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Cognitive control of behavior is crucial for well-being, as allows subject to adapt

to changing environments in a goal-directed way. Changes in cognitive control

of behavior is observed during cognitive decline in elderly and in pathological

mental conditions. Therefore, the recovery of cognitive control may provide

a reliable preventive and therapeutic strategy. However, its neural basis is not

completely understood. Cognitive control is supported by the prefrontal cortex,

structure that integrates relevant information for the appropriate organization

of behavior. At neurophysiological level, it is suggested that cognitive control

is supported by local and large-scale synchronization of oscillatory activity

patterns and neural spiking activity between the prefrontal cortex and distributed

neural networks. In this review, we focus mainly on rodent models approaching

the neuronal origin of these prefrontal patterns, and the cognitive and behavioral

relevance of its coordination with distributed brain systems. We also examine

the relationship between cognitive control and neural activity patterns in the

prefrontal cortex, and its role in normal cognitive decline and pathological

mental conditions. Finally, based on these body of evidence, we propose

a common mechanism that may underlie the impaired cognitive control

of behavior.
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1 The prefrontal cortex and
cognitive control of behavior

1.1 Cognitive control of behavior

Animals are immersed in complex and challenging
environments. To ensure its survivance and wellbeing, they
are able to implement a wide repertoire of adaptive behavioral
responses. Some challenges can be solved by the implementation
of rapid and simple stimulus-response behaviors, as for example,
escape from a predator, or finding a shelter during a sudden
natural disaster. Since these behavioral responses are automatically
implemented once the stimulus is detected, they allow immediate
and fast adaptation (Graybiel, 2008; Buzsáki et al., 2014). However,
given that are triggered by particular stimulus, these responses are
rigid, stereotyped and lack of voluntarily control, which makes
these cognitive operations restricted to be extrapolated to other
surrounding events (Buzsáki et al., 2014).

On the other hand, some challenges are directed to the
obtention of non-immediate goals, which cannot be successfully
solved by stimulus-response behavior (Engel et al., 2001). Of
special relevance are those in which current circumstances
are new, unknown, or under constant change, and therefore,
there is a significant possibility that expectations cannot be
accomplished. Under these circumstances, animals require to
implement more sophisticated cognitive processes in which
acquired information and behavioral responses are constantly
updated and accommodated according to current internal
(expectations) and external (environmental) conditions. This
adaptive guidance and organization of behavioral responses
according to current and prospective circumstances in a goal-
directed manner is known as cognitive control of behavior
(Miller, 2000). It has been postulated that impairment of cognitive
control is the core of several normal and pathological mental
declines, which is manifested as the reduced ability to implement
goal-directed adaptive behavioral responses (Diamond, 2013).
Therefore, the understanding of the neurophysiological bases
of cognitive control is tremendously relevant not only for the
treatment of recovery of mental health, but also as a preventive
strategy to ensure and promote well-being. In this article, we review
the neurophysiological mechanism that allows the implementation
of cognitive control in rodent models to integrate this evidence
with findings in normal and pathological conditions observed in
humans.

Cognitive control is directed toward the achievement of
goals. Therefore, it is voluntarily implemented and self-generated,
as it can be implemented without relying on external cues.
These goals are commonly based on expectations derived from
previous experiences (Miller, 2000; Engel et al., 2001; Diamond,
2013; Buzsáki et al., 2014). Hence, it requires the generation
of internal models of environmental conditions extracted from
commonalities found across previous experiences (Schlichting
and Preston, 2015). Optimal behavioral outcomes are predicted
by contrasting and updating the stored internal model (i.e.,
memory) with the current circumstances, by which plans and
strategies emerges from covert internal computations and heuristic
processes oriented to goal achievement (Redish, 2016). Thus,
even when subjects face novel and ambiguous conditions,

successful behavioral responses can be implemented through the
interpolation or extrapolation of past and present environmental
patterns. As a result, cognitive control is prospective, probabilistic,
and generalized (Buzsáki et al., 2014). Given that environmental
conditions are far from being stable over multiple temporal
scales, cognitive control requires the transient integration of
different levels of information. This allows continuous updating
of covert computations and behavioral responses (Helfrich and
Knight, 2016). This feature allows animals to respond in robust
and flexible ways to the continuously fluctuating environment
in a goal-directed manner (Buzsáki et al., 2014). This ability,
known as behavioral flexibility (Diamond, 2013) is considered
one of the hallmarks of cognitive control (Mikhalevich et al.,
2017). Loss of behavioral flexibility may lead to profound
consequences, manifested as the execution of perseverative
and maladaptive behavioral responses, a feature observed in
several situations that compromise well-being and mental health,
including cognitive decline during aging (Richard’s et al.,
2021), mood disorders (Kashdan and Rottenberg, 2010) and
schizophrenia (Waltz, 2017), among others (Diamond, 2013;
Uddin, 2021).

Cognitive control requires the coordination of several
simultaneous neural processes. For example, it involves the
integration (binding), interaction and “on-line” temporal
maintenance of multiple levels and modalities of information.
Computational processes as the evaluation and weighing the
relevance of these modalities of information, its comparison
with similar occurrences in the past, and the generation
of heuristics and prospective responses are simultaneously
implemented (Buzsáki et al., 2014). These processes are supported
by the synchronization and coordination of several discrete
cognitive sub-processes known as “executive functions,” such
as focused attention (selecting relevant information), working
memory (temporal maintenance of relevant information),
recall of experiences (memory recall), inhibitory control,
valence interpretation, establishment of stimulus-response
associations, goal-setting, strategy implementation, error
monitoring, and decision-making (Diamond, 2013). Thus,
cognitive control depends on the simultaneous and dynamical
cooperation among multiple parallel computations and sources of
information.

Several behavioral paradigms in rodent models have been
designed to evaluate neural operations related to cognitive control.
For example, focused attention and impulse control is often
evaluated by 5-choice serial reaction time test (Asinof and Paine,
2014), working memory and decision making are evaluated by
delay-match to sample test (Dudchenko, 2004), and inhibitory
control can be evaluated by extinction of conditioned-fear (Chang
et al., 2009). However, these tests allow the evaluation of a single
and discrete cognitive function and are normally based on a
particular sensory modality, restricting the evaluation of multiple
parallel processes, as occurs during cognitive control. Also, several
of these tests are considered of low ethological validity, as they
are far from real life circumstances (Shemesh and Chen, 2023).
Thus, despite their undeniable value, these tests have remarkable
limitations to study neural operations associated to cognitive
control.

On the other hand, behavioral paradigm involving goal-
directed spatial memory, as the Morris-water maze test, the
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Barnes maze test, cheese-board test, and radial-arm maze
test (Redish, 2016) offers several advantages to study neural
processes supporting cognitive control. These tasks are based
on learning and memorizing the spatial locations of relevant
places in the environment (Ito, 2018). Spatial memory tests
are ethologically valid, as it reproduces challenges commonly
faced in the natural environments of rodent and primates,
including humans (d’Isa and Gerlai, 2022). Given that spatial
memory is not acquired in a single trial but it requires the
repeated exploration of relatively fixed environment, they allow
to evaluate memory generalization and strategy progression along
the learning process (Ruediger et al., 2012; Richards et al.,
2014). To accomplish the task, animals require to integrate
several sets of information as multisensory (visual, olfactory,
vestibular), spatial-temporal, emotional valence (aversive and
appetitive), and self-motion. Additionally, spatial learning process
requires the implementation of discrete executive functions, as
extraction of rules and contingences, online maintenance of
relevant information (working memory), and decision-making,
which can be easily evaluated on spatial memory tasks. Thus,
several parallel perceptual and cognitive processes can be evaluated
in goal-directed spatial memory tests. Moreover, through a
detailed behavioral analysis, they also allow the evaluation of
more sophisticated cognitive operations, such as strategy switching
(Rich and Shapiro, 2009), vicarious behavior (Redish, 2016),
planning (Dragoi and Tonegawa, 2011), path integration (Collett
and Graham, 2004), or even imagination (Lai et al., 2023) and
deliberation (Blumenthal et al., 2011). Importantly, with slight
modifications, it is possible to evaluate behavioral flexibility
(Hamilton and Brigman, 2015). For example, in spatial set-
shifting tasks, the rule is changed (i.e., navigate using egocentric
cues instead of allocentric cues). Similarly, in spatial reversal-
learning tasks, the spatial position of the goal is changed
after several training sessions, allowing the evaluation of goal-
directed adjustment of behavioral. And finally, the neural systems
involved in goal-directed spatial memory are relatively well known
(Buzsáki and Moser, 2013). Therefore, spatial memory testing in
rodent models, though well-designed paradigms, together with
a detailed behavioral analysis, is an appropriate behavioral tool
for the study of neural mechanisms involved in cognitive control
(Pezzulo et al., 2014).

1.2 The role of the prefrontal cortex in
cognitive control of behavior

The prefrontal cortex (PFC) is the association cortex localized
in the frontal lobe of mammals (Carlén, 2017). Lesion and
functional studies demonstrate the relevance of the mPFC in several
cognitive operations required for goal-directed adaptation, which
has led to the proposal that the main and single prefrontal function
is “to structure the present to serve the future” (Fuster, 2001, 2008).
Therefore, the PFC is considered the main structure supporting
cognitive control of behavior (Miller, 2000).

