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Phase relations of interneuronal
activity relative to theta rhythm

Ivan Mysin*

Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of

Russian Academy of Sciences, Pushchino, Russia

The theta rhythm plays a crucial role in synchronizing neural activity during

attention andmemory processes. However, themechanisms behind the formation

of neural activity during theta rhythm generation remain unknown. To address this,

we propose a mathematical model that explains the distribution of interneurons in

the CA1 field during the theta rhythm phase. Our model consists of a network of

seven types of interneurons in the CA1 field that receive inputs from the CA3 field,

entorhinal cortex, and local pyramidal neurons in the CA1 field. By adjusting the

parameters of the connections in the model. We demonstrate that it is possible to

replicate the experimentally observed phase relations between interneurons and

the theta rhythm. Our model predicts that populations of interneurons receive

unimodal excitation and inhibition with coinciding peaks, and that excitation

dominates to determine the firing dynamics of interneurons.

KEYWORDS

CA1field, short-termplasticity, conductance-based refractory density approach, gradient

descent, leaky integrate-and-fire (LIF) model

1. Introduction

The hippocampus is a brain structure that plays a key role in the processes of attention
and memory. To process information, neural ensembles in the hippocampus need to be
synchronized with rhythms. The main rhythm that organizes the neural activity of the
hippocampus during cognitive tasks is the theta rhythm (4–12 Hz) (Vinogradova, 1995;
Buzsáki, 2002; Buzsáki and Moser, 2013). Almost all hippocampal neurons are modulated
by theta rhythm (Mizuseki et al., 2009). This is expressed in the fact that each population
has a theta rhythm phase, in which the probability of discharges of its neurons is maximal.
Modulation of neuronal activity by rhythm makes it possible to synchronize different areas
of the hippocampal formation during information processing (Fries, 2015; Nuñez and Buño,
2021; Mysin and Shubina, 2022). In addition, the theta rhythm provides an ordered structure
of the place cell activity due to phase precession (Burgess and O’Keefe, 2011; Jaramillo and
Kempter, 2017). Thus, understanding themechanisms of theta rhythm formation is themost
important problem of neuroscience.

Our study has two aims. The first aim is to explain the effect of modulation of the firing
rate of the interneurons of the CA1 field by the theta rhythm. The second aim is to adapt the
optimization methods of spike network models to describe experimental data.

The mechanisms of formation of phase relations of interneuronal activity and theta
rhythm are unknown. Several theoretical studies have investigated the formation of phase
relations between neurons of the CA1 field and theta rhythm (Bezaire et al., 2016; Mysin,
2021). Despite the detailed nature of these models, the authors were unable to reproduce
the form of distribution of most types of interneurons in the theta rhythm phase. The
main problem in constructing a model of the distribution of neurons by theta rhythm
phases is to identify the mechanism of stabilization of antagonistic relationships between
different populations of interneurons. For example, parvalbumin-containing (PV) and
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cholecystokinin-containing (CCK) basket neurons inhibit each
other and fire at opposite phases of the theta rhythm (Lasztóczi
et al., 2011; Royer et al., 2012; Varga et al., 2012; Bezaire and Soltesz,
2013; Somogyi et al., 2014). It is difficult to choose the parameters
of connections when these neurons form a stable antiphase activity.
Most often, one of the populations completely inhibit the other.
When considering a larger number of interneuron populations, the
problem becomes much more complicated (Bezaire et al., 2016;
Mysin, 2021).

We hypothesized that short-term synaptic plasticity stabilizes
the structure of interneuronal activity. In a recent study, the authors
of the project Hippocampome.org provide a large meta-analysis of
data on short-term synaptic plasticity in the hippocampus (Moradi
et al., 2022). We used the estimates of this study as the basis
of our model. We have considered the mechanism of formation
of phase relations for populations of interneurons of the CA1
field. The CA1 field was chosen because there is the greatest
amount of data on interneuron activity for this region of the
hippocampus. We modeled seven populations of interneurons: PV
(pvbas) and CCK (cckbas) basket, axo-axonal (aac), OLM (oriens-
lacunosum moleculare) (olm), Ivy (ivy), and neurogliaform (ngf)
and bistratified (bis) neurons. These populations were selected
because the phase relationships for them are described (Somogyi
and Klausberger, 2005; Fuentealba et al., 2010; Lapray et al., 2012;
Varga et al., 2012). Neurons in these populations make up ∼70%
of all interneurons in the CA1 field (Bezaire and Soltesz, 2013). We
also took into account inputs from pyramidal neurons of the CA3
and CA1 fields, as well as from neurons of the third layer of the
entorhinal cortex. We were able to select the parameters of neurons
and connections in the model and found a good description of the
mechanisms of phase relations.

