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Spinal inhibitory interneurons:
regulators of coordination during
locomotor activity
Simon Gosgnach*

Department of Physiology, University of Alberta, Edmonton, AB, Canada

Since the early 1900’s it has been known that a neural network, situated entirely

within the spinal cord, is capable of generating the movements required for

coordinated locomotion in limbed vertebrates. Due the number of interneurons

in the spinal cord, and the extent to which neurons with the same function are

intermingled with others that have divergent functions, the components of this

neural circuit (now referred to as the locomotor central pattern generator-CPG)

have long proven to be difficult to identify. Over the past 20 years a molecular

approach has been incorporated to study the locomotor CPG. This approach has

resulted in new information regarding the identity of its component interneurons,

and their specific role during locomotor activity. In this mini review the role of

the inhibitory interneuronal populations that have been shown to be involved in

locomotor activity are described, and their specific role in securing left-right, and

flexor extensor alternation is outlined. Understanding how these interneuronal

populations are activated, modulated, and interact with one another will help

us understand how locomotor behavior is produced. In addition, a deeper

understanding of the structure and mechanism of function of the locomotor

CPG has the potential to assist those developing strategies aimed at enhancing

recovery of motor function in spinal cord injured patients.
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Introduction

The act of locomotion, or moving from place to place within one’s environment, is an
essential behavior in all non-sessile species. It has long been known that, in mammals, this
behavior is controlled by a neural circuit, situated in the spinal cord, referred to as the
locomotor central pattern generator (CPG) (Grillner et al., 1998). In limbed vertebrates, the
locomotor CPG that is responsible for regulating hindlimb stepping resides in the ventral
region of the lumbar spinal cord. In intact mammals descending input from the cortex
and brainstem is crucial for locomotor initiation (Leiras et al., 2022), and sensory input
is required to modify motor outputs to match the demands of the terrain (Prochazka and
Ellaway, 2012). However, studies using the isolated spinal cord have demonstrated that the
locomotor CPG, without any additional input, is able to produce intricately coordinated
locomotor-like activity in flexor and extensor hindlimb motoneurons on either side of
the body (Grillner, 1985; Grillner and Jessell, 2009; Kiehn, 2016). Since a comprehensive
understanding of how the locomotor CPG is assembled and operates has the potential to
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lead to therapeutic approaches to restore movement after spinal
cord injury, investigations into the structure and mechanism
of function of this neural circuit have been ongoing since its
discovery, more than a century ago (Brown, 1911). Since the
turn of the century, technological advances in molecular and
developmental genetics have resulted in the implementation of a
novel experimental approach to study the locomotor CPG. This
has led to substantial insight regarding the neuronal components of
this neural circuit, and the manner in which they interact with one
another (reviewed in Goulding, 2009; Kiehn, 2016). The principal
findings of this work is that interneurons in the developing spinal
cord can be divided up into 10 “parent” populations (dI1-dI6 and
V0-V3), each interneuron within a population being genetically
similar to others within the same population, and genetically
distinct from those belonging to other populations (Tanabe and
Jessell, 1996). Investigation of the migration patterns of each
population have indicated that 5 of these reside in the ventral aspect
of the lumbar spinal cord postnatally, a location consistent with
participation in locomotor activity. Subsequent studies on these
populations have incorporated anatomical and electrophysiological
techniques to characterize the properties of each. Their specific
role during locomotor activity has been investigated by silencing
or ablating a given cellular population and identifying locomotor
defects that are apparent in their absence (Lanuza et al., 2004;
Hinckley et al., 2005; Gosgnach et al., 2006; Crone et al., 2008;
Zhang et al., 2008, 2014; Zagoraiou et al., 2009; Andersson et al.,
2012; Talpalar et al., 2013; Britz et al., 2015; Haque et al., 2018).