Early studies defined the PFC as the area of the frontal
pole that do not evokes motor responses to electrical stimulation
(Uylings et al., 2003). In humans, the PFC constitutes a 30%
of the entire cortical area. It can be subdivided following

cytoarchitectonic criteria into the dorsolateral PFC, ventrolateral
PFC, rostral parts of the orbitofrontal PFC and frontal pole.
Other regions, such as the caudal orbitofrontal PFC, the anterior
cingulate cortex and the ventromedial PFC are also included
(Haber et al., 2022). Although rodents do not possess anatomical
features of the primate PFC (Carlén, 2017), the rodent medial-PFC
(mPFC) subserves a range of cognitive and behavioral processes
homologous to those mediated by the primate PFC (Uylings
et al., 2003; Carlén, 2017). However, the rodent mPFC has been
controversial to define (Carlén, 2017; Laubach et al., 2018). Initially,
the rodent mPFC was described as prefrontal areas connected
with the mediodorsal nucleus (MD) of the thalamus (Rose and
Woolsey, 1948). Later, the homology between the PFC from
primates and rodents was established using several criteria, as the
cytoarchitecture (presence of granular cortex in the frontal pole),
the pattern of specific connections (reciprocal connection with
MD), the functional behavioral and electrophysiological properties
(similar impairments to prefrontal lesions and comparable activity
patterns, as the presence of “delay cells”) and the embryological
development (late ontogenetic development) (Uylings et al., 2003).
Most of these features are shared between the primate PFC
and rodent mPFC. However, taking into account that rodent
mPFC is agranular (layer IV is not present), the MD also
projects to areas non-related to rodent mPFC (Donoghue and
Wise, 1982) and the differences of spatial arrangement between
rodent and primate PFC (the rodent mPFC lies next to the
allocortex) has led to the view that the primate and rodent
PFC are not homologues, but these areas emerged differentially
during evolution to accomplish class-common behavioral need,
(i.e., the cognitive control of behavior) (Carlén, 2017; Hanganu-
Opatz et al., 2023). Also, through comparative studies of
gene expression patterns, it has evidenced differences between
homologous cortical areas in humans and rodents (Bernard
et al., 2012; Zeng et al., 2012). However, recent data based on
clustering of internal microcircuitry (Harris et al., 2019) and large-
scale hierarchical gradients (Fulcher et al., 2019) show that the
rodent and primate PFC have similar laminar-gene expression,
cell density and local and large-scale connectivity. Indeed, it was
found a high conserved expression pattern of orthologous genes
between the human and mouse PFC (Chen et al., 2016). Thus,
despite this issue is a current matter of discussion, these data
support the idea of “functional homologues” between rodent and
primate PFC.

From the behavioral perspective, early studies showed that
prefrontal lesions in humans led to the inability to override
prepotent responses, which manifested as an impairment in the
organization of behavior (Bechara et al., 1994; Damasio, 2006).
Detailed behavioral analysis have revealed that prefrontal lesions
in humans led to impairments in several executive functions that
support cognitive control, as working memory, setting, sustained
attention, inference control, decision making, inhibitory control,
planning, and strategy implementation (Milner, 1963; Eslinger
and Damasio, 1985; Chao and Knight, 1995; Bechara et al.,
1998; Burgess, 2000). Importantly, studies developed by Milner
(1965) showed that prefrontal lesioned patients showed deficits
in spatial mazes, which appeared to be non-spatial in nature but
had deficits in the correct strategy to solve the mazes, showing
perseverative and impulsive behaviors. Behavioral flexibility is one
of the strongest cognitive functions impaired by prefrontal lesions
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(Wegener and Stamm, 1966). This idea is supported by functional
neuroimaging studies in humans showing that behavioral flexibility
is associated with the activation of the PFC (Remijnse et al., 2005;
Boehme et al., 2017; Uddin, 2021). An extensive body of evidence
shows that lesions in the rodent mPFC impairs several executive
functions similarly as lesions of human PFC. For example, lesions
on the rodent mPFC produced deficiencies in working memory
(Ragozzino and Kesner, 2001), focused attention (Kahn et al.,
2012), decision-making (Croxson et al., 2014), strategy switching
(de Bruin et al., 2001; Floresco et al., 2009) and inhibitory control
(Brockett et al., 2022). Evidence from spatial memory tasks has
shown that the mPFC supports strategy progression during spatial
learning (de Bruin et al., 1997). Notably, the mPFC seems to
be required for memory generalization in spatial memory tasks
(Richards et al., 2014). Similarly as humans, lesions of the rodent
mPFC strongly impair behavioral flexibility [extensive review in
Hamilton and Brigman (2015)]. This body of evidence supports
the idea of the rodent mPFC as a “functional homologue” to the
human PFC.

The rodent mPFC has been subdivided into several
areas following cytoarchitectonic criteria. However, different
delineations and nomenclatures have been established over the
years (Le Merre et al., 2021). The most accepted delineation
subdivides the mPFC into three main sections: the infralimbic
mPFC (IL), the prelimbic mPFC (PL), and the anterior cingulate
cortex (ACC) (Laubach et al., 2018). Some authors include the
orbitofrontal cortex (OFC) as part of the rodent mPFC, whereas the
ACC is sometimes excluded from the prefrontal criteria (Carlén,
2017; Le Merre et al., 2021). Furthermore, some authors include
areas of the dorsal portion of the frontal poles, as the secondary
motor cortex (M2), also known as the frontal orienting field (FOF),
second frontal area (Fr2), or medial agranular cortex (AGm) as
part of the mPFC (Barthas and Kwan, 2017). This region receives
afferents from the MD; however, electrical stimulation evokes
motor response (Donoghue and Wise, 1982). These discrepancies
show the difficulty of demarcate the mPFC in rodents (Carlén,
2017). Thus, the PL and IL are considered the “core” of the rodent
mPFC.

Functional differences have been found between these
prefrontal subdivisions: for example, during fear conditioning, the
PL is involved in the expression of conditioned fear, whereas the IL
is required for its extinction (Sierra-Mercado et al., 2011). This has
led to a dorsal-to-ventral parcellation of the mPFC, in which the
dorsal portion (ACC, PL) is associated with limbic and cognitive
operations, whereas the ventral portion (the IL) is associated with
visceral and autonomic functions (Vertes, 2004; Peters et al., 2009).
However, neuronal firing in the PL and IL seems to represent
similar behavioral elements in spatial tasks (Baeg et al., 2003; Hok
et al., 2005; Rich and Shapiro, 2009), suggesting similar computing
properties between these areas. Indeed, current evidence has
challenged this parcellation of the mPFC. For example, diverse
prefrontal neuronal populations with differential and opposed
representational features coexist in the same prefrontal region
(Ye et al., 2016). Analysis of wiring and molecular properties
did not found differences between the prefrontal subdivisions
(Ye et al., 2016; Ortiz et al., 2020), and behavioral evidence
non-related to fear conditioning and extinction suggests functional
similarities between the PL and IL (Riaz et al., 2019). Further,
using optogenetic tools, it has been shown that activation of

PL enhanced fear extinction, whereas inactivation of IL has no
effect on extinction, challenging the classical roles of PL and IL
(Do-Monte et al., 2015; Marek et al., 2018). Thus, considering
the dense reciprocal connectivity between the PL and IL (Hoover
and Vertes, 2007; van Aerde et al., 2008), it is possible that these
structures work together as a single and unified processing system
(Le Merre et al., 2021).

The rodent mPFC is composed by excitatory pyramidal
neurons (PN; 80–90% of the total population) positioned in
cortical layers II/III and V/VI (Riga et al., 2014) and GABAergic
inhibitory neurons (IN; 10–20% of the total population) subdivided
into different neuronal sub-types distributed across all cortical
layers (Kawaguchi and Kubota, 1997). Importantly, the rodent
mPFC is agranular, lacking the layer IV (Uylings et al., 2003).
While PN are the main target of afferents from distributed neural
systems and constitutes the output from the mPFC to other
cortical and subcortical structures (Elston, 2003), IN synapse
predominantly locally with PN [but not exclusively, see (Cho
et al., 2023)], thus controlling and synchronizing the input and
outputs of the prefrontal network (Riga et al., 2014). Among PN,
intratelencephalic neurons (IT, neurons projecting to other cortical
areas) are distributed between layer II to VI, pyramidal tract PN
(PT, neurons projecting to subcortical nucleus) are located in layer
V, and corticothalamic PN (CT, which project to thalamus) are
located in layer V and IV (Anastasiades and Carter, 2021). Despite
the local circuitry of the mPFC has not been studied in detail,
it has been suggested that it shares an organization similar to
other frontal cortices (Anastasiades and Carter, 2021). In this local
connectivity, PN of layer II/III send descending projections to PN
in layer V, which also send ascendent projections to layer II/III.
Lateral projections are particularly strong in the mPFC, as robust
connection exist between PN of layer II/III and between PN of layer
V (Anastasiades and Carter, 2021). Indeed, the mPFC is the cortical
region of the highest proportion of feedback projections (Le Merre
et al., 2021). This high internal excitatory connectivity may be
relevant for local neural operations performed in the mPFC. On the
other hand, GABAergic IN are mainly subdivided in parvalbumin
(PV) and somatostatin (SOM) expressing neurons (Kawaguchi and
Kubota, 1997). PV cells synapse preferentially at the soma and
axons of PN, contributing to feedforward inhibition that controls
signal transmission, whereas SOM cells inhibits the dendrites of
PN, providing feedback inhibition (Anastasiades and Carter, 2021).
Importantly, cortical and subcortical areas projecting to the mPFC
also synapse local IN, which are activated before projecting neurons
(Anastasiades et al., 2018). Thus, considering that IN are relevant
for the synchronization of neural populations and the emergence of
neural activity patterns (see below), the feedback and feedforward
inhibition triggered by local and long-range activity may support
complex network dynamics in the mPFC.

The mPFC is structurally positioned between the perception
and execution of actions, allowing the integration of perceptual
information about the current context required for the
execution of appropriate behavioral responses (Fuster, 2001).
The mPFC receives projections from structures processing
sensory, motivational, contextual, spatial, temporal, and internal
information necessary to update internal representations (Fuster,
2001; Euston et al., 2012). Indeed, among cortical regions, the
mPFC receive projections from the largest number of brain
areas (Le Merre et al., 2021). Simultaneously, the mPFC projects
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to distributed associative, sensory, motor, neuromodulatory,
and visceral brain systems to generate and modulate behavioral
responses (Vertes, 2004; Gabbott et al., 2005; Euston et al., 2012).
One of the most relevant structures innervating the mPFC is
MD of the thalamus, which has been considered as a definitory
feature of the mPFC (Vertes et al., 2007; Delevich et al., 2015; Ketz
et al., 2015; Bolkan et al., 2017; Shepherd and Yamawaki, 2021).
Afferences from the MD project to superficial layers of the mPFC
(Anastasiades and Carter, 2021). As the MD does not receive
sensory or motor inputs, it is considered a high order nucleus.
Instead, the MD receives inputs from the mPFC, thalamocortical
neurons from other associative cortices, and several subcortical
structures (Mitchell and Chakraborty, 2013; Ketz et al., 2015).
Afferents from the mPFC emerges exclusively from layer VI of
ACC, PL and IL (Gabbott et al., 2005). Lesion or inhibition of the
MD leads to deficits similar to prefrontal lesions (Mitchell and
Chakraborty, 2013; Parnaudeau et al., 2013), suggesting a close
association between the MD and cognitive functions governed by
the PFC.