Considering a network of seven populations requires setting
up several hundred parameters. This makes it impossible to apply
gradient-free optimization methods. We were able to adapt the
model to apply gradient descent optimization. This approach can
be applied tomodeling problems of other experimental phenomena
in neural networks of the brain.

2. Materials and methods

2.1. Models of neurons

We consider a network of seven populations (Figure 1). The
neurons of each population are described by the leaky integrate-
and-fire (LIF) model. We used simulations using the conduction-
based refractory density (CBRD) approach (Section 2.3) and direct
stimulation of neurons with noise input (Monte Carlo). In this
section, we will only describe the equations used. In Section 3.1,
we will discuss in detail the motivation for using each approach for
modeling. Monte Carlo simulations were provided with equations
as follows:

Cm
dV

dt
= gL(EL − V)+ Iext +

∑

Isyn + σm · η(t)

if V > VT
: V = Vreset

(1)

Here, Cm is the membrane capacitance, V is the membrane
potential, gL is the leak conductance, EL is the leak reverse potential,

FIGURE 1

Model architecture. Hippocampal CA1 microcircuit is simulated. Cell

types and their connectivity are shown. ca3pyr, pyramidal neurons

of the CA3 field; ca1pyr, pyramidal neurons of the CA1 field; ec3,

principal neurons of the 3 layer of the entorhinal cortex; pvbas, PV

basket cells; olm, Oriens-lacunosum molecular cells; cckbas, CCK

basket cells; ivy, Ivy cells; ngf, neurogliaform cells; bis, bistratified

cells; aac, axo-axonal cells. Neurons of the third layer of the

entorhinal cortex and pyramidal neurons of the CA3 and CA1 fields

are not simulated explicitly. They were taken into account as

external inputs to the model. All interneurons are simulated with the

LIF model.

Iext is the external current, and Isyn is the synaptic current. σm is
the standard deviation of noise η ∼ N (0, 1). For all neurons in
all simulations, we used following values: Cm = 1 µF/cm2, gL =
0.1 mS/cm2, EL = −60 mV , VT = −50 mV , Vreset =
−90mV , σm = 0.3 µA/cm2/

√
ms. Value Iext is optimized for each

population. After generating the action potential, the refractory =
3 ms. We used typical values used in simulations. The exact values
of the parameters can be viewed in the Hippocampome database
(Venkadesh et al., 2019)

Population frequency for Monte Carlo simulations as follows:

ν =
nfired

N · 1t
(2)

where nfired is the number of fired cell at each time step, N = 4, 000
is the full number of neurons in population, and 1t = 0.1 ms is
the integration step. We used the stochastic Heun method from the
brian2 package for Monte Carlo simulations (Stimberg et al., 2019).

2.2. Synapse model

Synapses were simulated with the Tsodyks—Markram model
(Tsodyks and Markram, 1997; Tsodyks et al., 1998; Moradi et al.,
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2022) as follows:

du

dt
= −

u

τf
+ Uinc · (1− u−) · w · νpre · dt (3)

dx

dt
=

1− x− y

τr
− u+x− · w · νpre · dt (4)

dy

dt
= −

y

τd
+ u+x− · w · νpre · dt (5)

Uinc is the increment of u produced by a spike. u−, x− are
variables just before the arrival of the spike, and u+ refers to the
moment just after the spike. From the first equation (Equation
3), u+ = u− + Uinc · (1 − u−). Variables y and x mean the
activated, deactivated, and recovered states, respectively, u is a
fraction of resource ready for use. After each presynaptic spike,
an instantaneous shift occurs from recovered to activated state.
The amount of shift is determined by u. The active resources,
then, decay to the deactivated state by the decay time constant
τd. Since synaptic resources are limited, the more resources stay
in the deactivated state, the more a synapse is depressed. Synaptic
resources exponentially recover from depression with the recovery
time constant τr . w is normalization coefficient, it makes sense
of the density of connections. νpre is firing rate of presynaptic
population. In Monte Carlo simulations νpre is defined by Equation
2, and in CBRD simulations, νpre is defined by Equation 9.
For each connection parameters Uinc, τd, τr , τf ,w, and gsyn,max are
optimized. We consider infinitely large populations of presynaptic
and postsynaptic neurons. In this context, variables mean the
averages of all synapses between two populations [for detail, see
Section 3 in Tsodyks et al. (1998)].