Since the initial identification of these populations, subsequent
investigation into their genetic makeup has led to the conclusion
that, in most cases, the populations can be further subdivided
into multiple subsets based on transcription factor expression
downstream of those originally used to define each cell group
(Gosgnach et al., 2017). In some cases multiple subpopulations,
which are derived from a single “parent” cell group, have
complimentary roles during locomotor activity. The integration of
these subsets into the working network model of the locomotor
CPG has furthered our understanding of this neural circuit by
enabling us to better grasp how different groups of muscles are
activated sequentially (i.e., muscle synergies recruited) in order
to produce the specific locomotor outputs that are required (i.e.,
those responsible for slow walking vs. fast running- Rybak et al.,
2015).

As it currently stands, 9 genetically- defined groups of neurons
can be identified in the ventral half of the postnatal spinal
cord that have a defined function during locomotor activity, five
of these use excitatory neurotransmitter, and 4 populations are
inhibitory. The excitatory populations (V0V , V2a, V3, Shox2, and
Hb9 neurons) have a variety of functions such as locomotor
initiation (Dougherty et al., 2013), maintenance of locomotor
stability (Zhang et al., 2008), and regulation of synchronous
activity of motoneurons on either side of the spinal cord (Crone
et al., 2008, 2009). In contrast, the inhibitory populations (dI6,
V0D, V1, and V2b groups) each play an essential role in the
appropriate coordination of either left-right (Lanuza et al., 2004;
Talpalar et al., 2013), or flexor-extensor (Zhang et al., 2014; Britz
et al., 2015), alternation. In this mini review I will focus solely
on the inhibitory populations, and describe their specific role in
coordinating locomotor activity.

Inhibitory populations involved in
left-right alternation: V0 and dI6
populations

Locomotor activity in bipedal mammals consists of alternation
between the left and right hind limbs. This is result of a nuanced
pattern of activation of various hindlimb muscles, with a great
deal of variability in the onsets and offset in each (Engberg and
Lundberg, 1969; Rasmussen et al., 1978). Generally speaking,
however, when the left limb is on the ground (i.e., in stance
phase) the extensor muscles are primarily active and the flexors
are primarily silent. In the right limb (which would be in swing
phase), the extensor muscles are inhibited while the flexors are
active. As the speed of locomotion increases, the amount of time
each limb spends in stance phase decreases while the amount
of time spent in the swing phase is largely unchanged (Goslow
et al., 1973; Halbertsma, 1983). Importantly, at all speeds of
locomotion, alternation between the left and right hindlimbs
persist. The majority of research into the structure and function
of the locomotor CPG has come from quadrupedal species such as
the cat or rodent, which have a unique set of muscle synergies as
the speed of locomotor activity increases. Slower speed locomotion
involves alternation similar to that seen in bipeds, and can be
classified as either walk or trot. As speed increases there is
synchronous activity across the midline and two similar locomotor
gaits, gallop and bound, dominate (Bellardita and Kiehn, 2015). The
current theory that accounts for the ability of this neural circuit to
generate a variety of stepping patterns holds that the locomotor
CPG is a two-layered circuit comprised of distinct population of
interneurons. The “top” layer is responsible for rhythm generation,
and activating the “lower,” pattern forming layer which, in turn,
activates or inhibits motoneurons in a manner appropriate for the
required locomotor task (Rybak et al., 2015).

The first study to investigate the functional role of one of the
molecularly defined interneuronal populations during locomotor
activity was focused on the V0 neurons. These cells were shown
to originate from progenitors expressing the transcription factor
Dbx1, and reside in lamina VIII of the spinal cord postnatally
(Pierani et al., 2001). Initially all V0 neurons were analyzed
collectively, and this population was considered to be primarily
comprised of inhibitory neurons which project commissural
axons (Pierani et al., 2001). Subsequent work indicated that the
V0 population could be divided into two subsets of neurons
which could be distinguished from one another molecularly. The
ventral subpopulation (V0V ) can be identified by expression the
transcription factor Evx1 as well as Dbx1, and a dorsal population
(V0D) which can be identified by expression of Dbx1 but not Evx1
(Moran-Rivard et al., 2002). In the Dbx1 mutant mouse, in which
all V0 neurons are absent, activity on the left and right sides of the
spinal cord appeared to be “disconnected” from one another during
a locomotor task. Rather that strict alternation between left and
right flexor (or left and right extensor) ventral roots, contralateral
activity in the Dbx1 mutant mouse drifted in and out, with left
and right flexor motor axons sometimes bursting synchronously
and sometimes alternating (Lanuza et al., 2004). Interestingly, in
this study, mice in which only the Evx1- expressing (V0V ) cells
were eliminated failed to show any aberrant left right alternation.
This led to the suggestion that the V0D subpopulation alone were
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FIGURE 1

