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Transitioning between gravitational environments results in a central

reinterpretation of sensory information, producing an adapted sensorimotor

state suitable for motor actions and perceptions in the new environment.

Critically, this central adaptation is not instantaneous, and complete adaptation

may require weeks of prolonged exposure to novel environments. To mitigate

risks associated with the lagging time course of adaptation (e.g., spatial

orientation misperceptions, alterations in locomotor and postural control, and

motion sickness), it is critical that we better understand sensorimotor states

during adaptation. Recently, efforts have emerged to model human perception

of orientation and self-motion during sensorimotor adaptation to new gravity

stimuli. While these nascent computational frameworks are well suited for

modeling exposure to novel gravitational stimuli, they have yet to distinguish

how the central nervous system (CNS) reinterprets sensory information from

familiar environmental stimuli (i.e., readaptation). Here, we present a theoretical

framework and resulting computational model of vestibular adaptation to gravity

transitions which captures the role of implicit memory. This advancement

enables faster readaptation to familiar gravitational stimuli, which has been

observed in repeat flyers, by considering vestibular signals dependent on the new

gravity environment, through Bayesian inference. The evolution and weighting of

hypotheses considered by the CNS is modeled via a Rao-Blackwellized particle

filter algorithm. Sensorimotor adaptation learning is facilitated by retaining a

memory of past harmonious states, represented by a conditional state transition

probability density function, which allows the model to consider previously

experienced gravity levels (while also dynamically learning new states) when

formulating new alternative hypotheses of gravity. In order to demonstrate our

theoretical framework and motivate future experiments, we perform a variety

of simulations. These simulations demonstrate the effectiveness of this model

and its potential to advance our understanding of transitory states during which

central reinterpretation occurs, ultimately mitigating the risks associated with the

lagging time course of adaptation to gravitational environments.
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1. Introduction

In humans, exposure to a new gravity environment results in
a central reinterpretation of information from multiple sensory
sources, producing an adapted sensorimotor state appropriate for
motor actions and spatial orientation perceptions in the new
environment (Clark, 2019). However, the temporal evolution of
this central adaptation is not instantaneous, and it can take weeks
of prolonged exposure to novel environments for adaptation to
complete (Roll et al., 1993; Mulavara et al., 2010; Wood et al.,
2015).

In the case of astronauts newly exposed to microgravity,
the lagging time course of adaptation results in perceptual and
functional deficits, including spatial orientation misperceptions
and alterations in locomotor and postural control (Clément
and Reschke, 2008). This sensorimotor impairment can impact
crewmembers’ ability to perform mission-critical operational
tasks such as piloting vehicles and operating other complex
systems (Paloski et al., 2008). Further, it is thought that space
motion sickness (SMS) is largely driven by an adapting central
nervous system (CNS) incorrectly expecting self-orientation
sensory information for vestibular signals of self-motion (Oman,
1982; Lackner and DiZio, 2006). Concerning SMS, symptoms
often exceed mere discomfort (Oman, 1987; Davis et al., 1988;
Heer and Paloski, 2006), and the risk of nausea and emesis
dictates operational schedules and extravehicular activity timelines
(Jennings, 1998). Further, sensorimotor adaptation to changing
gravitational stimuli also occurs when exiting the microgravity
environment [e.g., transitioning to the Earth, Lunar (Clark,
2022), and Martian surfaces], leaving crewmembers once again
maladapted and presenting an expected hinderance to future space
exploration missions.

To mitigate these risks, it is critical that we better understand
transitory central states during which central reinterpretation
occurs. With only a conceptual understanding of this adaptation
process, we cannot make the operational decisions (e.g., timing
of extravehicular activities) necessary to ensure the safety and
performance of the crew. To this end, a computational model
of human perceptions of self-motion emulating sensorimotor
adaptation to new gravity stimuli is needed. Such a model of the
CNS enables evaluating perceptual changes, assessing operational
risks, and ultimately implementing appropriate countermeasures.
Recently we developed a computational model of the neural
mechanisms that may be necessary to adapt to altered gravity
environment. As detailed below, this approach used fixed parallel
alternative hypotheses for the magnitude of gravity, the resulting
sensory conflict for each, and Bayesian updates to drive adaptation
but did not include a means to develop, update, or retain
alternative hypotheses for the magnitude of gravity (Kravets et al.,
2021). As an initial step to address this limitation, we have
since enhanced the modeling framework to include the ability
to dynamically learn new hypotheses of gravity (Kravets et al.,
2022). However, this initial implementation was naïve to any
prior internal estimate history. The work presented here extends
the computational means by which the CNS may dynamically
learn and consider alternative hypotheses of gravity by modeling
learned states consolidated into implicit memory from prior
adaptations.

1.1. Background

Our perception of orientation in three-dimensional space is
the result of the complex interaction between our body’s real-
world dynamics and our central estimation of these dynamics.
Our inertial orientation and self-motion are primarily sensed
by noisy sensors in the inner ear (i.e., semi-circular canals and
otolith organs), which generate sensory afference. To make sense of
these noisy, sometimes ambiguous measurements, our brain relies
on internal models of sensory dynamics that generate expected
afference (Merfeld et al., 1993, 1999; Merfeld and Zupan, 2002;
Tin and Poon, 2005). When there are disparities between actual
and expected afference, vestibular “sensory conflict” arises, which
is thought to drive dynamic updates of the states in the internal
model (Oman, 1982; Oman and Cullen, 2014). Studies by Roy and
Cullen (2004), Brooks and Cullen (2009), and Jamali et al. (2009)
have identified neurons which differentially respond to passive
vs. active (i.e., where the brain can generate appropriate expected
afference) self-motion (specifically the behavior of “Vestibular
Only” neurons) in the vestibular nuclei and cerebellum. These
responses are analogous to the hypothesized sensory conflict signal
within the observer framework. Apart from the vestibular sense,
sensory conflict is also thought to reside in other sensory systems
[e.g., “residual error” signals found in the visual cortex within the
“predictive coding” framework (Srinivasan et al., 1982; Rao and
Ballard, 1999; Huang and Rao, 2011)].

