study and future testable predictions (see also the section 
“Testable predictions” below).

In our model, “L1” is ordinarily silent and is disinhibited by 
activity from an external Unit, oscillating with a theta period. 
Although recent data suggest that a theta rhythm can also be internally 
generated within hippocampal circuits (Cataldi and Vigliotti, 2018), 
as done in our previous model, or modulated by other hippocampal 
structures such as the entorhinal cortex (Schlesiger et al., 2015), a 
more common idea is that the theta rhythm originates from an 
external structure: this may be the septum (Salib et al., 2019), or a 
resonance within the Papez circuit (including the mammillary bodies, 
the mammillothalamic tract, and the anterior thalamic nuclei; Vertes 
et al., 2001; Dillingham et al., 2021). In particular, Salib et al. (2019) 
suggest that the septum can act by disinhibiting the hippocampus with 
a mechanism analogous to the one included in our model. An 
improved version of the current model may take into account several 
aspects not implemented here, such as mimicking theta rhythm 
modulations experimentally detected during different locomotor 
speeds (Bender et al., 2015), respiratory frequencies (Tsanov et al., 
2014), or emotional states (Colgin, 2013).

Finally, we can hypothesize that layer “L2” is located in the region 
CA1 of the hippocampus. It is well known that CA1 cells receive 
spatially organized projections from CA3 cells (the so-called Schaffer 
collaterals) (Hongo et al., 2015). Moreover, several results underline 
the importance of CA1 for temporal coding and organization (Hoge 
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and Kesner, 2007; Mankin et al., 2012), indirectly supporting our 
network structure. While the restoration of individual episodes in our 
model can be  entirely accomplished within “L1,” a temporal 
organization of individual episodes that unfold in time depends on the 
interaction between “L1” and “L2” and, mainly, on the formation of 
feedback excitatory synapses from “L2” to “L1.”

Although feedback from CA1 to CA3 needs to be  more 
documented compared with feedforward Schaffer collaterals, some 
recent data support its possible involvement in hippocampus 
dynamics. For example, connections from CA1 to CA3 can be realized 
via the participation of the entorhinal cortex (see Figure  2  in 
Eichenbaum, 2017b and also Craig and Commins, 2005). In addition, 
Sandler et  al. (2015) using Granger connectivity, observed the 
presence of a causal relationship from CA1 to CA3.

It is worth noting that, in the present model version, we do not 
need plastic lateral synapses within “L2” since object reconstruction 
entirely occurs within “L1,” i.e., this model is much simpler than the 
previous. However, we know that lateral plastic synapses have been 
experimentally observed among CA1 cells (Tetteh et al., 2019) and 
that MS can modulate theta-gamma coupling in the CA1 nucleus as 
well (Király et  al., 2023). Of course, we  do not claim that these 
synapses and modulation do not exist or have no role at all: they are 
not essential for the present model’s purposes but might come into 
play to perform more complex computations not considered here.

Finally, although the structure of the current model can 
be compared with that of the hippocampus, theta-gamma entrainment 
has been observed in several other brain regions, too, and seems to 
represent a more general computation code (Lisman and Jensen, 
2013). Hence, similar network principles, such as those developed in 
the present work, could help simulate processing in other 
brain structures.

4.4 Assumptions on model training

During our Training, layer “L1” is disconnected from “WM,” layer 
“L2” is disconnected from “L1” (i.e., the feedforward synapses have no 
role), and both “L1” and “L2” directly receive the input from the 
cortex. This particular configuration can be justified by alterations in 
acetylcholine (Ach) concentration occurring during active wakefulness 
and sustained attention, as suggested by Hasselmo (2006) and Decker 
and Duncan (2020). In these conditions, Ach levels increase, making 
the hippocampus ready to encode new memory traces. In fact, a peak 
of Ach may inhibit memory reactivation within CA3 by reducing the 
strength of lateral synapses (Hasselmo et  al., 1995); moreover, it 
suppresses excitatory transmission from CA3 to CA1 (Hasselmo and 
Schnell, 1994) and strengthens the cortical input to CA3 and CA1. 
Furthermore, acetylcholine facilitates long-term potentiation between 
active neurons (Blitzer et al., 1990). This situation is ideal for encoding 
new episodes within hippocampal synapses and reflects what has been 
implemented in our Training.