The synaptic current as follows:

Isyn = gsyn,max · y · (Esyn − V) (6)

where gsyn,max is maximal synaptic conductance and Esyn is reversal
potential for synaptic current. The connection probability inMonte
Carlo simulations is 0.5.

2.3. Conductance-based refractory density
approach

Conductance-based refractory density (CBRD) approach
simulates the distribution (ρ) of neurons in space-times after
spike generation (t∗) (Chizhov and Graham, 2007, 2008; Chizhov,
2017). The function ρ(t, t∗) is described by the transfer equation as
follows:

∂ρ

∂t
+

∂ρ

∂t∗
= ρH (7)

∫ ∞

0
ρ · dt∗ = 1 (8)

The function H is defined as the probability of a single neuron
to generate a spike when the mathematical expectation of the
neuronal state variables is known (Equation 11).

Population firing rate is defined as follows:

ν(t) ≡ ρ(t, 0) =
∫ ∞

0
ρ ·H · dt∗ (9)

Population firing rate is determined by the probability of
finding a neuron in the state of spike generation (t∗ = 0).

The CBRD approach consider neurons only according to t∗

variable. The state of each neuron is parameterized by this phase
variable. For LIF neuron, its only state variable is V . Neuron model
modified as follows:

Cm

(∂V

∂t
+

∂V

∂t∗

)

= gL(EL − V)+ Iext +
∑

Isyn (10)

The function H has two components A and B:

H =
A+ B

τM
(11)

A is the probability for a neuron to cross the threshold
because of noise, derived analytically in the study mentioned in
Chizhov and Graham (2007) and approximated by exponential
and polynomial functions for convenience. B is the probability of
dischange of a neuron during depolarization due to external input,
i.e., the hazard from drift in the voltage phase space. τM is time of
membrane:

τM =
gtot

Cm
(12)

Cm is capacity of membrane, gtot is total conductance of all
channels, and it is sum of gL and all synaptic conductances.

A = exp(0.0061− 1.12T − 0.257T2 − 0.072T3 − 0.0117T4) (13)

B = −
√
2 ·

[dT

dt

]

+
· FT · τM (14)

[z]+ is heaviside function:

[z]+ : =

{

0 if z ≤ 0;
1 if z > 1

(15)

T =
VT − V
√
2σm

(16)

where V is membrane potential, σm is the noise amplitude, and VT

is the threshold for spike generation. T is the membrane potential
relative to the threshold, scaled by noise amplitude.

dT

dt
=

−1
√
2σm

dV

dt
(17)

FT =
√

2/π · exp(−(T2))/(1+ erf (T)) (18)

where erf is Gauss error function. The function FT characterizes
the firing probability in the regime of fast changes of T.

All values for model are same as for Monte Carlo simulations.
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2.4. Numerical methods for CBRD
simulations

In general, the equations can be written as follows:

∂z

∂t
+

∂z

∂t∗
= Sz(t, t

∗) (19)

where z(t, t∗) is one of the functions ρ or V , and Sz(t, t∗) is the
source term of the equation.

Numerical scheme was taken from Harten and Osher (1987).
Numerical scheme is as follows:

zn+1
i = zni −

1t

1t∗

(

zni −zni−1+
1

2

(

1−
1t

1t∗

)

(wz
i −wz

i−1)
)

+1t ·(Sz)ni
(20)

n is index in time, and i is index in space.

wz
i = limiter(zi+1 − zi, zi − zi−1) (21)

limiter(a, b) =















0 if ab <= 0;
−min(0.5 |ab|, 2min(|a|, |b|)) if a < 0, ab > 0;
min(0.5 |ab|, 2min(|a|, |b|)) otherwise

(22)

2.4.1. Bound conditions
Bound values wz

0 = 0, wz
N = 0. Firing rate (left bound for ρ) is

calculated as follows:

ρn+1
0 = ρn

0 −
1t

1t∗
ρn
0 − 1t

N
∑

i=0

(Sρ)
n
i (23)