To formalize and quantitatively describe these theories,
computational models such as the “observer” model of spatial
orientation perception have been developed (Merfeld et al., 1993;
Merfeld and Zupan, 2002; Karmali and Merfeld, 2012; Clark et al.,
2019). Observer uses sensory conflict signals to drive central
estimates of orientation perception by comparing noisy sensory
measurements to expected afference signals, based on internal
model computations (Brooks et al., 2015; Carriot et al., 2015).
Observer has been experimentally shown to predict self-orientation
and motion perceptions in a variety of Earth 1 g (Merfeld et al.,
1993; Haslwanter et al., 2000; Zupan et al., 2000; Newman, 2009),
hyper-gravity (Clark et al., 2015b,c), and hypo-gravity (Clark
and Young, 2017; Galvan-Garza et al., 2018) motion paradigms.
However, the observer model does not treat the magnitude of
gravity as a dynamic parameter but instead as a fixed one. In
general, these model parameters represent neural circuitry of spatial
orientation perception in a static 1 g environment where adaptation
is not necessary.

However, if the environment changes (e.g., hyper-gravity),
within the framework of the model, one might expect the
model’s parameters to evolve. Following a gravity transition
a gravity transition, sensory information is altered, rendering
existing internal models inappropriate: primarily, the models used
to disambiguate forces due to linear acceleration and gravity
within the gravito-inertial force (GIF) vector which is sensed
by the otolith organs (since the vestibular system, by Einstein’s
equivalence principle, cannot directly sense gravity). The sensory
conflict resulting from inappropriate internal models (for the
new environment) is thought to drive a dynamic reinterpretation
of vestibular signals, or “adaptation” of the internal models,
appropriate for the new gravity environment. Because we still have
a limited understanding of the neural computations involved in this
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process, modeling this neurovestibular adaptation to altered gravity
continues to be an active area of scientific interest.

1.1.1. Existing models
Since the late 1990s, computational models of humans adapting

to changing gravity stimuli have emerged. A series of works
found human disambiguation of the sensed GIF to likely be
achieved through internal models that help track the gravity vector’s
direction (for a static magnitude of gravity) using cues from the
semicircular canals (Merfeld et al., 1999, 2001; Zupan et al., 2000;
Merfeld and Zupan, 2002); this theory is referred to as the GIF
resolution hypothesis. The implementation of this theory, however,
does not enable the CNS to update the magnitude of gravity (or
other learned parameter model constants e.g., model gains and time
constants). Another prominent hypothesis utilized to model this
disambiguation is the frequency segregation hypothesis; Bos and
Bles (1998) proposed the subjective vertical conflict (SVC) model
which utilizes a low-pass filter to estimate both the magnitude and
direction of gravity by the CNS in conjunction with Mayne’s (1974)
principle to track the head’s position in an exocentric coordinate
system. While the SVC model provides the additional flexibility
of a dynamically estimated magnitude of gravity [compared to
models built on the GIF resolution hypothesis (Groen et al., 2022),
such as the observer model, which nominally assume a constant
internal magnitude of gravity], the internally estimated magnitude
of gravity adapts in approximately tens of seconds [which is likely
unrepresentative of the central reinterpretations involved during
altered gravity adaptation, which spans hours to days (Clark,
2019)]. Furthermore, the SVC model offers no framework updating
learned parameters or modeling memory of previously experienced
environments. While a fundamentally different modeling effort,
we note that Wada (2021) aims to capture how the brain might
learn exogenous motion dynamics, modifying the expected sensory
feedback.

To circumvent these issues, it has been hypothesized that
the CNS relies on Bayesian inference to update internal model
parameters (Körding and Wolpert, 2004; Darlington et al., 2018),
a theory that broadly explains how the CNS uses evidence to
reorganize synaptic connections (e.g., reinterpret sensory signals
after acute damage to vestibular sensors or downstream afferent
nerves, update forward models (i.e., motor memory) after efferent
central nervous damage, etc.). Applying this hypothesis to how
the CNS may update the magnitude of gravity, an internal
model parameter that is rarely stimulated on Earth, multiple
iterations of Bayesian models have emerged: first a Bayesian-based
computational framework for explaining how the CNS can utilize
sensory conflict from the observer model to achieve this update
(Kravets et al., 2021), and later a particle filter implementation of
this framework to explain how the CNS can achieve this update
while considering a finite, dynamic set of alternative hypotheses
(Kravets et al., 2022).

While these models of vestibular adaptation to changing
gravitational stimuli are well suited for exposure to novel stimuli
not-yet experienced by the individual, they have yet to distinguish
how the CNS reinterprets sensory information from familiar
environmental stimuli (i.e., readaptation). As detailed in the next
section, spanning both aerospace and terrestrial applications,
there exists evidence that readaptation back to a “learned state,”

acquired through long-term memory (LTM), enables more rapid
readaptation in humans.

1.1.2. Evidence of learned states for readaptation
and neuroplasticity

Historically for shuttle astronauts transitioning from
microgravity to Earth gravity, postural performance, signaling
readaptation to Earth gravity, has been found to be better in
repeat flyers than first-time flyers (Reschke et al., 1998; Paloski
et al., 1999) suggesting that exposure to familiar gravitational
stimuli results in faster adaptation rates. Because Paloski et al.
(1999) found significantly better performance in repeated flyers
compared to first-time flyers post-flight (with no differences in
pre-flight performance) on the sensory organization balance tests
5 and 6 (with no differences on tests 1–4), they suggest that repeat
flyers may be “dual adapted and able to more readily transition
from one set of internal models to the other.” Additionally,
deconditioning of the neural circuitry comprising the vestibulo-
ocular reflex pathway (measured via ocular counter-roll) shortly
after transitioning from microgravity to Earth gravity (1–3 days)
has been found to be negatively associated with the number of
prior flights in crewmembers (Schoenmaekers et al., 2022). This
finding may also be indicative of more flight experience resulting
in faster readaptation, and Schoenmaekers et al. hypothesize that
experienced flyers acquire a central adaptation from previous space
flight missions. Supporting this idea, Gonshor and Jones (1976)
found more rapid readaptation of this reflex following a prolonged
(2–4 weeks) adaptation to a novel vision reversal stimulus.