A strong assumption concerns how episodes are transmitted to 
the “L1” and “L2” layers during Training: we  assumed that the 
preceding episode of a sequence is sent to “L2” while the subsequent 
episode is simultaneously transmitted to “L1.” This allows the 
formation of plastic synapses from “L2” to “L1” to recover the entire 
sequence. Of course, this mechanism presumes the existence of a 
buffer, which maintains episodes and transmits them with a given 

delay. At present, we  do not have physiological support for this 
peculiar mechanism. The necessity of a buffer (i.e., a top-down stack) 
has been previously hypothesized by other researchers working on 
temporal episodic memory, starting from the pioneering work by 
Jensen and Lisman (1996). In more recent work, Lisman et al. (2005) 
assumed delayed feedback from CA3 to the dentate gyrus to realize 
this stack. In their paper (Lisman et al., 2005), this idea was formulated 
since “there are no connections from CA1 back to the dentate or CA3.” 
However, as mentioned above, more recent data suggest the existence 
of a bidirectional pathway between CA1 and the lateral entorhinal 
cortex (and from there to CA3) (Craig and Commins, 2005; 
Eichenbaum, 2017b) while a Granger causality has been observed 
from CA1 to CA3 (Sandler et al., 2015).

4.5 Model functioning

After encoding information in plastic synapses, the network’s 
behavior has been simulated in different modalities. In the first, which 
mimics regular memory retrieval, the network can restore an entire 
sequence of episodes starting from a distinctive feature. In this 
condition, the “L1” layer receives the external input from an upstream 
working memory circuit and is disinhibited by an external Unit 
oscillating with the theta rhythm. This allows the implementation of 
a robust theta-gamma code, i.e., all features of a single episode are 
synchronized within a single gamma period. A sequence of episodes 
is reconstructed and replicated during the on phase of each theta 
cycle. Remarkably, we used just five episodes per each sequence since 
this is the maximum number of our gamma cycles that can be nested 
within the on phase of our theta period; if longer sequences are 
memorized (unpublished simulations), only the first five episodes are 
restored within each theta period; moreover, if the external input is 
shifted, a typical precession phenomenon can be simulated. However, 
as shown in the sensitivity analysis, a slower theta might allow 
restoration of longer sequences.

An original fundamental aspect of our work is that the network 
can be  run in other modalities (“Imagination,” “Dreaming,” or 
“Schizophrenia”): “L1” is isolated from the Working Memory, and the 
network receives only high internal noise. In the modality named 
“Imagination,” we maintained the same values for the synapses as in 
the regular Retrieval modality, only increasing the noise level. 
Interestingly, the “Imagination” modality can correspond to conditions 
characterized by low acetylcholine levels, which reduces the input to 
CA3 and can promote pattern completion and memory reply 
(Hasselmo, 2006; Decker and Duncan, 2020). A significant result is 
that, in this condition, the network can autonomously and randomly 
recall the previously stored sequences, i.e., it replays experience 
independently of any external input.

Even more interesting, in a different condition that we named 
“Dreaming,” characterized by even stronger noise and a 2/3 reduction 
in all synapses’ strength, the network randomly recombines previously 
stored sequences, thus creating new original sequences. This 
possibility depends on features that are not distinctive but shared 
among different episodes, i.e., on a lack of orthogonality. The latter 
aspect appears essential to generate such “creative” behavior. Moreover, 
this “creative remembering” can be further favored by an increase in 
gamma frequency. The existence of a phase with higher noise and 
reduced synapses is hypothetical. Still, it can be justified by thinking 
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of an intermediate acetylcholine level (i.e., a level moderately more 
elevated than the one assumed during the imagination or retrieval 
phase but still significantly smaller than in the encoding phase). 
Indeed, an increase in acetylcholine concentration reduces the 
strength of the synapses both within CA3 and between CA3 and CA1. 
Other neurotransmitter changes can also affect the network, causing 
a similar behavior. This aspect, of course, requires further study. 
Another possibility is a downscaling of synapses hypothesized by 
some authors during sleep (Tononi and Cirelli, 2006).

Nevertheless, it is well known that during REM sleep, the 
acetylcholine concentration reaches high levels (comparable to those 
observed during awake, attentive states see Hasselmo, 1999), a 
condition that facilitates information encoding. Hence, simulation of 
REM sleep requires a more complex scenario, which can alternate 
encoding and retrieval. On the contrary, the cholinergic tone is 
significantly reduced during slow-wave sleep (SWS). Actually, during 
SWS, the theta rhythm is replaced by a much slower rhythm in the 
cortex, while CA3 and CA1 pyramidal cells do not show OFF states 
and are not bistable (Isomura et al., 2006). For this reason, we repeated 
our simulations in the “Dreaming” conditions by eliminating the theta 
rhythm and maintaining a constant disinhibition to the layer “L1” (see 
Figure  8D). In this condition, the network can generate longer 
sequences by combining the previous ones on the basis of shared 
features. We trained the network with only three sequences having 
some common features. Of course, more complex and “creative” 
behavior can be obtained using a greater number of stored sequences.

We are aware that during SWS replay occurs on a faster time scale 
and with the production of spindles and sharp-wave ripples, more 
complex rhythmic phenomena than those considered in the present 
work (Brodt et al., 2023). This could be investigated using a more 
detailed model (see the section “Future lines” below).