Left bound for V :

Vn+1
0 = Vreset (24)

Right bound for ρ:

ρn+1
N = ρn

N +
1t

1t∗

(

ρn
N−1+

1

2

(

1−
1t

1t∗

)

w
ρ
N−1

)

+1t · (Sρ)
n
N (25)

Right bound for V :

Vn+1
N = Vn

N + 1t(SV )
n
N (26)

1t = 0.1 ms, 1t∗ = 0.5 ms, and N = 400 is the
number of spatial states. All simulations using the CBRD approach
were performed with the TensorFlow package (version 2.10.0). All
gradients were calculated using automatic differentiation (Abadi
et al., 2015).

2.5. Target firing rates, inputs, and loss
function

Firing rate of inputs and target firing rate for simulated
populations as follows:

FRpop(t) =
FRmean,pop

I0(κpop)
· exp(κpop · (cos(2πωθ t − φpop))) (27)

where FRpop(t) is population firing rate in time in spikes/second.
FRmean,pop is mean population firing rate (spikes/second). κpop is
a measure of concentration of von Mises distribution, I0(κ) is a
zero order Bessel function. ωθ = 7 Hz is frequency of theta
rhythm, and φpop is peak phase of population firing. Parameters for
all populations are presented in Table 1. Authors of experimental
studies usually use R (ray length) as a measure of phase variation
rather than κ (Mardia and Jupp, 1999). κ is calculated from R with
following approximation (Mardia and Jupp, 1999):

κ(R) =















2 · R+ R3 + 5/6 · R5 if R < 0.53;
−0.4+ 1.39 · R+ 0.43/(1− R) if 0.53 ≤ R < 0.85;
1/(3 · R− 4 · R2 + R3) if R ≥ 0.85

(28)
Artificial inputs in Monte Carlo simulations are modeled as

Poisson generators with rate given by the Equation 27.
The loss function for estimating the discrepancy between the

simulation and the target function as follows:

Lsimulation =
K

∑

k=1

T
∑

tn=0

(ln(ρtarget(tn)+ 1)− ln(ρsimulated(tn)+ 1))2

(29)
Summation is carried out by time and all populations of

neurons. K = 7 is the number of populations in the model. T is
the number of time steps in the simulation.

The optimized parameters must be within certain bounds. In
particular, all parameters of synapses should be positive, and Uinc

should not exceed one. We have added barrier terms to the loss
function.

Lbarrier =
M

∑

m=1

(−0.001 · ln(100gsyn,max))+

+
M

∑

m=1

(−0.001 · ln(100τr))+

+
M

∑

m=1

(−0.001 · ln(100τf ))+

+
M

∑

m=1

(−0.001 · ln(100τd))+

+
M

∑

m=1

(−0.001 · ln(100Uinc))+

+
M

∑

m=1

(−0.001 · ln(100w))+

+
M

∑

m=1

(−0.001 · ln(100(1− Uinc))

(30)

Summarization is carried out for all synapses in the model. M =
49 M is the number of connections in the model.

Full loss function for optimization as follows:

Lfull = Lsimulation + Lbarrier (31)

We have used Adam optimizer with standard parameters:
learning rate = 0.001, β1 = 0.9, and β2 = 0.999 (Kingma and Ba,
2014).
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TABLE 1 Parameters of the target function.

Population R ωθ (Hz) FRmean (spike/second) φ (rad) Sources

ca3pyr 0.3 7.0 0.5 1.58 Mizuseki et al., 2009

ca1pyr 0.2 7.0 0.5 3.14 Mizuseki et al., 2009

ec3 0.2 7.0 1.5 -1.57 Mizuseki et al., 2009

pvbas 0.3 7.0 24 1.57 Lapray et al., 2012,
Varga et al., 2012,
Katona et al., 2014,
Somogyi et al., 2014

olm 0.3 7.0 30 3.14 Varga et al., 2012,
Katona et al., 2014,
Somogyi et al., 2014

cckbas 0.3 7.0 9.0 -1.57 Klausberger et al., 2005,
Somogyi et al., 2014

bis 0.3 7.0 27.0 3.14 Katona et al., 2014,
Somogyi et al., 2014

aac 0.3 7.0 29.0 0.0 Somogyi et al., 2014,
Varga et al., 2014

ivy 0.3 7.0 4.0 -1.57 Lapray et al., 2012,
Varga et al., 2012,
Somogyi et al., 2014