Together, these findings support the conceptual idea that
the CNS relies on learned states (i.e., a memory of internal
circuitry / parameters) to achieve faster readaptation to a
familiar gravitational stimulus. However, this evidence could be
alternatively interpreted as the CNS becoming more adept at
searching for new states (i.e., exhibiting faster adaptation to all
stimuli, novel or familiar- that is, learning-to-learn) with repeated
adaptations. Further supporting the notion of learned states,
long-term postural control adaptation (with consolidated motor
strategies) in the presence of artificial perturbations has been
found to be isolated to the specific test conditions facilitating
adaptation (Tjernström et al., 2002). Regarding adaptation to
multiple novel altered-gravity environments, there is evidence
that recent exposure to one novel gravity (1.5 or 2 g) results in
more rapid adaptive adjustments to baseline performance in a
second novel gravity (2 or 1.5 g, respectively) (Clark et al., 2015a).
However, Clark et al. (2015a) hypothesizes that this effect is likely
cognitive/strategic vs. a restructuring of neural circuitry due to the
relatively short time course of adaptation.

Despite this evidence of sensorimotor learning and memory, we
do not currently know the neural mechanisms by which parameters
involved with learned environments are stored. In the more specific
case of motor learning, short-term motor memory is thought to
arise in cerebellar Purkinje neurons, and through the consolidation
process, short-term adapted strategies are eventually stored as long-
term motor programs that can be recalled via neural circuits in the
vestibular nuclei [in the case of the horizontal optokinetic response
(Shutoh et al., 2006)] and basal ganglia [in the case of stimulus-
response associations and motor habits (Packard and Knowlton,
2002)]. However, long-term storage of parameters in the self-
orientation perception model, such as a magnitude of gravity, may
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occur elsewhere, likely distributed across brain regions (i.e., the
multiple memory systems theory). For instance, cortical changes
associated with central adaptation in F-16 pilots (Radstake et al.,
2023), who are repeatedly exposed to altered gravity environments,
may provide additional insight.

1.2. Objectives

Based on these findings, we aim to enhance existing models
by providing multiple theoretical additions to existing works.
These additions provide phenomenological mechanisms the CNS
can utilize to achieve faster sensorimotor readaptation through
the consideration of learned states. We aim to model these
mechanisms by building on the recent work of Kravets et al.
(2022), an implementation of the COMPASS framework (Kravets
et al., 2021) where the CNS does not consider a static set of
potential gravity magnitude hypotheses. Instead, the evolution of
hypotheses considered by the CNS is modeled via an indirect
sampling approach, employing a Rao-Blackwellized particle filter
algorithm.

2. Proposed theory

Bolstering the findings of others in our field, we propose that
the CNS is capable of consolidating internal model information
describing the current gravitational environment into long-term
memory, provided the state is harmonious (i.e., produces low
levels of vestibular sensory conflict). Following this storage, the
CNS then leverages information about these past states to more
readily readapt in the presence of previously experienced stimuli.
Using only vestibular sensory conflict, without additional sensory
modality (e.g., vision, somatosensory) or ground truth information,
we build our theory on the fundamental idea that the CNS
considers alternative hypotheses and weighs their likelihoods to
formulate an estimate (i.e., uses Bayesian inference) for updating
internal models. We give form to this proposed theory through the
model framework presented in this section.

In summary, this framework provides a new form of the
hypothesis sample distribution (set to be the state transition
probability) that is influenced by prior learned internal state
parameters. This addition enables faster readaptation to familiar
environmental stimuli. Secondarily, we include a formulation
for the temporal evolution of learned internal state parameters,
enabling the emergence, prioritization, and cessation of learned
states within the CNS.

2.1. Model framework overview

Dynamic state estimation during gravity adaptation can be
modeled using a particle filter, which uses Monte Carlo methods
to estimate a state space over time. In contrast to a broad, static
(pre-defined) set of alternative hypotheses, a particle filter relies
on a smaller, dynamic set that spans different regions of the
state space over time. Such an approach provides the CNS a
more computationally efficient means to generate an estimate (no
longer having to consider unlikely hypotheses) and additionally

enables considering new hypotheses outside the domain of what
has previously been considered. However, any sensory learning
process will involve a complex, multidimensional state space, and
estimates driven entirely by Monte-Carlo simulations are likely
still too computationally expensive and inefficient to be utilized
for the entire state space during such scenarios. Critically, “vanilla”
particle filter algorithms (i.e., where sampling of all states is just
performed in a Monte-Carlo fashion) fail to leverage the well-
validated observer model, in which perceived states (e.g., angular
velocity, gravity, linear acceleration) are produced via sensory
conflict and internal models. Alternatively, a Rao-Blackwellized
Particle filter (RBPF) makes use of these known relationships,
analytically estimating “easy” state variables and conditioning those
computations on Monte Carlo estimates of “hard” variables (Ristic
et al., 2003; Doucet et al., 2013). We propose that the CNS relies on
a similar partitioning approach of the state space.

Using the RBPF framework, we represent the CNS adaptation
to altered gravity through indirect sampling of potential alternative
hypotheses for the magnitude of gravity (|Eg|, a “hard” variable, a
model parameter representing neural circuitry), while estimating
the remaining “easy” state variables (e.g., the perception of angular
velocity, linear motion, and the direction of gravity). The full
estimation of self-orientation perception as a posterior probability
distribution is conditionally factorized as the following:

p (Xk|Y1:k) = p (xk|Y1:k) · p(Xk\{xk}|xk,Y1:k)

Here, Xk is the full state space vector at time step k, and in the case
of vestibular-driven gravity adaptation, the observer framework is
used to estimate the x, y, and z components of linear acceleration
and angular velocity, Xk\{xk} (the full set of state parameters
excluding the internal estimate of the magnitude of gravity), and
each observer solution is conditioned on the sampled parameter,
xk, the internal hypothesis of the magnitude of gravity. Y1:kis the
complete set of sensory measurements (e.g., from the otoliths and
semicircular canals) up to time step k (Y1:k = {y1, . . . , yk } ).