The mPFC also receives dense projections from other
associative cortical structures. One of the most studied connections
of the mPFC is with the hippocampus (HPC) (Eichenbaum, 2017),
structure involved in the representation of spatial and temporal
sequences (Buzsáki and Tingley, 2018). Prefrontal-hippocampal
interaction is relevant for object- and place-recognition memory
(Chao et al., 2020, 2022), goal-directed spatial navigation and
memory (Ito, 2018) and long-term consolidation of declarative
memories (Girardeau and Zugaro, 2011; Euston et al., 2012). The
HPC is subdivided into dorsal-HPC (dHPC) and ventral-HPC
(vHPC). The dHPC is associated with cognitive operations, while
the vHPC is mostly related with emotional and contextual-spatial
processing (Lee et al., 2017). The vHPC is directly connected
with the mPFC, in which excitatory neurons from the CA1 and
the subiculum projects to the deep layers (V and VI) of the
IL and PL (Hoover and Vertes, 2007; Anastasiades and Carter,
2021). Through this pathway, the vHPC may send contextual
information to the mPFC (Cohen and Meyer, 2020). On the
other hand, the dHPC is bidirectionally connected with the mPFC
through the nucleus reuniens (RE) of the thalamus (Baker and
Bird, 2002; Vertes, 2004; Joyce et al., 2022). The RE display
bidirectional connectivity with the mPFC and the dHPC (Vertes
et al., 2007). Simultaneously, the RE is the major thalamic input to
the HPC, which distributes densely to CA1, the ventral subiculum,
and entorhinal cortex (EC) (Jay and Witter, 1991; Vertes et al.,
2007). This connectivity of the mPFC with the dHPC has been
associated with the integration of spatial-temporal information
(Eichenbaum, 2017).

The EC, cortical area that constitutes the hippocampal-
entorhinal loop associated with spatial cognition and memory
(Kitamura et al., 2015), send direct projections to the ACC and
PL (Hoover and Vertes, 2007). These projections emerge from PN
located in layer V and VI of the EC, innervating the superficial
layers of the mPFC (Insausti et al., 1997). Given that the main
output from the HPC is the EC, afferences from the EC may
inform the mPFC about spatial-temporal features. On the other
hand, the PL and IL project directly to the EC (Vertes, 2004).
The posterior parietal cortex (PPC), area involved in the active
guidance of the body through the visual space (Whitlock et al.,
2008), projects densely to the ACC, but much less to the PL and IL

(Kolb and Walkey, 1987; Vertes, 2004). This pathway may integrate
information relative to self-motion into the mPFC (Whitlock et al.,
2008). Direct projections from the ACC, PL and IL to PPC are
scarce, although strong projection to the PPC emerges from the
OFC (Olsen et al., 2019). The retrosplenial cortex (RSC) is another
associative cortical structure connected with the mPFC. Although
the specific function of the RSC has been difficult to clarify, it seems
involved in the cross-modal integration during spatial navigation
processing (Vann et al., 2009). The RSC is reciprocally connected
with the ACC and PL (Jones et al., 2005; Hoover and Vertes, 2007).
Interestingly, the RSC is also reciprocally connected with the EC
and PPC, and receives unidirectional projections from the dHPC
(Mitchell et al., 2018). Therefore, the RSC may participate in the
integration of spatial and action-based information into the mPFC.
The mPFC also receives restricted projections from the M2 cortex
(Hoover and Vertes, 2007), area involved in the transformation of
sensory cues into motor actions (Olson et al., 2020). The M2 is one
main outputs from the mPFC, in which prefrontal afferences to M2
emerges from PL and ACC (Bedwell et al., 2014). Thus, M2 may
participate in the organization of goal-directed motor actions.

Much of the cognitive control implemented by the mPFC
is mediated through projections to several subcortical structures.
Emotional control, for example, seems to be mediated by the
connection between the mPFC with the amygdala (LeDoux, 2000;
Marek et al., 2013). The amygdala is subdivided into the basal
(BA), lateral (LA), and central nucleus (CeA) (LeDoux, 2000). The
lateral and basal amygdala conform the basolateral complex of
the amygdala (BLA), which is strongly innervated by the mPFC;
these projections emerge preferably from layer II and V from ACC,
PL and IL (Vertes, 2004; Gabbott et al., 2005). These prefrontal
afferents to the amygdala may have a key role in goal-directed
responses to threats (Alexandra Kredlow et al., 2022). Importantly,
the BLA also send excitatory projections to the layer V of the
PL and IL (Orozco-Cabal et al., 2006; Hoover and Vertes, 2007),
whereas the CeA, considered the output of the amygdala, sends
GABAergic afferent to the mPFC (Seo et al., 2016). These projection
may integrate emotional (especially aversive) information into the
mPFC. The nucleus accumbens (NAc), part of the mesolimbic
dopaminergic reward circuitry (Floresco, 2015), is also strongly
innervated by the mPFC (Vertes, 2004; Gabbott et al., 2005).
Excitatory afferents to NAc emerges bilaterally from layer II, V
and VI from PL and IL (Gabbott et al., 2005). Projections from
the NAc to the mPFC seems to be absent (Hoover and Vertes,
2007). This mPFC-NAc circuitry may be relevant for guiding of
behaviors according to rewards. The mPFC also projects to the
lateral hypothalamus (LH), structure involved in the control of food
intake and motivated behaviors (Stuber and Wise, 2016). The LH
receive strong projections from layers II, III, V, and V from the
ACC, PL and IL (Gabbott et al., 2005). This circuit participates in
the cognitive control of food intake (Azevedo et al., 2022).

The mPFC also receive projections from several subcortical
neuromodulatory nucleus. The dorsal raphe nucleus (DRN), the
pedunculopontine tegmental nucleus (PPT), the locus coeruleus
(LC), ventral-tegmental area (VTA) and the basal forebrain
strongly project to the PL and IL (Hoover and Vertes, 2007;
Henny and Jones, 2008). This monoaminergic and cholinergic
innervation may modulate prefrontal network dynamics (Cools
and Arnsten, 2022). Also the mPFC project to several of these
nucleus. The DRN receive projections from layer V of the ACC,
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PL and IL (Gabbott et al., 2005), and the VTA receive projections
from layer V of PL and IL (Gabbott et al., 2005). The mPFC also
projects to the locus coeruleus (Cardenas et al., 2021) and the basal
forebrain (Gaykema et al., 1991). This prefrontal innervation of
monoaminergic and cholinergic nucleus may have a relevant role
in global state of arousal (Mashour et al., 2022).

2 Neurophysiological basis for
prefrontal cognitive control of
behavior

2.1 Cognitive relevant features are
represented by synchronized neuronal
firing in the mPFC

How does the mPFC participate in the implementation of
cognitive control? The most accepted hypothesis postulates that
brain operations are supported by the transient, discrete, and
strongly interconnected active ensembles of neurons, known as
“neuronal assembly” (NA) (Hebb, 1949). This hypothesis proposes
that NAs are made up of a relatively small set of distributed
neurons that, by synchronized firing, encode relevant behavioral
parameters (Buzsáki, 2010). Experimentally, a NA is a task-
related synchronized overlapping firing of multiple single-neurons
(Sakurai, 1999). Given that detection of NAs requires highly
invasive intracerebral multielectrode recordings (Buzsáki, 2004) or
fluorescent cell-imaging in behaving subjects (Carrillo-Reid et al.,
2017), most studies relating NAs to cognitive features have been
performed in animal models.

To date, the best characterized NA are the “place cells” in
the HPC that encode the spatial position of the subject in the
environment (Moser et al., 2008). Considering the role of the
mPFC, NAs in this structure would represent multiple sets of
discrete information reflecting cognitive-relevant elements, such
as maintenance of information, strategies, decisions, and goals
(Sakurai et al., 2013). Consequently, it has been found that
prefrontal NAs encode a wide range of behavioral requirements
for the task (Jung et al., 1998) including prospective goal choices
(Baeg et al., 2003; Fujisawa et al., 2008; Benchenane et al., 2010),
spatial goals (Hok et al., 2005) or strategy selection and switching
(Rich and Shapiro, 2009; Powell and Redish, 2016). These NAs
in the mPFC have been shown to be highly dynamical, as they
are progressively formed in parallel with learning (Baeg et al.,
2007; Benchenane et al., 2010); are transiently activated, reflecting
the emergent dynamics of cognitive operations (Fujisawa et al.,
2008), and once formed, can be activated at remote temporal
scales, representing the long-term memory of the task (Baeg
et al., 2007). Importantly, given their dynamic nature, prefrontal
NAs support cognitive flexibility through abrupt changes in firing
patterns related to the accommodation of new behavioral strategies
as animals detect variations in their environment (Rich and
Shapiro, 2009; Powell and Redish, 2016; Malagon-Vina et al.,
2018). Thus, the formation, activation, and dynamic modulation of
synchronized firing patterns of neuronal populations in the mPFC
seem to be relevant for the implementation of cognitive control.