Some authors (Diekelmann and Born, 2010) hypothesized that 
SWS and REM sleep have complementary functions: SWS should 
be associated with system consolidation in which hippocampal replay 
leads to re-activation in the cortex. Conversely, the ensuing REM sleep 
would promote synapse strengthening. Future work can focus on 
realizing an integrated model of hippocampus + cortex to study the 
complementary role of SWS and REM sleep.

4.6 Testable predictions

Some testable predictions concern the general structure of the 
network. Others can discriminate between the present and previous 
models (Ursino et  al., 2023). Finally, some involve specific 
parameter alterations.

Testable aspects of the general model structure involve high-speed 
connections (maybe gap-junctions or AMPA fast synapses) within 
CA3 and plastic Hebbian synapses from CA1 to CA3 (maybe through 
the lateral entorhinal cortex). Experiments can be devised to unmask 
the role of these connections and their plastic changes.

Other testable predictions concern the effect of synapse strength 
on the global network behavior. Experiments with different levels of 
acetylcholine or using neurotransmitters that alter synapses can 
be  performed and compared with model behavior in 
similar conditions.

Predictions able to discriminate the present model from the 
previous concern the genesis of the theta and gamma rhythm: the 

previous model suggested that theta and gamma rhythms arise after 
training. In contrast, in the present model, they are intrinsic to 
hippocampal cells (gamma) and externally produced (theta). 
Furthermore, in the current model, lateral plastic synapses are 
essential only in “L1” (CA3) and are directed to pyramidal and 
inhibitory interneurons. Conversely, the previous model confined 
excitatory and inhibitory synapses in different layers.

The effect of some parameter alterations (for instance, the activity 
of GABAergic neurons, of the theta Unit, feedforward connection 
strength, etc.) can be  simulated in the model, and results can 
be compared with experimental manipulation of the same parameters 
(either obtained via drugs or surgical procedures). In particular, the 
analysis of feedback connections from CA1 to CA3 is a major point 
for future model testing.

Another important point to be stressed is that the presence of a 
moderate synapse reduction during dreaming is a strong prediction 
of the model: in the presence of decreased recurrent synapses the 
memorized sequences become less “stable” or weaker, and so it 
becomes easier to branch from one sequence to another in a random 
and creative way by exploiting the presence of shared features.

A final powerful prediction of the model concerns the pivotal role 
of noise during imagination and dreaming states: a high level of noise 
in the neural populations seems an essential element for these mental 
states. This aspect (along with synaptic reduction during dreaming) 
may be the subject of fascinating investigations in the future.

4.7 Future lines

First, the present network can be  integrated with a network 
representing the cortex’s activity, including semantic aspects. This 
integrated hippocampal-cortex model can then analyze memory 
consolidation, i.e., the process that transforms new and initially labile 
memories and integrates them into a network of pre-existing long-
term memories. The common idea is that episodes are only 
temporarily encoded in the hippocampus and then transmitted to a 
long-term store in the cortex. Here, episodes can also be integrated 
with other kinds of memory, like the semantic one (Ursino et al., 2015, 
2018; Ursino and Pirazzini, 2023). It is worth-noting that this theta-
acetylcholine modulation could be easily implemented within the 
present model in future work, whereas it is of difficult implementation 
with the previous model.

Second, the model can be  enriched with a more explicit 
description of the acetylcholine concentration changes and their effect 
on synapses. As summarized above, this can be of value to better 
understand the complementary role of SWS and REM sleep. Moreover, 
some authors hypothesized that phasic changes in acetylcholine 
concentration in the awake state could regulate the theta rhythm (Gu 
and Yakel, 2022). Acetylcholine levels would be low during the on 
phase of the theta period and high during the off phase. Accordingly, 
the on phase would be characterized by the replay of previously stored 
episodes (as in our Retrieval modality) exploiting the theta-gamma 
code. At the same time, the off period would be ideal for encoding 
new information (as in our Training modality).

An improved model (for instance, using an accurate description 
of fast-spiking activity in the thalamus, as in Cona et al. (2014)) could 
also produce spindles and fast-wave ripples, which are essential to 
improve the simulation of replay during SWS.
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Finally, the present model can also study how parameter 
alterations affect memory processes (encoding and retrieval), thus 
shading light into neurological deficits. An example concerning fast 
inhibitory synapses has already been presented in Figure  9E. For 
example, several studies suggest a deficiency of fast GABAergic 
interneurons in schizophrenia (Shaw et al., 2020), which weakens 
their inhibitory control of pyramidal cells and causes a reduction of 
power in the gamma band. Other studies suggest a relationship 
between altered theta-gamma coupling and working memory deficits 
in individuals with Alzheimer’s Disease or mild cognitive impairment 
(Goodman et al., 2018). A compromised precision of theta-gamma 
coupling has also been postulated as a possible cause for the decline 
in associative memory in old age (Karlsson et  al., 2022). The 
availability of synthetic neurocomputational models of theta-gamma 
role in memory can represent an innovative and promising tool for 
helping the mechanistic understanding of these fundamental 
clinical problems.
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