Conceptually, the algorithm can be visualized by Figure 1.
As proposed in Kravets et al. (2021), at each time step, the
algorithm considers multiple hypotheses for the magnitude of
gravity, or “particles,” in parallel, and conditions an observer
model on the internal estimate from each of these hypotheses.
Using its hypothesis of the magnitude of gravity, each observer
generates expected afferent signals (i.e., for the semicircular canals
and otoliths). Each expected afferent signal is compared to the
actual afferent measurement (which is the same for each of the
parallel observers), and the difference between the two (actual and
expected) is captured in a set of multidimensional sensory conflict
signals [ea, ef , eω, using the standard convention for conflicts
associated with linear acceleration, GIF, and angular velocity, see
Clark et al. (2019)].

The sensory conflict signals from each observer are combined
into a unidimensional Normalized Innovation Squared (NIS)
Statistic (Bar-Shalom et al., 2001; Chen et al., 2018):

ε
j
k = (e

j
k)

T (S)−1 ej
k

Here ej
k =

[
||ej

k,a|| ||e
j
k,f || ||e

j
k,ω||

]T
is the innovation (i.e.,

sensory conflict) vector for hypothesis j and S is the scaled
biological noise covariance (see Supplementary Table 1 for specific
values of all parameters, and Kravets et al. (2021) for further
discussion).
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FIGURE 1

Model Framework for adaptation to altered gravity incorporating short term memory (STM) and long-term memory (LTM). The inputs to the model
are a time history of body/world dynamics [x, y, and z components of linear acceleration (a) and angular velocity (ω)], and the outputs are the
perceived gravity (ĝ), acceleration (â), and angular velocity (ω̂). Here and throughout the text, bold denotes a 3D vector.

The NIS statistic informs the likelihoods of the incoming
measurements, yk, given the jth gravity hypothesis, xj

k, as follows:

p
(

yk|x
j
k

)
= N (ejk; 0; S) =

1
√
(2π)n |S|

e−
1
2 ε

j
k

where N (ejk; 0; S)is a Gaussian probability distribution function
evaluated at ejk and n is the length of ejk. The set of likelihoods is then
used to calculate the Bayesian posterior probability of each gravity
hypothesis:

p
(

xj
k|Y1:k

)
=

p
(

yk|x
j
k

)
p
(

xj
k

)
p
(
yk
)

where p
(

xj
k

)
is the prior probability density for the jth hypothesis

of gravity at timestep k (the posterior of the previous time step),
and p

(
yk
)

is the marginal likelihood that the measurement yk
was observed. Using the posterior probability densities of each
gravity hypothesis in the current time step, a central estimate of the
magnitude of gravity is calculated. A variety of summary statistics
can be utilized for this calculation, but we present results based on
the maximum a posteriori (MAP) estimator,

x̂k,MAP = argmax
[
p (xk|Y1:k)

]
We denote the estimate of the magnitude of gravity as |ĝ|.
A “central observer” is then conditioned on the estimate, generating
the overall model’s current estimate of linear acceleration, angular
velocity, and the full gravity vector (i.e., tilt perception). The
central observer represents an individual’s current model of self-
orientation perception.

In Kravets et al. (2021), a static set of hypotheses for the
magnitude of gravity were pre-defined and maintained. While
this was sufficient to enable adaptation of the central estimate
of the magnitude of gravity by Bayesian updates of the posterior
probabilities, it fails to define a mechanism for the brain to produce,
maintain, or remove potential alternative hypotheses. Here we
employ a novel approach for how the set of alternative hypotheses
(particles) for the magnitude of gravity evolve. In preparation for

the next time step, a new set of hypotheses (for the magnitude
of gravity) is sampled from a dynamic state transition probability
density function. We propose that this state transition function
is comprised of (1) a short-term memory, sensory conflict driven
component and (2) a long-term memory component, which can be
dynamically updated. This state transition probability is conveyed
here in a general form and is fully defined in in the following
sections:

xj
k+1 ∼ p

(
xj

k+1|x
j
1:k

)
Because we have set the particle sample distribution to be
equivalent to the state transition probability, the recursive particle
weight calculation (Ristic et al., 2003) becomes the following at each
time step:

w̃j
k = p

(
yk|x

j
k

)
wj

k−1

After which, all particles are normalized so that cumulative
probability is unity:

wj
k =

w̃j
k∑Ns

j = 1 w̃j
k

2.2. Short-term memory search

Similar to the methods described in Kravets et al. (2022),
we begin by recognizing that the CNS achieves adaptation to
environmental stimuli, transitioning from a state of exploitation
(i.e., using high probability hypotheses for the internal estimate of
the magnitude of gravity) to a state of exploration (i.e., aggressively
considering a wider range of alternative hypotheses), and eventually
back to a state of exploitation. To mathematically capture this,
we first define a “short-term memory” (STM) search capability of
expanding and contracting the search domain in the presence of
changing environmental stimuli (Figure 2). We define the STM
search in general terms as the following Gaussian probability
density function:

pSTM
(
xk+1|xk; σJitter

)
= N (xk, σJitter)
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FIGURE 2

Example evolution of the STM mechanism over time, as proposed
by Kravets et al. (2022). (A) The neural estimate of the magnitude of
gravity (MAP) initially is identical to the actual magnitude of gravity
(1 g). However, when the actual gravity instantly changes to 4 g in
this simulation, the internal estimate gradually updates and
converges to the proper value. (B) All particle computed likelihoods
(gray) as well as the max computed likelihood (black). When the
actual magnitude of gravity suddenly changes to 4 g, all of the
particles produce low likelihoods. (C) The max likelihood (black) is
used to compute a history of max likelihood (HML). (D) The
evolution of the standard deviation of the STM function over time.
(E) The STM probability density evolving over time. In instances
where the history of the max likelihood drops the standard
deviation of the probability density function increases. As we have
done previously (Kravets et al., 2021), in this figure and throughout,
the “Time” on the x-axis does not include units, as it depends on
parameters in the model that can be tuned and fit to empirical data
in the future.