2.2 Oscillatory activity in the mPFC

Together with synchronized neuronal spiking, oscillatory
patterns in the mPFC seems to support cognitive operations.
Brain oscillations refer to rhythmic electrical activity detected
as periodic fluctuations of the extracellular electric potential
(i.e., local field potential, LFP) (Buzsáki et al., 2012; Yener
and Başar, 2013). It reflects the non-linear summation of post-
synaptic potentials that emerge from the synchronized interplay
between excitatory and inhibitory synaptic transmembrane ion
currents of the neural population (Pesaran et al., 2018). As
brain oscillations are intrinsically periodic, they are classified
into different bandwidths (between 0.5 and 200 Hz) that are
related with different brain states (Buzsáki and Draguhn, 2004;
Buzsáki and Watson, 2012). The amplitude and frequency of
oscillations depends on the identity and neural composition of
the neural network, the sum of the synchronized activity of these
neurons, and the neuronal morphology and disposition of neurons
in the cerebral space (Buzsáki and Draguhn, 2004; Maling and
McIntyre, 2016). Thus, different oscillatory frequencies reflect the
synchronized recruitment of different levels of neural populations,
in which low-frequency oscillations are the manifestation of
the synchronized activity of large-scale neural populations,
whereas high-frequency oscillations represent the coordinated
activity of local neural populations (Buzsáki and Draguhn, 2004;
Rosanova et al., 2009).

Theta oscillation (6–12 Hz) is the most prominent low-
frequency oscillatory activity observed in the mPFC. It is evident
during locomotion and high cognitive demands (Colgin, 2011;
Gordon, 2011). It is classically proposed that neocortical theta
is driven by the HPC, which is thought to be sustained by
inputs from the medial septum (cholinergic and GABAergic)
and entorhinal cortex (GABAergic) (Buzsáki, 2002). However,
hippocampal-independent theta has also been shown in the
neocortex (Benchenane et al., 2011) although the exact circuit
involved in its origin is still matter of discussion (Mitchell et al.,
1982; Jeffery et al., 1995; Buzsáki, 2002; Schlesiger et al., 2015;
Headley and Paré, 2017). During the last decade, a 4-Hz low-
frequency oscillation has been described in the mPFC (Fujisawa
and Buzsáki, 2011; Biskamp et al., 2017; Karalis and Sirota, 2022).
Although the cellular origin of this rhythm is still unknown, it
has been shown that it is locally generated in cortical networks
by respiratory influence through the afferents from olfactory bulb
(Folschweiller and Sauer, 2021). Given that this rhythm is also
detected in several structures connected with the mPFC, as the
HPC (Yanovsky et al., 2014), PPC (Jung et al., 2022), VTA
(Fujisawa and Buzsáki, 2011), BLA (Karalis et al., 2016) and
striatum (Oberto et al., 2022), this rhythm may synchronize distant
structures with the mPFC. This 4-Hz oscillation is particularly
evident in moments of immobility, suggesting that it may supports
distributed coordination of neural networks when locomotion is
absent (Biskamp et al., 2017). Evidence suggests that 4-Hz may
be relevant for cognitive functions (Fujisawa and Buzsáki, 2011;
Karalis et al., 2016; Bagur et al., 2021; Oberto et al., 2022). On the
other hand, beta (15–30 Hz) and gamma (30–100 Hz) oscillations
are the most prominent high-frequency oscillatory patterns in
the mPFC. The origin of these interplayed oscillatory rhythms
seems to depends in the interaction of local GABAergic and
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glutamatergic neurons (Bitzenhofer et al., 2017; Cardin, 2018).
Even more, some studies link their origin to different subtypes of
local GABAergic INs. For example, in the primary visual cortex of
behaving mice, optogenetic differential stimulation of SST-IN or
PV-IN are preferentially correlated with enhancement of beta or
gamma activity, respectively (Chen et al., 2017). Although classical
works provide support to the role of peri-somatic inhibition in
gamma rhythmogenesis (Cardin et al., 2009; Sohal et al., 2009),
it has also been shown that gamma can be driven by SST-IN,
PNs or long-range GABAergic neurons projecting to the cortex
(Adesnik and Scanziani, 2010; Kim et al., 2015; Veit et al., 2017).
In summary, the neuronal composition (subtypes of neurons) and
architecture (cell morphology and disposition of cells in space), as
well as synchronized activity of cells are important factors needed
for the emergence of oscillations at particular frequencies.

Astrocytes (a subtype of glial cell) also participate in the
maintenance and modulation of brain rhythms (Buskila et al.,
2019). Since they have a close association with synapses,
they regulate the concentration of extracellular ions and
neurotransmitters (tight control of the extracellular K+, glutamate
uptake and gliotransmission). Also they communicate through
calcium waves (astrocytic communication via gap junction),
mechanisms by can influence brain activity and synchronization
(Amzica et al., 2002; Lee et al., 2014; Bellot-Saez et al., 2018; Buskila
et al., 2019). Indeed, astrocytic calcium dynamic is relevant for
the modulation of hippocampal theta activity, and attenuation of
IP3-mediated Ca+2 signaling in astrocytes increase theta power,
especially during REM sleep (Foley et al., 2017). Higher frequency
rhythms are also modulated by astrocytes; blockade of glutamate
vesicular release from astrocytes induces a decrease in gamma
power in vitro and in vivo, thus demonstrating their relevance for
cortical gamma oscillations (Lee et al., 2014). Moreover, in a mouse
model of astrocyte-specific exocytosis impairment (blockade of
gliotransmitter release, presumably D-serine), the mPFC-HPC
theta synchronization was impaired, as well as cognitive tasks
associated with spatial learning and reference memory (Sardinha
et al., 2017). Thus, these result evidence the modulation of
network dynamics by astrocytes and their impact in functional
communication (Sardinha et al., 2017).

Together with cell composition and the architecture of neural
networks, the genetic background of cells is relevant for the
generation of brain rhythms (Buzsáki et al., 2013). Indeed, it has
been shown that brain oscillations are highly heritable (Peeters
et al., 1992; van Beijsterveldt et al., 1996; Franken et al., 1998;
Buzsáki et al., 2013; Müller et al., 2017). In humans, EEG profiles
show higher similarity between monozygotic twins compared with
between dizygotic twins or unrelated people (Landolt, 2011).
Additionally, genetic mutations can generate disease states; for
example deletions or duplications of the SCN1A gene cause
Dravet syndrome; these patients show an impaired ability to
generate gamma activity in response to auditory stimuli compared
to healthy controls (Sanchez-Carpintero et al., 2020). Moreover,
current research has identified genes in the neocortex correlated
with oscillatory activity linked to successful memory encoding
(Berto et al., 2018, 2021). These genes are expressed mainly in
neurons, which encode ion channels and synaptic proteins (Berto
et al., 2018, 2021). In a recent work performed in humans, it was
observed that genes encoding for ion channel activity, chromatin
remodeling, synaptic scaffolding, and alternative splicing were

related to successful memory encoding (Berto et al., 2021; Khanna
and Williams, 2021). Future research will clarify the mechanisms of
genetic control of brain oscillations.

A key feature of cortical brain oscillations is that they
are internally generated, even in the absence of external cues;
hence, brain oscillations may represent internal-generated neural
operations (Buzsáki et al., 2014). Thus, particular oscillatory
patterns may emerge in the mPFC according to cognitive
requirements, representing relevant features related to diverse
cognitive and behavioral tasks (Hyman et al., 2005; Benchenane
et al., 2010; Buzsáki, 2010; O’Neill et al., 2013). For example,
theta oscillations appear in the rodent mPFC largely associated
with the performance of spatial tasks (Siapas et al., 2005; O’Neill
et al., 2013), and learning and memory consolidation (Benchenane
et al., 2010; Alekseichuk et al., 2016). This prefrontal theta is
usually coupled with hippocampal theta (see below) (Hyman
et al., 2005; Jones and Wilson, 2005; O’Neill et al., 2013). On
the other hand, high-frequency oscillations also emerges in the
mPFC, which may represent local neural operations underlying
information processing (Fries, 2009; Engel and Fries, 2010;
Fernandez-Ruiz et al., 2023). For example, synchronization of
mPFC with other cortical areas in the beta band in primates,
humans and rodents is associated to top-down attention (i.e.,
expectation based attention), while synchronization in gamma
prevails during bottom-up attention (i.e., states more focused
in features of the presented stimuli) (Buschman and Miller,
2007). Similarly, during cognitive flexibility, increases in gamma
activity (anterior cingulate and right temporo-parietal cortex)
and decreases in alpha and beta (frontal and inferior-parietal
cortex), have been related to improved performance during task-
switching paradigms in humans (Proskovec et al., 2019). Cortical
low-frequency rhythms, as theta oscillations, modulate the timing
and amplitude of high-frequency rhythms, a phenomenon known
as cross-frequency coupling (CFC) (Canolty and Knight, 2010;
Lisman and Jensen, 2013; Aru et al., 2015). This phase-to-amplitude
modulation allows the coordination of fast-local computations
by slower oscillations at larger spatial scales, offering windows
of efficient communication between different neural networks,
allowing the integration of distributed local computations into
large-scale processes (Canolty and Knight, 2010). This theta-
gamma CFC modulation has been evidenced in the mPFC during
the performance of several cognitive functions in rodents (Fujisawa
and Buzsáki, 2011; Li et al., 2012; Tamura et al., 2017) and non-
human and human primates (Voloh et al., 2015; Daume et al., 2017;
Jones et al., 2020). Also 4-Hz rhythm is capable of synchronizing
gamma oscillation in the mPFC, although its role on cognitive
operations is still under research (Fujisawa and Buzsáki, 2011;
Zhong et al., 2017; Karalis and Sirota, 2022). Interestingly, spiking
neurons in the mPFC are also entrained by theta-gamma CFC
(Fujisawa and Buzsáki, 2011; Li et al., 2012; Tamura et al., 2017)
which has been hypothesized as a mechanism for integration and
segregation of task-relevant neural populations. Thus, CFC seems
to be critical for cognitive control (Helfrich and Knight, 2016).