Schematic of synaptic contacts from inhibitory interneuronal
populations in the lumbar spinal cord that are involved in
locomotion. Vertical dashed line separates left and right side of
spinal cord. In this schematic all inhibitory populations that have a
defined role during locomotor activity appear on the left side, only
those populations that receive inputs from these cells appear on the
right side. Motoneurons are shown on both sides. Lowercase f and
e indicate those members of a given population that are active
during flexion and extension respectively.

responsible the coordination of motoneurons on either side of the
spinal cord. Subsequent experiments indicating that V0 neurons
projected axons toward, and made monosynaptic contacts onto,
contralateral motoneurons suggested the circuitry responsible for
this function (Lanuza et al., 2004- see Figure 1).

Additional investigation of the differences between the
dorsal and ventral subpopulations of V0 neurons revealed a
complimentary role for the two subsets during stepping. First,
analysis of the neurotransmitter phenotype of each indicated that
V0D cells were inhibitory while V0V cells were excitatory (Pierani
et al., 2001; Talpalar et al., 2013). It was also demonstrated that
ablation of the V0D cells alone resulted in inappropriate left-
right alternation at slower locomotor speeds with minimal effect
on coordination during faster stepping. Loss of V0V cells had
the opposite effect, seemingly no impact at slower speeds, but
essential for appropriate left/right alternation when locomotor
speed increased (Talpalar et al., 2013). The apparent conflict with
the previous study (in which removal of V0V cell function did not
impact left right alternation at all) was likely due to the fact that
the speeds generated in the locomotor assay used in the original
study did not reach the frequencies at which the V0V subpopulation
would be recruited, and thus their removal did not affect these
slow locomotor outputs. The severity of the locomotor phenotype
also differed between the two studies investigating V0 interneuron
function during locomotion. In the initial study bilateral activity
drifted in and out of phase, indicating the two sides of the spinal
cord were “disconnected” from one another (Lanuza et al., 2004)
while in the latter study activity on either side of the spinal cord was
strictly synchronous (Talpalar et al., 2013). While the differences
between the phenotypes has not been directly accounted for, they

may have something to do with the mouse models implemented.
The latter study used an approach in which diphtheria toxin was
produced in select populations, killing cells after they had expressed
specific transcription factors (Talpalar et al., 2013). In contrast, the
initial study used a mutant mouse model in which V0 cells were not
produced and developmental compensation occurred, increasing
the number of other neuronal population such as the ipsilaterally
projecting V1 cells and the commissural dI6 neurons (Lanuza et al.,
2004).

dI6 interneurons have also been shown to play a role in
left-right alternation. This population originates from progenitor
cells expressing the transcription factors Lbx1 and Dbx1, and is
situated immediately dorsal to the V0D neurons during embryonic
development (Gross et al., 2002; Muller et al., 2002). dI6 neurons
can be divided into 2 subsets based on the expression of the
postmitotic markers WT1 or DMRT3 (Andersson et al., 2012).
Unlike the V0 population, both dI6 subpopulations have been
shown to be exclusively inhibitory (Andersson et al., 2012; Haque
et al., 2018). A role for dI6 cells in left- right alternation was first
suggested in the original study investigating the function of the
V0 neurons as it was observed that the number of dI6 neurons
increased in the Dbx1 mutant mouse, likely due to developmental
compensation (Lanuza et al., 2004). It was suggested that the
presence of these dI6 cells, which were known to be inhibitory
and commissural, were perhaps responsible for the less severe
locomotor phenotypes observed in some of the V0 ablated mice.