Where xk is the hypothesis of the magnitude of gravity at time
step k. The short-term search is defined by a normal distribution
with its mean chosen from the cumulative probability distribution
of gravity hypotheses from the previous time step. The standard
deviation of this normal distribution, σJitter , serves to provide
“jitter” to the probabilistic sampling distribution. The value for
σJitter is defined to be inversely proportional to the maximum
likelihood of the alternative hypotheses within a short-term history
prior to the present time step, termed HML:

σJitter, k ∝
1

(HMLk)χ1

When calculating σJitter , we use the exponent χ1 to modulate the
sensitivity of the algorithm to changes in maximum likelihood,
such that a higher χ1 will lead to a more drastic increase in jitter
when the maximum likelihood drops. The history of maximum
likelihoods (HML) at time step k is calculated as an exponentially
weighted average of the time history of maximum likelihoods:

HMLk = (1−
1

1+ f
)
(
HMLk−1

)
+

1
1+ f

max[p
(
yk|xk

)
]

Where p
(
yk|xk

)
is the set of likelihoods at time step k and f is the

“forgetting factor,” which can range from 0 to 1. With this formula,

the magnitude of the weighting factors on each historical maximum
likelihood decreases exponentially as the age of the data increases.
The forgetting factor determines the rate at which historical data
is “forgotten,” with an f closer to 1 attributing more weight to
past data. As the likelihoods are a function of sensory conflict, this
averaging method prevents the model from becoming unstable with
single unexpected measurements, and instead requires a buildup of
sensory conflict before entering an “exploration” phase.

This formulation of jitter is not to be confused with the
regularized particle filter (Ristic et al., 2003), and its original
implementation comes from Kravets et al. (2022), utilized as a
sample distribution. Functionally, the standard deviation of the
short-term search increases when the history of the max likelihood
decreases. Conversely, the standard deviation decreases when the
likelihood function increases. This fluctuation represents a tradeoff
between exploration and exploitation, respectively. Specifically,
when the maximum likelihood of the alternative hypotheses for the
magnitude of gravity has recently been high (i.e., the brain has been
certain about the magnitude of gravity), it samples new hypotheses
very near to the current ones (exploitation). An example of this
process is provided in Figure 2.

2.3. Long-term memory search

In order to model CNS memory of learned sensorimotor states,
we hypothesize that the CNS considers past, learned parameters
comprising these states when formulating hypotheses. Regarding
gravity transitions, we expect that an extended exposure to a certain
gravity environment would eventually comprise a learned state
of internal model parameters, and the CNS will consider these
parameters when a substantial amount of sensory conflict (and
by extension, substantial NIS) is present. A natural expression of
this memory is through the state transition probability density
function, similar to the STM search. Rather than just considering
a localized (now called STM) search, as was the case in Kravets et al.
(2022), a “long-term memory” search, pLTM

(
xk+1;Hk

)
, is now also

considered.
Defining the long-term memory, Hk is the sequence of

estimated states up to the current (kth) iteration that are
harmonious. We definite the set of harmonious state estimates
affecting long-term memory as those which produce a resultant NIS
(i.e., central NIS estimate) beneath a threshold, ν :

Hk = {hi, i = 0, . . . , k}

where hi satisfy:
εi(hi) < ν

Enabling the dynamic evolution of learned states, we model the
long-term portion of the state transition probability as a function
of the time spent in harmonious states. The continuous time
representation is the following:

pLTM
(
xk+1;Hk

)
=

1
Twind

t
∫

t−Twind

δ
(
xk+1 − h (τ)

)
dτ

Here, Twind is the temporal window of which the CNS considers
past harmonious states (presumably only considering a finite
amount of information). In discrete time form, considering a
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discrete set of harmonious states, this evolution becomes the
following:

pLTM
(
xk+1;Hk

)
=

1
Nwind

k∑
i =k−Nwind

δ(xk+1 − hi)

Nwind =
Twind

1k

For the long-term (and short-term) memory, there is an
implicit reliance on past parameters (x1:k = {x1, . . . xk}) and
measurements (Y1:k) since Hk (and σJitter) are dependent on both
of these sets. With this mathematical framework, we can model the
evolution of learned states considered by the CNS when evolving
hypotheses without making prior assumptions about what the
learned states are, and these learned states construct themselves
from states with sub-threshold sensory conflict without access to
ground truth information. An example of this process is provided
in Figure 3.

2.4. The state transition probability
density function

We represent the full state transition probability as a
combination of both short-term and long-term conditional state
transition probabilities, expressed as the following mixture model:

p
(
xk+1|xk; σJitter,Hk,W

)
=

pSTM
(
xk+1|xk; σJitter

)
∗ (1−W)+ pLTM

(
xk+1;Hk

)
∗W

∫
∞
−∞[pSTM

(
xk+1|xk; σJitter

)
∗ (1−W)+ pLTM

(
xk+1;Hk

)
∗W]dx

Here, W is a parameter that defines the prioritization of long-
term over short-term memory (the impact of this parameter is
conveyed in Figure 4A). We choose to model this weighting
parameter as a function of the jitter (and as a result, related to both
likelihood and sensory conflict) via a sigmoid function, lending
weight to STM when in an exploitative state and more equally
weighting both STM and LTM while in an exploratory state:

Wk =
1

1+ e−σjitter ·χ2
−

1
2

and now, W∈ (0, 1
2 ). How the full state transition probability

function varies based on this parameter is conveyed in
Figures 4B, C.