Importantly, oscillations modulate the timing of the membrane
potential of recruited neurons, synchronizing the timing of action
potentials (Anastassiou et al., 2011). Thus, the synchronization
of neural firing and oscillatory rhythms are not independent
phenomena; contrarily, the synchronization of neuronal firing
by oscillations seems to support the formation and activation
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of NAs through the integration of activity-dependent synaptic
plasticity (Fell and Axmacher, 2011; Buzsáki and Watson, 2012).
Therefore, oscillatory synchronization of neuronal spiking seems
to be a requisite for the formation of NAs (Buzsáki, 2010). As an
example, the timing and sequence of place cells in the HPC are
synchronized by theta and gamma oscillations (Buzsáki and Moser,
2013). The capability of brain oscillations to modulate the timing
and occurrence of neuronal spiking activity is commonly measured
through phase-locking (Lowet et al., 2016). It has been shown that
prefrontal oscillations, throughout phase-locking, synchronized
prefrontal spiking that encode relevant event-related information
for the behavioral task, promoting the generation and activation of
cognitive relevant NAs (Benchenane et al., 2010; Negrón-Oyarzo
et al., 2018). Thus, cognitive control of behavior may be supported
by the coupling of NAs by different and complementary patterns of
oscillatory activity in the mPFC.

2.3 Functional connectivity between the
mPFC and distributed neural networks
for the cognitive control of behavior

For the implementation of cognitive control, the mPFC
requires rapid and flexible information exchange among
anatomically connected structures that represents and store
relevant information required for task performance (Euston et al.,
2012; Buzsáki et al., 2014; Helfrich and Knight, 2016). It has been
proposed the large-scale synchronization of activity patterns,
known as functional connectivity (FC), is a neural mechanism
for neural communication, allowing the integration of local
computations across different spatio-temporal scales (Fries, 2005;
Friston, 2011; Eickhoff and Müller, 2015). Consequently, FC
between the mPFC and distributed neural networks may facilitate
the dynamic integration and coupling of information crucial for
the formation and activation of NAs involved in cognitive control
(Colgin, 2011; Helfrich and Knight, 2016).

The mPFC shows strong FC with the HPC. FC is commonly
measured as spectral coherence defined as the cross-correlation
of both amplitude and phase as a function of frequency and
time between two LFP signals (Gordon, 2011). Coherence in
the theta frequency between the mPFC and HPC has been
widely described, which increases in relationship with cognitive
performance, such as decision making, spatial memory acquisition
and inhibitory control (Adhikari et al., 2010b; Benchenane et al.,
2010; O’Neill et al., 2013; Negrón-Oyarzo et al., 2018). Interestingly,
this interaction modulates the spike timing of prefrontal neurons
(Jones and Wilson, 2005; Siapas et al., 2005; Benchenane et al.,
2010; Negrón-Oyarzo et al., 2018), allowing the emergence of
neural spiking representations of relevant cognitive features during
learning (Adhikari et al., 2010a,b; Benchenane et al., 2010). Also,
there is a prominent coherence in the low-gamma band (20–
40 Hz), which progressively increases over time through task
acquisition, suggesting that the FC between mPFC-HPC supports
strategy progression during learning (Negrón-Oyarzo et al., 2018).
Hippocampal theta oscillation also coordinates prefrontal gamma
oscillations though CFC (Sirota et al., 2008). This phenomenon
has been associated with working memory (Fujisawa and Buzsáki,
2011; Li et al., 2012; Tamura et al., 2017). Given that gamma

oscillations represent local computations (Fries, 2009; Fernandez-
Ruiz et al., 2023) this long-range synchronization may allow the
coordination and integration of distributed computations, favoring
neural communication and plasticity required for cognitive control
(Hyafil et al., 2015; Helfrich and Knight, 2016). The mPFC-
HPC coupling may be relevant for the integration of spatial
and temporal information into the mPFC required for cognitive
control. However, it has been shown that the directionality
of mPFC-HPC coupling may represents different processes:
for example, HPC-to-mPFC participates in the transference of
contextual information to the mPFC, whereas mPFC-to-HPC
coupling guides successful retrieval of memories in the HPC (Place
et al., 2016). Therefore, mPFC-HPC coupling may also represent
cognitive control exerted by the mPFC. The coordination between
the mPFC and HPC is also attained by 4-Hz oscillation (Karalis and
Sirota, 2022). Similarly to theta, 4-Hz oscillation also coordinates
gamma activity and neuronal spiking at long-range. However,
contrary to theta coordination, 4-Hz synchronization emerges
during offline states, when locomotion is not present (Karalis
and Sirota, 2022). This coordination may be a complementary
mechanism for neural communication when theta is absent
(Folschweiller and Sauer, 2021).

As an accumulative process, the acquisition of goal-directed
memory requires access to previous experiences stored in long-
term memory and the formation of new long-term memories
through memory consolidation (Mecklinger, 2010). The mPFC-
HPC axis plays a pivotal role in supporting memory consolidation
(Rothschild et al., 2017; Shin et al., 2019; Wagner et al., 2019).
The most accepted current model form memory consolidation is
the “two-stage model” (Buzsaki, 1989) that proposes an online
stage, where environmental information is acquired, and an
offline stage, where recently acquired information is transferred to
distributed cortical modules for long-term storage (Nieuwenhuis
and Takashima, 2010; Preston and Eichenbaum, 2013). During
spatial memory formation, the online stage is characterized by a
peak of coherence in theta between the HPC and mPFC, facilitating
the coordination of neuronal firing in the mPFC and the formation
of NAs to store relevant task-related information (Siapas et al.,
2005; Sirota et al., 2008; Benchenane et al., 2010; Wang et al., 2020).
Theta oscillations are believed to play a crucial role in "tagging" NAs
for later consolidation (Peyrache et al., 2009; Girardeau and Zugaro,
2011; Jadhav et al., 2016). The offline stage, occurring during
sleep or quiet wakefulness, involves reduced external stimulation
(Wamsley, 2019). This stage is associated with the interaction of
three major structures: the mPFC through slow oscillations (SO:
<1 Hz), the thalamo-cortical circuit through spindles (10–16 Hz),
and the HPC through sharp-wave ripples (SWR: 120–250 Hz)
(Binder et al., 2019; Oyanedel et al., 2020). SWR in the HPC leads
to the reactivation of hippocampal sequences formed during the
online stage (Peyrache et al., 2009). Importantly, prefrontal neurons
are reactivated during SWR, indicating the interaction between the
mPFC and HPC during the consolidation process (Jadhav et al.,
2012; Rothschild et al., 2017; Tang et al., 2017). This hippocampal
reactivation during the offline stage allows the transfer of relevant
information acquired during the online stage, contributing to the
strengthening of synaptic connections and the consolidation of
acquired information in the long-term (Frankland and Bontempi,
2005; Papale et al., 2016; Binder et al., 2019). Inhibition of SWR
during the offline stage impairs the acquisition of goal-directed
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spatial memory, reinforcing the crucial role of the mPFC-HPC
axis in the memory consolidation process (Girardeau et al., 2009;
Jadhav et al., 2012; Binder et al., 2019). This evidence suggests the
relevance of the mPFC-HPC coupling for several processes related
to cognitive control.

It also has been documented FC between the mPFC and MD.
For example, it has been observed coherence at beta frequency
in the mPFC-MD circuit during working memory and decision-
making (Parnaudeau et al., 2013; Bolkan et al., 2017). Specifically,
in working memory tasks, it has been found that MD is related with
the “online holding” of relevant information, whereas the mPFC
is related with the execution of actions (Bolkan et al., 2017). The
MD also may play a role in memory consolidation (Mitchell and
Gaffan, 2008; Cross et al., 2012). Given that the MD decrease their
firing rate when SWR emerges in the HPC (Logothetis et al., 2012;
Yang et al., 2019), it has been suggested that that MD contributes
to increase the mPFC reactivity to hippocampal SWR. This
mechanisms may promote hippocampal-cortical communication
for the consolidation of declarative memory (Yang et al., 2019).

FC between the mPFC and the amygdala may contribute to
cognitive control of emotional processing (Alexandra Kredlow
et al., 2022). Most of studies concerning mPFC-amygdala coupling
have been performed using fear conditioning and extinction task.
Early studies showed that theta oscillation is evident in the rodent
LA during retrieval of fear memory (Pape et al., 2005). Interestingly,
theta coherence between BLA and mPFC predict freezing (Popa
et al., 2010) and successful fear discrimination (Likhtik et al., 2014).
This has also been observed in human and non-human primates
(Taub et al., 2018; Chen et al., 2021). However, as well as the mPFC-
HPC interaction, the directionality of mPFC-amygdala coupling
may signal different cognitive processes. For example, BLA-to-
mPFC coordination has been associated with communication of
aversiveness to the mPFC (Popa et al., 2010; Taub et al., 2018),
whereas mPFC-to-BLA modulation was associated with prefrontal
control of fear expression (Popa et al., 2010; Courtin et al., 2014)
and successful threat evaluation (Likhtik et al., 2014). Interestingly,
it has been shown that the directionality of mPFC-amygdala
coordination in the theta band depends on fear responses during
different stages of fear memory and extinction (Lesting et al.,
2013). This suggests that long-range communication between the
mPFC and the amygdala through theta oscillations depend on the
current cognitive process. The mPFC and amygdala also interact
through of theta-gamma CFC, which increase in periods of fear,
and is differentially modulated by task requirements (Stujenske
et al., 2014). 4-Hz oscillation also seems to have a central role in
emotional processing in the mPFC-amygdala circuit (Folschweiller
and Sauer, 2021). 4-Hz synchronization between mPFC and BLA
increase during freezing behavior, in which mPFC-4-Hz entrain
BLA oscillations and neural spiking, suggesting a role in top-
down control of fear expression (Dejean et al., 2016; Karalis et al.,
2016). Importantly, both theta and 4-Hz oscillations synchronizes
neuronal spiking between the mPFC and amygdala, contributing
to the formation of NAs signaling specific parameters related to the
task, as fear expression or extinction (Courtin et al., 2014; Likhtik
et al., 2014; Dejean et al., 2016; Karalis et al., 2016). Altogether,
this body of evidence strongly suggests that functional connectivity
between the mPFC and anatomically connected structures supports
several features of cognitive control of behavior.