ngf 0.3 7.0 8.0 0.0 Sakalar et al., 2022

3. Results

3.1. Optimization of the model

We considered a network of biologically plausible networks
consisting of seven populations of interneurons. The graph of
connections is complex and contains 49 connections (Figure 1)
(Moradi et al., 2022). Excitatory inputs were not modeled as
neural populations but were taken into account artificial generators
(functions from time). Each synapse is described by six parameters
(Equations 3–5). We fit all these parameters. In addition, the
Iext parameter for each neuron population was fit in simulations
(Equation 1). Thus, we needed to tune 301 model parameters.
Our approach contains elements of novelty, so we will begin the
description of the results with a brief description of the formulation
and solution of the optimization problem.

We propose to fit the parameters by reducing the process of
building a model to solving the optimization problem. In other
words, it is proposed to find the optimal parameters of the model
so that it describes the experimental data in the best way. The
requirement to be able to configure numerous parameters makes
it impossible to use zero-order optimization methods. Gradient
estimation is possible by using automatic differentiation packages
(Tensorflow, Torch) (Abadi et al., 2015) or the adjoint state method
(Chen et al., 2019; Sun et al., 2020). However, these approaches
require direct computation of variables by which differentiationwill
be carried out.

The activity of neurons in the real brain is noisy. The vast
majority of experimental phenomena are obtained as a result
of averaging the activity of one or more neurons depending
on external stimuli or internal state. Modulation of neuronal
activity by theta rhythm is just one example. In other words,

the experimental phenomena of neural network dynamics are
empirical distributions. Modeling consists of describing the
parameters of distributions. In this context, direct simulation of
distributions is necessary to be able to estimate gradients.

We have used the population approach for modeling, since it
allows us to describe the population firing rate. As a population
approach, we chose the CBRD (conductance-based refectory
density) method (Chizhov and Graham, 2007, 2008; Chizhov,
2017). Direct simulation of the firing rate makes it possible
to estimate the gradient of the loss function from the model
parameters. All operators of the numerical scheme of the CBRD
model are differentiable, so automatic differentiation can be
applied (Section 2.4). Estimating the gradient of the loss function
makes it possible to apply gradient descent methods to optimize
model parameters (Equation 31). All simulations using the CBRD
approach were performed with the TensorFlow package, and
gradients were calculated using automatic differentiation (Abadi
et al., 2015). As initial conditions for optimization, we used the
average values of the parameters described in the study by Moradi
et al. (2022). We ran Monte Carlo simulations with the parameters
found using optimization. Monte Carlo simulations were used to
control of the accuracy of the CBRD approach.

We have introduced a target activity function for each
population (Equation 27). This function approximate experimental
data about modulation of neuronal activity by the theta rhythm.
It describes the population firing rate of each group of neurons
over time. The target function takes into account the average firing
rate and theta rhythm modulation. Theta rhythm modulation is
determined by the mean phase (circular average of the phases
of neuronal discharges) and the phase variation (ray length - R).
The population firing rate of excitatory inputs was described by
similarly functions (Equation 27).
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FIGURE 2

The results of model optimization. For each population, plots show the target function, and the population spike rate obtained with the CBRD

approach using Monte Carlo simulation. In total, 1 second of simulation is shown after stabilization of the model dynamic mode. The notation of

neurons is similar to Figure 1.

This approach has advantages and disadvantages. On the one
hand, population models are only applicable to simple models of
neurons. In our study, we used the LIF (leaky integrate-and-fire)
model (Equation 1). On the other hand, the use of gradient descent
allows optimization over a much larger number of parameters than
gradient-free methods.