A specific role for the DMRT3- expressing neurons in gait
coordination was first suggested following the observation that
mutation of the DMRT3 gene in horses enabled “pacing” gaits
in which the fore and hind limbs on the same side of the body
move together while collectively alternating with the fore and
hind limbs on the contralateral side of the body (Andersson
et al., 2012). Characterization of these cells in mice indicated
that, similar to V0D neurons, the DMRT3 subset of dI6 cells is
primarily situated in lamina VIII of the postnatal spinal cord,
and project commissural axons which release the neurotransmitter
glycine. Synaptic contacts from this population were observed
on motoneurons as well as on premotor neurons in laminae IX
(presumably Renshaw cells which belong to the V1 population), as
well as cholinergic V0 cells (derived from the V0V subpopulation)
surrounding the central canal (Andersson et al., 2012- see Figure 1).
The aforementioned gait abnormalities observed in horses lacking
DMRT3 cells are strongly suggestive of a role for these subset of
the dI6 population in left-right alternation. While they have been
shown to be rhythmically active during a fictive locomotor task
in the mouse (Perry et al., 2019), the locomotor pattern in their
absence has yet to be investigated.

The WT1- expressing subset of dI6 neurons share many
characteristics with DMRT3 + cells. WT1 neurons are inhibitory,
and project commissural axons (Haque et al., 2018). Synaptic
boutons from WT1 + cells have been found in close proximity
to other commissural interneuronal populations, namely, Evx1-
expressing V0V , as well as DMRT3 interneurons (see Figure 1).
Connectivity onto the V0D population was not confirmed, but
cannot be ruled out as a postnatal marker for this population was
not available (Haque et al., 2018). Like the DMRT3 population,
WT1 cells were shown to be rhythmically active during fictive
locomotion in the isolated spinal cord preparation (Haque et al.,
2018; Schnerwitzki et al., 2018), and silencing of these cells
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using a DREADD approach resulted in left-right alternation
defects (Haque et al., 2018). The locomotor phenotype was
less severe than that seen when the V0 neurons were ablated,
but clear co-activation of contralateral flexor, and contralateral
extensor, motor axons was regularly observed. The conclusion
from this study was that the WT1 populations regulated the
activity of other commissural interneurons (Haque et al., 2018).
Knowing what we know now about the speed dependent
regulation of the V0D and V0V interneurons, it would have
been interesting to determine whether the WT1 interneurons
were also modulated at different locomotor frequencies. For
example, one might expect that these cells are actively regulating
other commissural populations depending on whether a strictly
alternating (walk/trot) or a synchronous gait (bound/gallop) is
generated.

Inhibitory neurons securing
flexor-extensor alternation: V1 and
V2b populations

While the specific pattern flexor and extensor motoneuron
and muscle activation varies during locomotor activity, one
general characteristic of locomotor activity in both bipedals,
and quadrupedals is the alternation of flexor and extensor
motoneurons/muscles. The specific activity profile of flexor and
extensor motor pools around the hip, knee, and ankle joints
is complex and the peak firing phases of each has been
shown to be determined by the output of the locomotor CPG,
and modulated by sensory input (Patla, 1985). The specific
interneuronal populations that comprise the components of the
locomotor CPG which regulate the flexor/extensor alternation
around hindlimb joints has only recently been revealed. The hunt
for a population of neurons responsible for this alternation has
involved silencing or ablating specific interneuronal populations
in the hopes of identifying a locomotor phenotype in which
inappropriate flexor/extensor activity could be observed, either
in vitro or in vivo.