3 Dysfunctional activity patterns in
the mPFC in mental conditions

The evidence presented above links cognitive control with
neural activity patterns in the mPFC and its functional connectivity
with distributed networks (Figure 1A). Considering that some
normal and pathological conditions display a strong alteration
in the cognitive control of behavior, it is expected that
neurophysiological processes supporting this operation would be
also impaired. However, the limited access to the recording and
modulation of neural activity patterns in human subjects restrains
the knowledge relating neurophysiological phenomena to the
decline of cognitive control. Therefore, studies in animal models
have been proposed and used to address this issue. Given the
development of reliable rodent models mimicking normal and
pathological mental conditions in humans, we can assume that the
decline in cognitive control in these rodent models can be similar
to that in humans. Thus, the integration and comparison between
finding in humans and rodent models could give relevant cues to
the understanding of neurophysiological mechanisms involved in
decline of cognitive control in normal and pathological conditions.
In the following sections we discuss how prefrontal activity patterns
and cognitive control are altered in patients and rodent models of
normal cognitive aging, mood disorders and schizophrenia.

3.1 Prefrontal oscillations and functional
connectivity in normal cognitive aging

Aging has become a relevant topic in research because of the
global increase in the proportion of older people. According to the
World Health Organization (WHO), people aged 60 years or older
currently reaches near 12% of the global population. Furthermore,
it is projected that in the year 2050, the world population of
people aged 60 years or older will have doubled (2.1 billion of
people), reaching 22% of the total population (World Health
Organization [WHO], 2022). Aging is a natural and irreversible
process characterized by biological and social changes (Dziechciaż
and Filip, 2014). However, elderly are also accompanied by a
normal cognitive decline (NCA), a natural and gradual decline in
cognitive functions that occurs normally over time, which differs
from pathological syndromes, such as mild cognitive impairment
and dementia (Harada et al., 2013; Dumas, 2015). NCA start at
40 years of age and progresses continuously (Harada et al., 2013). It
has been estimated that between 3 and 8% of the population older
than 65 years of age show a level of cognitive decline, whereas this
proportion rise to 30% in the population older than 85 years (Blazer
et al., 2015). This phenomenon strongly impact the autonomy and
well-being of older people (Sánchez-García et al., 2019; Cylus and
Al Tayara, 2021).

NCA is characterized by a decrease in “fluid” cognitive abilities,
such as cognitive flexibility, problem-solving, and reasoning
(Manard et al., 2014). In contrast, crystallized abilities, as
accumulated knowledge of the world and over-learned familiar
skills remain intact (McDonough et al., 2016; Salthouse, 2019).
This differs from pathological conditions like dementia, in which
more widespread brain functions impairment is observed, affecting
both fluid and crystallized abilities, leading to a broader decline
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FIGURE 1

Neural mechanism for cognitive control through prefrontal cortex functional connectivity. (A) Under normal/healthy conditions, the PFC
communicates with distributed neural populations through large-scale coupling of oscillatory activity patterns (i.e., functional connectivity). This
coupling facilitates the synchronization of firing patterns in the PFC, promoting the formation, activation and updating of cognitively relevant NAs,
supporting the cognitive control of behavior according to current demands. (B) On the other hand, under disrupted conditions, the connectivity
between the PFC and distributed networks, or between prefrontal neurons, is altered. This prevents coupling between the mPFC and distributed
networks, decreasing the synchronization of neuronal firing and hindering the organization of NAs. Finally, all this chain of events manifests as an
impaired cognitive control of behavior.

in cognitive capacities (Cadar, 2018). Deterioration of cognitive
control is one of the main characteristics of NCA (Paxton
et al., 2008), manifested as a diminished capacity to process new
information and adapt to changing situations (Harada et al., 2013).
Indeed, the cognitive decline is manifested as a deterioration
of executive functions including working memory and cognitive
flexibility (Paxton et al., 2008; Reinhart and Nguyen, 2019; Yagi
et al., 2020). Notably relevant is the impairment of spatial memory
(Head and Isom, 2010; Gazova et al., 2013; Bécu et al., 2023).
Although these deficits are related to spatial components, as for
example, spatial orientation (Moffat et al., 2006; Bécu et al., 2023),
impairment on executive functions, such as strategy switching
or attention, are significantly associated with deficits of spatial
memory during aging (Rodgers et al., 2012; Wiener et al., 2013;
Harris and Wolbers, 2014; Zhong and Moffat, 2018). This evidence

suggests a relationship between cognitive decline and prefrontal
function (West, 1996; Greenwood, 2000).

During aging, there is a general reduction in cortical thickness,
volume, and weight of the brain (Dekaban and Sadowsky, 1978;
Takao et al., 2012; Zheng et al., 2019; Cox et al., 2021). However,
the reduction of cortical thickness is especially evident in the
PFC (Dotson et al., 2015). Importantly, intrinsic and long-range
anatomical connectivity of the PFC with distributed structures
is decreased (Chadick et al., 2014; Pietrasik et al., 2023), which
is associated with cognitive performance (Chadick et al., 2014).
At neurophysiological level, EEG/MEG studies in humans have
documented a decrease in the power of frontal low-frequency
oscillations in aged subjects. For example, average power spectral
density of theta frequencies is reduced in older subjects compared
to young individuals (Vlahou et al., 2014; Meghdadi et al., 2021).
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Similarly, subjects with NCA display a decrease in spectral power
at frequencies below 14 Hz in frontal superior and inferior areas
during word-memory tasks (Healey and Kahana, 2020). In the
same line, it has been shown that there is a decrease in theta (4–
7 Hz), and alpha (9–14 Hz) power during memory tasks in the
frontal areas of NCA patients compared to young adults (Rondina
et al., 2016). During the resting state, the spectral power density of
theta frequencies was significantly correlated with immediate and
delayed verbal recall, attention, and executive function measures
in older adults (Cummins and Finnigan, 2007; Finnigan and
Robertson, 2011). Similarly, decrease of alpha rhythms in the
frontal area correlates with performance during working memory
task in older subjects (Clark et al., 2004). Interestingly, the evidence
suggests that cognitive decline in working memory and behavioral
flexibility in old age is associated with the difficulty of the PFC to
synchronize at large-scale with distributed brain regions, such as
temporal lobe and thalamus (Fama and Sullivan, 2015; Hakun et al.,
2015; Reinhart and Nguyen, 2019). This evidence suggests that
during the requirement of high cognitive demand, the cognitive
decline in aging appears to be associated with the impairment of
the slow-frequency synchronization of neural networks in the PFC,
which could be related to the inability to recruit neural circuits
during the task.

Naturally aged rodents (18–24 months) is the most common
model for the study of aging (Yanai and Endo, 2021). Similar
cognitive impairments to those observed in NCA in humans have
been found in these rodent models (Brito et al., 2023). For instance,
aged rodents display impairments in spatial memory (Rapp et al.,
1987; Gallagher, 1997; Drapeau et al., 2003; Magnusson et al.,
2003; Guidi et al., 2015; Lester et al., 2017), working memory,
and strategy switching (Barnes et al., 1980; Breton et al., 2015;
Yanai and Endo, 2021; Chong et al., 2023). Despite the existence
of rodent models of aging, there are scarce studies concerning the
neurophysiological phenomena in the mPFC related to the decline
of cognitive control during aging. As in humans, aging in rodents is
associated to a reduction in cortical thickness, volume, and weight
of the rodent brain (Lessard-Beaudoin et al., 2015; Taylor et al.,
2020). At neurophysiological level, and in agreement with human
data, aged C57BL/6J mice show low power of theta and high-
frequency oscillations during resting state in the mPFC (Rumschlag
et al., 2021). Studies assessing the neuronal activity patterns in
the mPFC related to impaired cognitive control during elderly is
even scarcer. A recent study showed a decrease in the fraction of
action-plan coding neurons in the mPFC of aged animals, which
was related to slower learning in a working memory task (Chong
et al., 2023). It has also been shown a reduced neural spike encoding
of response latencies to stimuli in the mPFC during the delay
period in an operant delayed-response task which was related with
impaired performance (Caetano et al., 2012). These studies suggest
a relationship between impaired neural encoding in the mPFC with
the decline of cognitive abilities during aging. Altogether, these
findings reflect that brain aging involves complex changes affecting
prefrontal activity patterns, which may be key to understand
the difficulties in the cognitive control observed during normal
aging. Interestingly, brain stimulation mimicking theta-gamma
CFC recovered working memory in older adults, supporting the
role of prefrontal activity patterns in cognitive decline (Reinhart
and Nguyen, 2019). Therefore, optogenetic stimulation, which
offers high cell-identity, spatial and temporal precision, could be

used in the mPFC of rodent models of aging, contributing to
the development of evidence-based strategies to improve cognitive
control in aged subjects.

3.2 Prefrontal oscillations and functional
connectivity in mood disorders

Mood disorders includes a group of psychiatric diseases
that affect the individual’s emotional processing, energy, and
motivation. Some examples of these diseases are major depressive
disorder (MDD) and anxiety disorders (AD). MDD has a lifetime
prevalence of 16%, whereas anxiety disorders are even more
prevalent than MDD, reaching up to 60% (Kessler et al., 2003).
Genetic studies have shown a heritability of 37% for the generation
of mood disorders. It also exists high comorbidity between both
mental illnesses (Solomon et al., 2000). A large body of evidence
indicates that subjects at higher risk of developing mood disorders
are those who are genetically predisposed (Jaworska-Andryszewska
and Rybakowski, 2019) and exposed to threatening and chronic
life conditions, including people living in poverty, female victims
of violence, the unemployed, neglected elderly persons and
individuals exposed to bullying (McEwen and Akil, 2020). These
threatening conditions generate a physiological response that
allows adaptation to environmental threats, known as stress
(McEwen, 2007). Stress-related mental diseases are characterized
by a plethora of symptoms (American Psychiatric Association,
2013). However, the most important and invalidating features of
mood disorders are related to cognitive control, which are strongly
related to the impaired well-being of the patients. In this context,
symptoms such as cognitive impairment, incapacity to control
impulses and emotions are among the most relevant (Nezlek et al.,
1994; Taylor Tavares et al., 2007; Hammar and Årdal, 2009; Millan
et al., 2012). Current evidence shows that the PFC’s functioning
is altered in mood disorders (Johnna and Swartz, 2013; Myers-
schulz and Koenigs, 2014; Marrus et al., 2015; Mehta et al., 2018).
One of the main components in mood disorders is the emotional
dysregulation, i.e., the incapacity to regulate negative emotions.
One study in humans showed that patients with MDD treated
with antidepressants for 6 months presented an accelerated increase
in the right dorso-lateral PFC activity during the regulation of
negative affect in comparison to controls (Heller et al., 2013).
Untreated MDD patients showed lower PFC activity in general,
which altered the connectivity with the amygdala (Johnstone
et al., 2007). This could be responsible for the characteristic
emotional dysregulation symptom in this disease because this
circuit is important for emotional processing. Changes in PFC
engagement when regulating negative affect are inversely correlated
with changes in depression severity (Johnstone et al., 2007). For
social AD, it has been showed that patients presented lower
amplitude fluctuations of low-frequency oscillations in the PFC in
comparison to control patients (Zhang et al., 2015). Theta-gamma
CFC alterations in the PFC is related to cognitive performance in
MDD (Zheng and Zhang, 2013). Thus, this evidence supports the
impairment of activity patterns in the PFC in mood disorders.