3.2. Description of the model results

Figure 2 shows the optimization results. For each population,
the target function, the results of simulation using the CBRD
approach, and the results of Monte Carlo simulation with
optimal parameters are presented. The model under consideration
can approximate the target functions for all populations of
interneurons with significant accuracy. The simulation results
are in the confidence intervals of experimental estimates. The
model describes all the required characteristics of the experimental
data: the average spike rate, the average phase of the theta
rhythm, and the ray length (R). We also note a good agreement
between the results of Monte Carlo simulations and simulations

using the CBRD approach. In the next step, we looked at
how the model works. Figure 3 shows the dynamics of synaptic
conductivities in each neuron population. Both excitatory and
inhibitory conductivities have an unimodal distribution over the
theta cycle for all neuron populations, except neurogliaform
cells. An unexpected result is that the peaks of the excitatory
and inhibitory inputs coincide. This effect is observed for all
populations of neurons. The ratio of the total excitatory to
inhibitory conductivity remains approximately constant over the
theta cycle and ranges from 0.7 to 2.4 for different populations.
Since the reversion potential for AMPA receptors (0 mV) is much
further from the resting potential than the reversion potential
of GABA-A receptors (–75 mV). Excitatory currents dominate
over inhibitory ones and determine the dynamics of neuronal
discharges. For all neuron populations except axo-axonal ones, the
peak of excitatory input is located near the peak of firing rate. The
dynamics of axo-axonal neurons in the model is determined by the
external current (Supplementary Table S1). All optimal parameters
are given in Supplementary material.

We performed optimization for a similar network with
synapses without short-term plasticity. The results are presented
in the Supplementary material. For a part of neural populations
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FIGURE 3

Synaptic conductivities. Two theta cycles of the simulation using the CBRD approach are shown. Excitatory (upper series of plots) and inhibitory

(lower series of plots) conductivities are shown for each population. The color indicates presynaptic populations. Each plot shows the sum of

conductivities, “sum exc" and “sum inh" notes sum of excitatory and inhibitory conductivities, respectively. The notation of neurons is similar to

Figure 1.

(pvbas, olm, bis, and aac), it fits the parameters to describe phase
relations. However, the remaining populations are completely silent
(ivy, ngf, and cckbas). These results show that short-term plasticity
is a necessary element of the model for reproducing phase relations.

3.3. Generalizing power of the model

At the last stage of research, we tested the stability of the
found solution at other theta rhythm frequencies. We searched
for optimal parameters at a theta rhythm frequency of 7 Hz.
Figure 4 shows the results of simulations with varying theta
rhythm frequency. Figure 5 shows raster plots for a Monte Carlo
simulation with a theta rhythm frequency of 5 Hz. In this series
of computational experiments, we changed the frequencies of the
input populations. The model parameters were used that were
found earlier. Over the entire frequency range (4–12 Hz), the shape
of the distribution of neuronal activity over the theta rhythm phase
is preserved. The theta rhythm frequency is a parameter that varies
greatly in animal experiments, for example, it correlates with the
animal’s running speed (Hinman et al., 2011; Ledberg and Robbe,
2011; Long et al., 2014; Justus et al., 2017). The conservation of the
phase relations of interneuron activity with a change in the theta

rhythm frequency is an important property of our model. These
experiments can be considered as analogous to cross-validation
used in machine learning. In the language of machine learning, we
can say that our model shows good quality on the “test set”, i.e.,
samples that did not participate in the “training”.

4. Discussion

4.1. Assumptions and limitations of the
model

Our results are based on several key assumptions. We used
the von Mises function to describe the inputs and target activities
for interneurons (Equation 27). These assumptions of the model
are based on experimental data that more than 85% of pyramidal
neurons in the CA3 and CA1, three fields of the EC layer are
modulated by theta rhythm (Mizuseki et al., 2009). The proportion
of interneurons of the CA1 field modulated by the theta rhythm
is 95% (Mizuseki et al., 2009). The degree of phase modulation R
for all hippocampal neurons is in the range of 0.2–0.4; we used R
= 0.3 as the mean estimate. Binding phases for exciting inputs and
local interneurons of the CA1 field (Table 1) have been measured
in several experimental studies and are reliable (Klausberger et al.,
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FIGURE 4

Phase relations. Each plot shows the distribution of activity of neuronal populations by theta rhythm phase. The frequency of the theta rhythm was

set in the equations of the exciting inputs. All simulations were carried out with optimal parameters found at a theta rhythm frequency of 7 Hz.

Simulations were carried out using the CBRD approach (thick lines) and Monte Carlo (dashed line). The notation of neurons is similar to Figure 1.