Surprisingly, ablating each of the genetically-defined
interneuronal populations individually revealed no deficits in
ipsilateral coordination. Given their characteristics (ipsilaterally
projecting axons, and inhibitory neurotransmitter phenotype), the
primary candidates to be involved in flexor/extensor alternation
were the V1 (Burril et al., 1997; Sauressig et al., 1999) and V2b
(Lundfald et al., 2007; Peng et al., 2007) interneurons which are
defined by their expression of En1 and Gata3, respectively. Ablation
or silencing of the entire V1 population leads to a marked slowing
of locomotor activity (Gosgnach et al., 2006) with no change
in flexor- extensor alternation when compared to the wildtype
animal (Gosgnach et al., 2006; Zhang et al., 2014). From this
work it was suggested that V1 INs facilitate the transition between
the active and inactive phases of the step cycle (Gosgnach et al.,
2006). Inhibiting activity in the V2b population alone, by arresting
synaptic transmission in these cells, has only a very minor effect
on left right alternation (Zhang et al., 2014). Although ablation of
the function of either of these populations in isolation had little
effect on ipsilateral alternation, experiments in which both of these
populations were ablated simultaneously, resulted in the complete

collapse of flexor- extensor alternation in the isolated spinal cord,
resulting in co-activation of flexor and extensor motor axons on
the same side of the body, a locomotor phenotype that is not
otherwise observed in either bipeds or quadrupeds, suggesting that
the V1 and V2b neurons work together to maintain flexor-extensor
alternation.

Due to expression of the markers V1 (En1) and V2b
populations (Gata3) throughout the CNS, inhibiting the function
of these cells in the aforementioned study was lethal at either
late embryonic, or early postnatal time points. This dictated
that the experiments used to identify the V1 and V2b cells are
required for ipsilateral alternation were carried out on isolated
spinal cords removed from immature mice, which limited the
understanding of how they carried out this function. A subsequent
study by the same group used a tripartite genetic approach
to insert a foreign diphtheria toxin receptor solely into those
neurons which expressed En1 and/or Gata3, and were located
in the spinal cord (Britz et al., 2015). Application of the ligand
for this diphtheria toxin receptor ablated these neurons and
enabled their function during locomotor activity to be examined
in greater detail. Furthermore, the use of postnatal animals
also allowed the synaptic connectivity of these neurons to be
analyzed allowing the specific role of each to be elucidated.
Using this approach it was demonstrated that mice lacking V1
cell function displayed limb hyperflexion, while the limbs of
those mice lacking V2b neuronal function had their hindlimbs
locked in hyperextension (Britz et al., 2015). These findings
nicely complimented anatomical data which indicated that V1
neurons preferentially contacted flexor motoneurons while the
V2b population tended to terminate on extensor motor pools
(Britz et al., 2015- see Figure 1). Given the inhibitory nature of
both populations the data suggests that the loss of function of
the V1 cells results in lack of inhibition of flexor motor neurons
(and thus hyperflexion) while loss of V2b function results in
insufficient inhibition of extensor motoneurons (and excessive limb
extension). A balance of the two cell populations is required in
order to establish coordinated activity of flexors and extensors
during locomotion.

Conclusion

The locomotor CPG had long been considered to be a “black
box,” a mysterious neural network that was capable of generating
a wide variety of motor synergies when activated. Since the
turn of the century incorporation of a multidisciplinary approach
involving molecular genetics, anatomy, and electrophysiology has
allowed tremendous strides forward to be taken in our ability
to identify neurons that comprise this neural network, and also
identify their specific function during stepping. The inhibitory
neurons that have been identified to be part of this locomotor
CPG have thus far been proven to be essential components
required for coordination of antagonist motor pools ipsilaterally,
or agonist motor pools on either side of the spinal cord in limbed
vertebrates. These inhibitory populations are essential for the
generation of coordinated movements. As we learn more about the
axonal projection pattern of these populations, and the upstream
sites that contact these inhibitory populations it is likely to help
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us understand the processes by which they are modulated in
order to alter the activation pattern of muscles that is required
as the frequency of locomotor activities changes. Ultimately, a
detailed characterization of these, and other interneurons that are
components of the locomotor CPG, and a better understanding
of how they regulate motoneuron activity, will help us understand
how motor behavior is produced, and will provide key information
to those developing therapies aimed at enhancing functional
recovery of motor control after damage to the CNS.
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