3. Example model simulations

3.1. Model implementation

The theoretical framework described above is implemented
herein both with and without LTM, using the MAP estimate for the
estimate of the magnitude of gravity (|ĝ|), in order to demonstrate
the effect of modeling memory on various adaptation profiles. The
central observer includes the recent enhancement to the observer
model that incorporates differential weighting of components of
otolith stimulation (Clark et al., 2015c), allowing for prediction

FIGURE 3

Example evolution of the proposed LTM mechanism over time. (A)
The neural estimate of the magnitude of gravity (MAP) is shown,
along-side the actual magnitude of gravity. (B) All particle
likelihoods (gray) as well as the max likelihood (black). In contrast to
the likelihoods at 1 g, the likelihoods following the transition to 4 g
span a wider range, as the CNS considers a learned state at 1 g. (C)
The central observer’s NIS statistic, which determines whether or
not the current estimate is harmonious (i.e., beneath an internal
threshold; dashed line). (D) The LTM probability density evolving
over time around 4 g. (E) The LTM probability density evolving over
time around 1 g. Note that the LTM probability density between 1.05
and 3.95 is negligible (i.e., is 0) and not shown, so between panels
(D,E), the entirety of the LTM probability density function is shown.
In instances where the current estimate is harmonious, the
long-term memory portion of the state transition probability density
function (shown here evolving over time) is updated, storing the
state information at the current estimate. Probability densities are
colored by peak densities to demonstrate emergence and cessation
of learned states.

of roll tilt over- or underestimation in hyper- and hypo- gravity
scenarios. As was the case in prior models (Kravets et al., 2021),
units of time on the x-axis are excluded until free parameters can
be determined through future controlled experiments. However, all
model parameters are held constant across model simulations to
enable comparisons between adaptation profiles.

The motion profile influencing adaptation in each of the
example simulations is a passive sinusoidal roll tilt at 1 rad/s
(0.159 Hz) angular frequency with a peak angular velocity of 10◦C.
Because the observer model is implemented in Simulink, full re-
run of the Simulink model from the beginning of the simulation
time is required every time a particle’s estimate of gravity changes
(i.e., at every time step). To circumvent the computational expense
associated with this process, all potential gravity levels (on a grid
with a coarseness of 1/100 g) and their associated sensory conflicts
were pre-computed to be pulled from a bank during the particle
filter simulations. To reduce the variability in the simulations for
the purpose of comparison, we chose to use Ns = 100 particles
within the particle filter (but adaptation can be achieved with only
a few particles). Additionally, similar to the design considerations
of a Sequential Importance Resampling (e.g., “Bootstrap”) Particle
Filter (Ristic et al., 2003), we chose to resample particles from the
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A

B

C

FIGURE 4

(A) Impact of weighting parameter, W, on prioritization of
long-term over short-term memory. (B) Modeling W as the solution
to a logistic function, dependent on σJitter . (C) The resultant state
transition probabilities due to varying levels of jitter, displayed in
panel (B).

posterior distribution at every iteration. This reduces the recursive
particle weight calculation to be proportional to their likelihoods.

We also introduced sensory noise into the vestibular sensory
signals similarly to Kravets et al. (2021). Currently, the exact form
of actual sensory vestibular noise is unknown. Multiple works
have theorized that increased vestibular stimuli, particularly to
the otolith organs in the presence of hyper-gravity, results in an
increased signal to noise ratio (and decreased ratio in hypo-gravity)
(Clark et al., 2015a; Rosenberg et al., 2018). Other works suggest
that vestibular sensory noise increases non-linearly with vestibular
stimuli (Vingerhoets et al., 2009). We implemented vestibular noise
similarly to prior works (Kravets et al., 2021, 2022) where a constant
noise power (1e-8) is applied to the vestibular sensory signals (noise
power is the height of the power spectral density of the white noise
added to the system). A comparison of noise power to adaptation
time can be found in Kravets et al. (2021; see Figure 7).

3.2. Simulation results

In Figure 5, our simulations demonstrate how this framework,
incorporating LTM, is able to achieve faster readaptation to familiar
stimuli than the prior framework with only the jitter (implemented
as STM here) component from Kravets et al. (2022). The relative
performance of these two frameworks is compared across multiple
adaptation scenarios. At timepoint T2, readaptation to 1 g differs
when implementing LTM due to the learned 1 g state prior to
timepoint T1. In Figure 5A, readaptation to 4 g at T3 occurs at
an accelerated rate due to the learned 4 g state between T1 and
T2. The formation of the internal magnitude of gravity estimate is
accelerated at T3 only in Figure 5A, and prior gravity transitions to
other magnitudes of gravity (staying at 1 g, transitioning to 2 g, and

transitioning to 0.5 g in Figures 5B–D, respectively) do not affect
the adaptation rate to 4 g.

To further demonstrate the inner workings of our framework
incorporating LTM, we examine the evolution of individual
hypotheses (particles) considered by the CNS over time. Both
their dynamic evolution and the posterior weighting of these
hypotheses are compared with and without LTM in Figure 6, an
enhanced view of timepoint T2 from Figure 5A. Without LTM
(Figure 6A), just prior to timepoint T2, the gravity hypothesis
particles are exclusively focused around the actual gravity level
of 4 g. However, with LTM (Figure 6B), because 1 g is a
previously learned state, a few of the gravity hypothesis particles
continue to be sampled at 1 g. This enables a very different
time course of adaptation of the internal magnitude of gravity.
Without LTM, the RBPF has to gradually resample the hypotheses.
Those gravity hypotheses that are lower magnitude (closer to
1 g) produce higher likelihoods, which encourages subsequent
sampling of lower gravity magnitudes, but it is still a gradual
process. In contrast, with LTM (Figure 6B), the internally estimated
gravity level corrects to 1 g very rapidly after the actual gravity
magnitude transitions from 4 to 1 g at timepoint T2. This is
because gravity hypothesis particles are already being intermittently
sampled at 1 g (as a learned state), such that when the actual
gravity changes to 1 g the likelihood of the particle near 1 g is
very high. It takes a little time after T2 for the majority of the
particles near 4 g to transition to being centered around 1 g, but
the central estimate of the gravity magnitude converges nearly
immediately. Further, with LTM, the learned state of 4 g continues
to be intermittently sampled by the gravity hypothesis particles
after T2.