Several rodent models of mood disorders have been developed.
Given the close relationship between mood disorders and chronic
stress (McEwen and Akil, 2020), most of mood disorders models
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implicate the exposition of the animals to chronic-stressing
conditions, such as chronic- and unpredictable stress, social-
defeat stress, prenatal and early-life stress, or corticosterone
manipulation, among others (Gururajan et al., 2019). These
stressing conditions induce several behavioral manifestation of
mood disorders, as increased anxiety, decreased locomotion
and motivation, anhedonia, and social avoidance (Krishnan and
Nestler, 2011; Wang et al., 2017; Gururajan et al., 2019). Also, these
protocols induce cognitive impairment in spatial and recognition
memory (Kleen et al., 2006; Conrad, 2010; Darcet et al., 2014),
decision-making (Friedman et al., 2017), fear extinction (Negrón-
Oyarzo et al., 2014) and behavioral flexibility (Hurtubise and
Howland, 2017). Interestingly, during spatial learning, chronic
stress induced a shift to more rigid stimulus-response strategies
(Schwabe et al., 2008). This evidence suggests a stress-induced
impairment in cognitive control.

It is widely documented that chronic stress induce dendritic
pruning of PN in the mPFC (Cook and Wellman, 2004;
Dias-Ferreira et al., 2009; Garrett and Wellman, 2009). At
neurophysiological level, chronic stress reduced synaptic
transmission in the mPFC (Yuen et al., 2012; Negrón-Oyarzo
et al., 2014, 2015a) and reduce firing of prefrontal neurons
(Mizoguchi et al., 2000; Goldwater et al., 2009; Wilber et al., 2011;
Negrón-Oyarzo et al., 2015b). Similarly, social-defeat stress reduces
spiking of prefrontal neurons (Abe et al., 2019). Thus, stress-related
rodent models of mood disorders display profound alterations
in prefrontal structure and function, which may be related to
the impaired control of behavior. These neurophysiological
impairments may impact in prefrontal activity patterns and FC
during behavior implementation. Accordingly, it has been shown
that chronic stress decreases mPFC-HPC coherence in the theta
frequency band (Lee et al., 2011). Similarly, chronic stress reduced
mPFC-HPC coherence at delta, theta and gamma bands during
spatial memory task, which was related to the impairment of
memory acquisition (Oliveira et al., 2013). Prenatal stress induced
persistence of spatial memory during adulthood, suggesting a
loss of behavioral flexibility, which was related to an increased
synchronization between hippocampal-SWR and neuronal firing
in the mPFC (Negrón-Oyarzo et al., 2015b). In a similar line,
social-defeat stress induced a decrease in the 2–7 Hz oscillations
in the mPFC, which correlated with stress-induced behavioral
state (Kumar et al., 2014; Liu et al., 2022). Also, social-defeat
stress reduced the incidence of 20–40 Hz events in susceptible
animals during social interaction (Abe et al., 2019). Of relevance,
social-defeat stress also reduced the prefrontal synchronization
of neural spiking in the amygdala in susceptible animals (Kumar
et al., 2014). If prefrontal neural representation and encoding of
relevant cognitive evens is affected in rodent models of mood
disorders is still unknown.

Finally, considering those antecedents, many prefrontal
stimulation therapies have been developed to decrease symptoms of
mood disorders (Cirillo et al., 2017). The search for new therapies
is motivated by the limited effectiveness of pharmaceutical
treatments (Nakagawa et al., 2017), as a great number of patients
(between 12 and 55%, depending on the psychiatric illness) do
not respond to this type of treatment (Nemeroff, 2007; Wiles
et al., 2014). Stimulation therapies like deep brain stimulation
(DBS) or transcranial magnetic stimulation (TMS) have been

developed (Zrenner et al., 2020). Thus, precise, and evidence-
oriented stimulation therapies may help patients to recover their
abnormal oscillatory coupling characteristic of the pathophysiology
of mood disorders. Therefore, rodent models of mood disorders
are a reliable tool to test brain stimulation protocols (Okonogi
and Sasaki, 2021). In rodent models, it has been shown that
deep brain stimulation in the mPFC increased the synchronization
between the HPC and the mPFC in the beta and gamma band,
which may have an antidepressant-like effect, decreasing symptoms
such as dysregulation in emotional processing (Jia et al., 2019).
These amplitude fluctuations were related to the symptoms of
the impairment. Interestingly, optogenetic stimulation of PN in
the mPFC induced antidepressant-like effects in socially stressed
mice (Covington et al., 2010; Kumar et al., 2013; Carlson et al.,
2017). Similarly, optogenetic stimulation of prefrontal PN that
project to DRN to amygdala recovered depressive-like behavior
evaluated in the forced-swim test and social-interaction tests
(Warden et al., 2012; Challis et al., 2014; Vialou et al., 2014). Of
relevance, stimulation of prefrontal afferents to striatum recovered
decision-making deficits induced by chronic stress (Friedman et al.,
2017), suggesting that specific brain stimulation in the mPFC may
recover cognitive control impaired in chronic-stress models of
mood disorders (Biselli et al., 2021).

3.3 Prefrontal oscillations and functional
connectivity in schizophrenia

Schizophrenia (SZ) is a severe mental disorder characterized by
aberrant thoughts and behaviors. According to the WHO, it affects
nearly 1% of the global population, reaching 21 million people
worldwide (World Health Organization, 2012). SZ is most frequent
in males, and the initial manifestation of the disease commonly
appears in early adulthood (Häfner and an der Heiden, 1997).
According to DSM-V (American Psychiatric Association, 2013) SZ
is characterized by three main symptomatologic features: positive
symptoms, which include delusion, paranoia and hallucinations;
negative symptoms, such as abulia, alogia, anhedonia and avolition;
and cognitive symptoms, manifested as an impairment on working
memory, set-shifting, long-term memory recall, and selective
attention (Goldman-Rakic, 1994; Hepp et al., 1996; Gold et al.,
1997; Gallinat et al., 2004; Senkowski and Gallinat, 2015). These
cognitive symptoms can be categorized as a detriment of executive
control, in which the impairment in several forms of cognitive
control have been considered as one of the most consistent, leading
to the emergence of perseverative behaviors (Ridley, 1994; Crider,
1997; Lanser et al., 2002; Waltz, 2017). Thus, the deficit of cognitive
control appears to be a hallmark of schizophrenia (Lesh et al., 2011).

Early neuroimaging investigations reported a decrease in the
activation of the PFC in SZ patients (Ingvar and Franzén, 1974;
Andreasen et al., 1992). Several of these findings have been largely
replicated during the last decades (Shenton et al., 2001; Pomarol-
Clotet et al., 2010; Penner et al., 2016). Importantly, reduced
PFC activation has been correlated with impaired prefrontal-
dependent cognitive operations in SZ (Perlstein et al., 2001,
2003). Thus, cognitive dysfunction observed in SZ is consistent
with a deterioration of prefrontal function (Smucny et al., 2022).
Structural connectivity analysis in SZ patients have revealed specific
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reduction of connectivity within the PFC and between the PFC with
distributed structures (Kubicki et al., 2007). Prefrontal intrinsic
connectivity is correlated with negative symptom (Hoptman
et al., 2002; Wolkin et al., 2003) and decreased frontal-temporal
connectivity is correlated with impairments in executive functions
and memory (Kubicki et al., 2002, 2003). At a cellular level,
postmortem studies revealed cytoarchitectonic alterations in the
PFC of SZ, such as fewer dendritic spines in PN (Garey et al.,
1998; Glantz and Lewis, 2000) reduction of neuropil (Selemon
et al., 2004) and reduction of the mean clustering distance between
cells (Casanova et al., 2008). Given its functional relevance, one of
the most important post-mortem findings has been the reduction
of the density of IN (Benes and Berretta, 2001) and GAD67
expressing cells in the PFC of SZ patients (Guidotti et al., 2000;
Volk et al., 2000). Similar findings have been consistently found in
several following postmortem studies (Beasley and Reynolds, 1997;
Hashimoto et al., 2003, 2008; Bristow et al., 2015). Considering the
role of INs in the emergence of brain oscillations, is not surprising
that SZ patients displays aberrant oscillatory activity in the PFC
(Uhlhaas and Singer, 2010; Senkowski and Gallinat, 2015; Hunt
et al., 2017). Initial evidence reported an impairment in gamma
oscillations. Specifically, it was found that the amplitude of gamma
oscillations increased in the PFC of healthy controls when subjected
to cognitive demands, effect not observed in SZ patients, which
correlated with cognitive performance (Haig et al., 2000; Gallinat
et al., 2004; Cho et al., 2006; Basar-Eroglu et al., 2007). This
effect is observed in first episode SZ patients and is independent
of medication status (Minzenberg et al., 2010). Importantly, the
prefrontal cognitive-related impairment of gamma oscillations is
the most consistent neurophysiological finding reported in SZ
(Uhlhaas and Singer, 2010, 2013). This impairment of gamma is
also observed at large-scale synchronization. For example, gamma
synchronization between PFC and visual cortex is decreased in
SZ patients, which correlated with the clinical state (Hirvonen
et al., 2017). Interestingly, it has been found an increase of gamma
oscillations during resting state in SZ patients (Boyden et al.,
2005; Rutter et al., 2009; Kikuchi et al., 2011; Spencer, 2011;
Andreou et al., 2015b; Grent-’t-Jong et al., 2018). This evidence
suggests a difficulty to engage prefrontal gamma oscillations in SZ
patients when it is required for cognitive control. Additionally,
recent work has also found disturbances in theta oscillations in
SZ patients. Similarly as for gamma oscillation, the impairment
is evidenced as a decrease of prefrontal theta when the subject
face cognitive challenge, such as working memory (Schmiedt et al.,
2005; Griesmayr et al., 2014). Contrarily, it is observed an increased
theta during resting state (Andreou et al., 2015a; Di Lorenzo et al.,
2015). This impaired theta is also observed in long-range prefrontal
coupling with distributed structures (Adams et al., 2020). In the
same line, the increase of prefrontal theta-gamma- and delta-
gamma CFC correlated with cognitive performance in healthy
controls is not observed in SZ patients (Griesmayr et al., 2014;
Missonnier et al., 2020). Therefore, the accumulated evidence
suggests an impairment of gamma and theta oscillations, and in the
interaction between these oscillation, in the PFC of SZ patients.