2003; Somogyi and Klausberger, 2005; Mizuseki et al., 2009;
Somogyi et al., 2014). Our model takes into account the average
discharge frequencies of input populations and interneurons
(Table 1). We selected the values for simulations as the mean and
median values measured in the literature. The exact values of
the mean firing rate are not important in our context, since the
discharge frequency of the presynaptic population is linearly related
to the weight of the synaptic connection with the postsynaptic
population. In other words, a decrease in the firing rate of the
presynaptic population can be compensated by an increase in
synaptic conduction in postsynaptic neurons. For example, if a
neuron receives inputs from N neurons with a connection density
p, there areN·p synapses on it. IfN is decreased but p is increased by
the same number of times, the number of synapses will not change.
There is a coefficient w in the synapse model (Equations 3–5). It
takes into account the density of connections. We have optimized
the coefficient w, so the density of connections is indirectly taken
into account in the model. Thus, our model results describe the
network of the CA1 field up to normalization.

We used a homogeneous representation of each population of
interneurons. Recent studies show that interneurons are involved in
the formation of neural ensembles, i.e., their activity is modulated
by external stimuli (Geiller et al., 2022). However, a study of
simultaneous registration of a large number of interneurons

of different classes shows that cells of all classes are active
simultaneously for times of hundreds of milliseconds (Geiller et al.,
2020). Thus, it is reasonable to assume that a significant proportion
of neurons in each population is active at the same time. Notably,
the effect of simultaneous activity of interneurons of different
populations is observed, despite the inhibitory connections of
populations between each other (Bezaire and Soltesz, 2013). Our
model reproduces this effect well. Due to the homogeneity of
each population, we used the same number of neurons in direct
simulations. Interneurons are unevenly distributed across classes.
For example, population of Ivy neurons are six times larger than
axo-axonal cells (Bezaire and Soltesz, 2013). A representative
representation of neurons would not improve the accuracy of the
model, but it would increase computational costs. We did not take
into account the input to themodel from themedial septum. Recent
studies show that the strongest rhythmic input from the septum
goes to the interneurons of the CA3 field and the entorhinal cortex
(Joshi et al., 2017; Unal et al., 2018; Viney et al., 2018). Other data
demonstrate the importance of input from the CA3 field and the
entorhinal cortex to the CA1 field for theta rhythm in it (López-
Madrona et al., 2020; Zutshi et al., 2022). Together, these results
lead to the hypothesis that the theta rhythm in the CA1 field
results from secondary rhythmic inputs rather than direct input
from the medial septum. There are two significant limitations of
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FIGURE 5

Raster plots for Monte Carlo simulation with the theta rhythm frequency of 5 Hz. For each population, only 1,000 neurons are shown, but 4,000

neurons are simulated. The dashed line is reference cos. The notation of neurons is similar to Figure 1.

our model. The first is usage of the LIF model of neurons. Most
types of interneurons have slow potassium channels (Bezaire et al.,
2016; Komendantov et al., 2019), which can make a significant
contribution to the frequency of neuronal discharges due to spike-
frequency adaptation. OLM neurons have pronounced H-currents
(Saraga et al., 2003), which can also make a significant contribution
to the impulsing of these neurons due to depolarization or resonant
properties (Avella Gonzalez et al., 2015). The usage of the LIF
model is dictated by a limitation of the population approach.
We did not explicitly simulate pyramidal neurons of the CA1
field due to the limitations of the population method. Different
classes of interneurons have entrances to different compartments
of pyramidal cells. The correct inclusion of pyramid neurons in the
network requires the use of multicompartment models to describe
them. The problem of finding optimal synaptic inputs to pyramidal
neurons can be solved separately.

The second limitation is that we did not take into
account all populations of interneurons. This limitation
is based on the weak knowledge of other populations of
interneurons. The lack of data makes it impossible to
include other populations in the model. Accounting for more
populations can change the balance of inhibition and shift
its peak.

4.2. Comparison with other models

The literature presents several attempts to explain the phase
relations between neurons and theta rhythm. The key idea of
the research is to determine the optimal structure of the input
from the medial septum and excitatory inputs (Cutsuridis et al.,
2010; Cutsuridis and Hasselmo, 2012; Cutsuridis and Poirazi, 2015;
Bezaire et al., 2016; Mysin et al., 2019; Mysin, 2021). Our results do
not negate the contribution of external inputs but rather dismantle
an additional mechanism for stabilizing phase relations. Models
with a few interneuron populations give a good approximation of
the distribution of neurons in theta rhythm phases due to input
from the medial septum (Cutsuridis et al., 2010; Mysin et al., 2019).
However, with an increase in the number of interneuron classes
in models, the quality of the approximation of phase relations
decreases (Cutsuridis and Poirazi, 2015; Bezaire et al., 2016; Mysin,
2021). Although in the cited studies, the authors used a different
input structure. We believe that taking into account the detailed
structure of the inputs to the CA1 field in the model is not sufficient
to explain the phase relations of interneurons. In this study, we
have shown that the short-term plasticity of synapses between
populations of interneurons may be the missing component in the
stabilization of phase relationships.
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4.3. Comparison of simulation results with
experimental data