Finally, we simulate human perception of roll tilt (Figure 7)
during the central adaptation occurring at T1 in Figure 5A. This
simulation was conducted to demonstrate how the framework
presented enables a better understanding of transitory perceptions
during central adaptation, much like in Kravets et al. (2021).
At timepoint B, when |ĝ| correctly matches the actual gravity
(prior to the gravity transition at T1), the perceived tilt accurately
matches actual tilt (i.e., no misperception). However, following
the gravity transition at T1, and before the model has time
to fully adapt to the new gravity level, the model predicts an
overestimation of tilt, which is evident at timepoint C. This is
consistent with the “G-Excess” illusion, in which upon initial
exposure to hyper-gravity, humans misperceive self-tilt as being
larger than it actually is (Schöne, 1964; Correia et al., 1968;
Clark et al., 2015b). The misperception decreases by timepoint
D, as|ĝ| more closely matches the actual gravity level. By
timepoint E, the model has correctly learned the new gravity
level, and once again the predicted perception matches the
actual tilt.

4. Discussion

4.1. Summary of theoretical
contributions

The overarching computational model provided herein of
vestibular adaptation to gravity transitions enables modeling
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A
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C

D

FIGURE 5

Example simulations showing various adaptation profiles and resulting MAP estimates, both with and without the LTM component of the state
transition probability. All simulations begin with an actual gravity level of 1 Earth gravity, and all x-axes are linked to the same timescale. (A) An
adaptation to 4 g (see Figure 7), readaptation to 1 g (see Figure 6), and readaptation to 4 g. (B) An adaptation to 4 g after a prolonged stint in 1 g. (C)
An adaptation to 2 g, readaptation to 1 g, and an adaptation to 4 g (a second novel hyper-gravity stimulus). (D) An adaptation to 0.5 g, readaptation
to 1 g, and an adaptation to 4 g (a second novel gravity stimulus, but where the first was hypo-gravity, and the second is hyper-gravity).

A

B

FIGURE 6

Gravity hypothesis generation with and without long-term memory (LTM). The path of gravity adaptation differs between simulations (A) without
LTM incorporated and (B) with LTM incorporated, as shown by the small particles/alternate hypotheses at 1 g prior to T2 (see Figure 5A for full gravity
transition history). In both panels (A,B), the sizes of the particles are proportional to the posterior probability of each hypothesis at that timestep.

transient states of sensorimotor impairment due to changing
gravitational stimuli. Our framework is dependent on vestibular
sensory stimuli alone, without access to other channels of sensory
information or direct information about the true magnitude of
gravity. This model CNS recursively estimates gravity’s magnitude

through Bayesian inference, as previously proposed in Kravets
et al. (2021). However we differ from the Kravets et al. (2021)
implementation (which considered a static set of gravity hypotheses
at each time step), and instead utilize methods proposed in
Kravets et al. (2022) by modeling the evolution of potential
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A

B

FIGURE 7

Model simulation of tilt perceptions associated with adaptation to gravity transition. (A) highlights the adaptation trajectory surrounding the gravity
transition from 1 to 4 g at timepoint T1 in Figure 5, with a roll tilt motion profile. The associated tilt perceptions (or misperceptions) generated by the
central observer at time points (B–E) are shown in their respective panels.

hypotheses via an indirect sampling approach, characterized by a
Rao-Blackwellized particle filter algorithm.

As a novel improvement to these previous implementations,
the model framework presented here emulates sensorimotor
adaptation while retaining a memory of past harmonious
states, allowing the model to consider previously experienced
gravity levels (while also dynamically learning new states) when
formulating new parallel alternative hypotheses of gravity. This
framework’s contributions include both modeling the influence
of learned internal state parameters on the CNS’s evolution of
hypotheses and a model of the temporal evolution of learned
internal state parameters (corresponding to implicit memory).
Together, this framework enables the consolidation of harmonious
states into long-term memory, in turn enabling faster readaptation.
Notably, the computations involved with learning and storing
internal state parameters do so without any ground-truth
knowledge of the actual magnitude of gravity at any point in time.
Further, this long-term memory functionality is beneficial toward
readapting to a previously experienced magnitude of gravity, but
does not have any substantial downside (i.e., it helps when useful,
but does not hurt when the learned state is not relevant). While we
propose this framework specifically for adaptation to a changing
gravitational stimulus by learning magnitudes of gravity, this
framework can be applied more broadly to other model parameters
(e.g., other observer model gains and / or time constants) and
other forms of implicit memory (e.g., consolidating descriptive
parameters within internal models describing motor control).

4.2. Insight from model simulations

Compared to modeling STM alone, the LTM framework
enables exploitation of information from past learned states to
achieve faster readaptation. This effect is best demonstrated in
Figure 5A at T2, when readaptation to 4 g from 1 g occurs. When

considering new hypotheses of gravity, the STM search is restricted
to a domain (represented here by a Gaussian distribution) centered
around the current hypotheses. However, the LTM framework
retains a finite memory of previously experienced harmonious
states to additionally consider when in the CNS is in a state of
exploration. This effect is demonstrated in Figure 6, readaptation
to 1 g from 4 g. The rate of adaptation to learned states
can be modulated through the parameter W and additionally
through the free parameter χ2. If W is sufficiently low, the
adaptation trajectories with and without LTM are indistinguishable.
Further, because LTM is modeled with a finite retention window,
learned states are down-weighted (i.e., reduced probability of being
considered by the CNS), taking longer for readaptation occur, and
eventually unlearned entirely if enough time is spent outside the
learned state.