To date, several postulates have been developed to explain
the neuropathology of SZ, as dopaminergic dysfunction
(Knable and Weinberger, 1997), dysregulation of the
excitatory/inhibitory balance (Lewis et al., 2005), and impaired
cortical neurodevelopment (Garey, 2010). The combination of T
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these hypotheses into an integrative vulnerability-stress model
(known as a “two-hit model”), which combines genetic with
pre- and postnatal environmental factors, has become one of
the most accepted postulates for the development of SZ, which
also reveals the complexity and interaction of several factors in
its physiopathology (Bayer et al., 1999; Davis et al., 2016). Thus,
considering these hypotheses, together with the most relevant
factors for the development of SZ, several rodent models have
been developed (Table 1), in which cognitive impairments are
usually evident (Lipska and Weinberger, 2000; Marcotte et al.,
2001; Jones et al., 2011; Winship et al., 2019; Speers and Bilkey,
2021). For example, neurodevelopmental models, such as prenatal
administration of methylazomethanol (MAM) (Lodge and Grace,
2009) display impairments in several cognitive functions, including
cognitive control (Kállai et al., 2020). In the same line, models of
impaired E/I balance, as the adolescent-ketamine administration
model (Becker et al., 2003) display impaired behavioral flexibility
(Floresco et al., 2009; Zonneveld et al., 2019). Finally, genetic
models that replicate genetic susceptibility, as the transgenic
models Dlx5/6+/− and Df(16)A+/−, display impairment in
working memory, behavioral flexibility and inhibitory control
(Sigurdsson et al., 2010; Del Pino et al., 2013; Cho et al., 2015).

Rodent models of SZ replicate several neurophysiological
features found in patients. For example, it have been found a
reduced number of PV-INs in the mPFC in the MAM model
(Lodge et al., 2009). Similarly, ketamine-treated rats during
adolescence showed a reduced expression of GAD67 in PV-INs
and a decreased GABAergic neurotransmission (Pérez et al., 2019).
Similar impairment in inhibitory synaptic transmission has been
observed in genetic transgenic mouse models (Fénelon et al., 2013).
These results suggest impaired inhibitory neurotransmission in the
mPFC of SZ rodent models (Lewis et al., 2005; Lewis, 2012; Del
Pino et al., 2013; Cho et al., 2015; Dienel and Lewis, 2019; Sauer
and Bartos, 2022). Cortical GABAergic INs are relevant for the
emergence of several cortical oscillations (Buzsáki and Draguhn,
2004). Therefore, it is not surprising that animal models of SZ
displays aberrant oscillatory activity in the PFC (Uhlhaas and
Singer, 2010; Senkowski and Gallinat, 2015; Hunt et al., 2017).
Several of these prefrontal oscillatory alterations observed in SZ
patients have been also found in animal models of SZ (Speers
and Bilkey, 2021). For example, it have been observed decreased
prefrontal gamma oscillations in models of impaired E/I balance
(Pinault, 2008; Ahnaou et al., 2017; Ma et al., 2018), in the
MAM neurodevelopmental model (Lodge et al., 2009) and the
genetic models as Dlx5/6+/−, DISC1-mutant mice and Arc/Arg3.1
deficient mice (Cho et al., 2015; Gao et al., 2019; Sauer and Bartos,
2022). Interestingly, baseline gamma oscillation was increased in
the mPFC of MAM and Dlx5/6+/− models but was decreased in
relationship to behavioral flexibility and inhibitory control (Lodge
et al., 2009; Cho et al., 2015). Also theta oscillations in the mPFC
are impaired in rodent models of SZ. For example, decreased task-
evoked theta oscillations in the mPFC was found in the MAM
neurodevelopmental model (Lodge et al., 2009). Similarly, it was
found reduced theta power in the mPFC of Arc/Arg3.1 deficient
mice (Gao et al., 2019). This impairment in theta has also observed
in the long-range coordination of the mPFC with the HPC in
several rodent models of SZ (Sigurdsson et al., 2010; Del Pino
et al., 2013; Dickerson et al., 2014). Importantly, this impaired
synchrony correlated with impairment in cognitive performance

(Sigurdsson et al., 2010). Of relevance, synchronization of spiking
of prefrontal neurons by prefrontal theta and gamma oscillations
is impaired in these rodent models of SZ (Sigurdsson et al., 2010;
Sauer and Bartos, 2022). If this impaired oscillatory coordination
of prefrontal neurons impact in the emergence of NAs representing
relevant cognitive features is still unknown. Interestingly, it has
been found disorganization of NAs in the visual cortex of ketamine
and Df(16)A+/− models of SZ (Hamm et al., 2017).

The recovery of altered prefrontal oscillation has been
considered an opportunity for treatment in SZ patients. However,
prefrontal stimulation is SZ patients at gamma frequency produced
mixed results (Barr et al., 2011; Hoy et al., 2015; Haller et al., 2020).
These differences may rely in the limited spatial, temporal, and cell-
type specificity of brain stimulation tools used in patients (Cho
and Sohal, 2014). Therefore, optogenetic stimulation in animals
models seems a reliable tool to investigate this issue. It has been
found that optogenetic stimulation of PV-INs at gamma-frequency
in the mPFC recovered the behavioral flexibility observed in rodent
models of SZ (Cho et al., 2015; Patrono et al., 2023). This evidence
give supports the role of emerging prefrontal activity patterns in SZ.

Altogether the body of work reviewed here describe
characteristics of rodent models that implicate alterations of
PFC function in impaired cognitive control and compare well with
human symptomatology in diseases and during the course of aging
that affect cognitive control.

4 Concluding remarks and
perspectives

In this review, we presented and discuss current bibliographic
evidence suggesting that cognitive control is altered in normal
cognitive decline and pathological mental conditions. We also
presented bibliographic evidence showing that cognitive control
of behavior is supported by the PFC, a structure that integrates
relevant information for the generation of adaptive behavioral
responses in a goal-directed manner. Importantly, from studies
in rodent animal models, it is suggested that cognitive control
is mechanistically supported by particular neural activity patterns
in the mPFC, such as NA and brain oscillations, which originate
from different levels of spatio-temporal interactions among neural
components. Finally, both in patients and animal models, the
evidence suggests a robust relationship between aberrant oscillatory
activity and impaired cognitive control of behavior observed in
normal cognitive decline and pathological mental conditions, such
as those observed during aging, mood disorders and schizophrenia.

The collected evidence from human studies suggests that
a common phenomenon across normal cognitive decline
and pathological metal conditions is an abnormal oscillatory
activity in the PFC associated with impaired cognitive control.
However, given that the evaluation of micro- and mesoscale
mechanisms underlying cognitive control is difficult to approach
in human subjects, the utilization of animal models is crucial for
understanding primary cause and, therefore, for the development
of efficient therapeutic and preventive strategies. Importantly,
research performed in animal models has offered relevant
evidence about the neuronal and network mechanisms supporting
oscillatory activity in the PFC required for cognitive control.
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Thus, from research in animal models, we suggest a mechanism
that integrates research from human patients with data obtained
from animal models (schematic diagram in Figure 1B). Particular
etiological factors (congenital, environmental, etc.,) affect the
organization of prefrontal neural network and its connectivity with
distributed neural populations. This induce local and large-scale
impairment in functional connectivity, which is macroscopically
manifested as abnormal oscillatory activity in the PFC. Thus,
the formation, updating, consolidation and activation of NAs
representing relevant cognitive features in the PFC are impaired,
hindering the adaptive accommodation of behavioral responses
according to internal and environmental conditions. Ultimately,
these phenomena manifest as perseverative behaviors, as observed
in normal cognitive decline and pathological mental conditions.

Considering that the long-term effectivity of current
pharmacological treatment for normal and pathological mental
conditions is unclear (Barbui et al., 2009), we propose that
upcoming therapeutic strategies should be focused on the re-
establishment of prefrontal neural activity patterns, together with
their coupling with large-scale structures. Therapeutic strategies
based on non-invasive brain stimulation, such as repetitive
transcranial magnetic stimulation (rTMS) and transcranial direct
current stimulation (tDCS), seems to be a promising choice
(Regenold et al., 2022). However, the outcome of these therapeutic
strategies is mixed, in part due to a lack of understanding of
how rhythmic stimulation interacts with ongoing brain dynamics
(Sreekumar et al., 2017). Therefore, understanding of the neural
processes involved in the implementation of cognitive control
is central to the successful implementation of preventive and
therapeutic strategies.
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