The main result of our study is an unimodal distribution of
excitation and inhibition with coinciding peaks for most types
of interneurons. Checking this fact is a complex experimental
task. In the literature, there is a study of synaptic currents on
PV basket and OLM neurons during theta rhythm generation in
hippocampal slices (Huh et al., 2016). The authors also found that
unimodal excitation and inhibition coincided in time. The peak
of inhibition occurred 12 ms after the peak of excitation for PV
basket neurons and 7 ms after the peak of arousal for OLM neurons
(Huh et al., 2016). We used experimental data in vivo as the basis
for our model; therefore, comparison with data on hippocampal
preparations is limited.

4.4. Prospects for applying population
model optimization

Several attempts have been made in the literature to optimize
networks of spiking neurons (Lee et al., 2016; Wunderlich and
Pehle, 2021; Zenke and Vogels, 2021; Ramezanian-Panahi et al.,
2022). However, these studies are aimed at finding practical
applications in the field of data analysis not brain modeling. These
approaches are not directly applicable for building a model in
neuroscience. The activity of real individual neurons is noisy. The
vast majority of experimental phenomena are obtained as a result
of averaging the activity of one or several neurons, depending on
external stimuli or internal state. The phase relations of neuronal
activity are one of the many examples. Another example is place
cells. This phenomenon can be described as the distribution
of neuronal activity depending on the position of the animal.
Phase precession of place cells is the distribution of neuronal
activity depending on the position of the animal and the phase
of the theta rhythm. Population models describe physiological
phenomena in the language of distributions. Modeling complex
systems require numerous equations and parameters. Projects such
as the Human Brain Project or the Hippocampus Project aim
to model the brain by collecting and organizing parameters for
equations (Wheeler et al., 2015; Bjerke et al., 2018). Optimization
of population models can well complement the processes of
collecting parameters. The development of the mathematical
apparatus of population models may be one of the reasons
for a breakthrough in the construction of large-scale models of
the brain.

4.5. General remarks

Our model shows a possible mechanism for the formation
of phase relations between interneurons and theta rhythm in
the CA1 field. We assume that a similar mechanism operates in
other areas of the hippocampal formation. The establishment of
phase relationships among interneurons leads to the coupling of
principal neurons to the phase of the theta rhythm. Rhythmic

inputs to the principal neurons creates oscillations of local field
potential (Buzsáki et al., 2012; Einevoll et al., 2013). This, in turn,
synchronizes the regions of the hippocampus with each other
through the projections of principal neurons, which is necessary
for the transmission of information (Bastos et al., 2015; Mysin and
Shubina, 2022). Synchronization of hippocampal regions creates
a capability for the formation of phase precession (Burgess and
O’Keefe, 2011; Fernández-Ruiz et al., 2017; Zutshi et al., 2022).
Another result of the synchronization of different areas of the
hippocampus is the emergence of coupling of theta and gamma
rhythms. For example, a slow gamma rhythm is formed in a
feedback loop between PV basket and principal neurons (Colgin
and Moser, 2010; Buzsáki and Wang, 2012). In the CA1 field,
excitation from the CA3 field is necessary for the formation of a
slow gamma rhythm (Colgin, 2015; Fernández-Ruiz et al., 2017).
PV basket neurons CA1 have a peak of discharges in the descending
phase of theta rhythm, and the input from field CA3 falls into the
same phase (Mizuseki et al., 2009; Belluscio et al., 2012). Therefore,
a model that reproduces phase relationships with respect to the
theta rhythm will have a good predictive ability with respect to
other phenomena associated with the theta rhythm. Identification
of the mechanisms of formation of the dynamics of the activity
of interneurons during the generation of the theta rhythm is
important for understanding the processing of information and the
formation of hippocampal rhythms.
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