Despite the more rapid readaptation enabled by the LTM
framework when memory of a harmonious state exists, the time
course of adaptation to novel gravity environments remains the
same both with and without LTM in the simulations shown. This
is consistent with evidence that sensorimotor learning is restricted
to specific conditions (Tjernström et al., 2002). However, the LTM
framework has the potential to facilitate quicker adaptation to
unfamiliar gravity conditions that closely approximate a previously
learned gravity environment. For example, if the model has a
history of adaptation to 3 g, it may adapt more rapidly when
transitioning from 1 to 3.2 g because it will start “exploring”
new particles surrounding 3 g (which will have higher likelihoods
that the existing particles at 1 g) instantly. While this hypothesis
would need to be tested experimentally, it highlights one of the
benefits of a computational model of gravity adaptation, as it
provides specific quantitative theories that can inspire experimental
work.

Finally, this framework provides the utility of computationally
generating self-orientation perceptions in humans during the
period of time where adaptation occurs, dependent on previous
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exposure to gravitational environments. It has previously been
shown that tilt is overestimated following a transition to hyper-
gravity from 1 g before adaptation is fully achieved (Clark et al.,
2015b). Similar to Kravets et al. (2021), the internal estimate of
gravity driven by this framework results in an overestimation of
tilt during adaptation to a greater magnitude of gravity (shown
in Figure 7), and the LTM framework presented herein enables
computational assessments of self-orientation perception that are
affected by memory of past states. By using this model’s predicted
perceptions in response to a controlled physical stimulus, the
results can be mapped to experimental results and operational
concerns. In the current model implementation, the central
observer produces predictions of spatial orientation perception
using the central estimate of the magnitude of gravity. One
alternative approach would be to have each parallel, alternative
observer predict spatial orientation perceptions, which could
then be weighted and merged. This approach would allow for
the quantification of bimodal orientation perceptions as have
been reported for some motion paradigms (Vingerhoets et al.,
2008).

4.3. Limitations and future work

Once again, this model exists as an untuned and unvalidated
theory. As a result, the time course of adaptation remains
undetermined. While relative comparisons can be made between
simulations, there exists a need to obtain empirical data describing
the time course of adaptation. For transitions from 1 g to
microgravity, recent work has provided some (while limited)
insight. In an attempt to quantify in-flight adaptive changes,
performance in a bimanual coordination task in-flight was not
found to be correlated to mission duration exceeding 4 months
(spanning 4 to 11 months) (Tays et al., 2021). This finding
reinforces the concept that sensorimotor adaptation reaches
an exploitation state following an exploration state once the
CNS achieves some desirable level of adaptation. Additionally,
this finding of no differences after 4 months may provide
some upper-bound time course of functional adaptation to
microgravity. However, future work measuring perceptions during
adaptation is recommended to quantify the time course of
adaptation.

The simulation results presented here focus on gravity
transitions between 1 g, hyper-gravity, and hypo-gravity, and
intentionally do not address a transition to or from microgravity
(i.e., 0 g). Modeling adaptation to microgravity is a unique
challenge that likely involves more than just a reinterpretation
of the internal magnitude of gravity. Evidence suggests that
the CNS may reinterpret all otolith stimulation as translation
(Young et al., 1984; Parker et al., 1985), or that there may
be a degradation of the internal model of how rotational cues
affect tilt perception (Merfeld, 2003). Notably when utilizing
this framework for a transition to microgravity, as the internal
estimate of gravity approaches zero, the central observer begins
to interpret otolith stimulation as linear acceleration, and upon
reaching zero, all otolith stimulation is interpreted as linear
acceleration. When transitioning back to a 1 g environment,
when the estimate of gravity ∈

(
0, 1g

)
, the central observer

predicts linear acceleration perceptions opposite that of physical
tilt, similar to those predicted by the rotation otolith tilt-translation
reinterpretation hypothesis. Despite these promising effects, it is
possible that additional model parameters associated with the
GIF [such as the Kf and Kf ω gains in the observer model,
see Clark et al., 2019 for details] also change. Alternatively, the
observer framework may fundamentally change upon transitioning
to microgravity in a way that cannot be reflected through updating
values of model parameters, and it is possible that these changes
differ between individuals. While the implementation of our
model does not address these unique challenges associated with
microgravity, this modeling framework is not limited to just
a dynamic adjustment of the magnitude of gravity and could
be used to include adaptation of additional parameters that
may be involved in transitions to microgravity. Future works
should thoroughly explore the extension of this framework to
microgravity.

It is also important to emphasize that the implementation of the
model we have presented is limited to vestibular cues resulting from
passive motion. However, when undergoing a gravity transition,
the CNS is likely to use all sources of sensory information, such as
visual and somatosensory cues, to adapt to the new environment.
In fact, there is evidence that the CNS may reweight the sensory
information it receives based on the reliability of the cues it is
receiving (Fetsch et al., 2009; Hupfeld et al., 2022). While this
is a limitation of the current implementation of the proposed
framework, the model could be adjusted to include these cues
and preferential weightings between sensory systems. Versions of
the observer model have been developed to include visual cues
(Newman, 2009; Clark et al., 2019), and other adjustments to the
sensory dynamics process could be incorporated.

Sensory reweighting can be modeled by modulating the gains
in the observer model contributing to perception from different
sensory channels [e.g., the visual channel Kvv and Kωv gains in
the visual observer model, see both (Newman, 2009; Clark et al.,
2019) for details]. Similar to our demonstration of updates to
the magnitude of gravity parameter over time, these parameters
may be updated through indirect sampling and Bayesian inference,
driven by sensory conflict. Our LTM framework can also be
leveraged for modeling learned states comprising different sensory
weighting schemes over time. Moreover, the sensory conflict from
this additional sensory channel can be incorporated into the
NIS statistic formulation. To garner a full picture of sensory
adaptation, the addition of somatosensory pathways and variable
weighting should also be modeled. Providing more reliable
sensory cues may affect the rate of adaptation predicted by the
model.

As theories and evidence surrounding specific adaptation
scenarios and multisensory integration mature, our proposed
modeling implementation can be modified accordingly. Building
up the framework presented here (through empirical validation,
multisensory modeling, and reweighting of sensory channels) may
eventually result in a means of improving training, operational
scheduling, and countermeasure development accompanying
planned gravity transitions. This framework represents a
foundational stepping stone toward these goals.
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