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Background: Pain is an unpleasant sensory and emotional experience. One

of the most critical regions of the brain for pain processing is the anterior

cingulate cortex (ACC). Several studies have examined the role of this region in

thermal nociceptive pain. However, studies on mechanical nociceptive pain have

been very limited to date. Although several studies have investigated pain, the

interactions between the two hemispheres are still not clear. This study aimed to

investigate nociceptive mechanical pain in the ACC bilaterally.

Methods: Local field potential (LFP) signals were recorded from seven male

Wistar rats’ ACC regions of both hemispheres. Mechanical stimulations with two

intensities, high-intensity noxious (HN) and non-noxious (NN) were applied to

the left hind paw. At the same time, the LFP signals were recorded bilaterally from

awake and freely moving rats. The recorded signals were analyzed from different

perspectives, including spectral analysis, intensity classification, evoked potential

(EP) analysis, and synchrony and similarity of two hemispheres.

Results: By using spectro-temporal features and support vector machine (SVM)

classifier, HN vs. no-stimulation (NS), NN vs. NS, and HN vs. NN were classified

with accuracies of 89.6, 71.1, and 84.7%, respectively. Analyses of the signals

from the two hemispheres showed that the EPs in the two hemispheres were

very similar and occurred simultaneously; however, the correlation and phase

locking value (PLV) between the two hemispheres changed significantly after

HN stimulation. These variations persisted for up to 4 s after the stimulation.

In contrast, variations in the PLV and correlation for NN stimulation were not

significant.

Conclusions: This study showed that the ACC area was able to distinguish

the intensity of mechanical stimulation based on the power activities of neural

responses. In addition, our results suggest that the ACC region is activated

bilaterally due to nociceptive mechanical pain. Additionally, stimulations above

the pain threshold (HN) significantly affect the synchronicity and correlation

between the two hemispheres compared to non-noxious stimuli.

KEYWORDS

mechanical nociceptive pain, anterior cingulate cortex (ACC), local field potential (LFP),
von Frey filament, evoked potential (EP), bilateral analysis
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1. Introduction

According to the definition provided by the International
Association for the Study of Pain (IASP), “An unpleasant sensory
and emotional experience associated with, or resembling that
associated with actual or potential tissue damage.” Although pain
is a sensory response that is activated to protect the individual from
injury, in the long term, it can become a debilitating condition (Cox
et al., 2006). One of the well-known pain categorization methods
was introduced by Woolf (2010). According to this definition, pain
is divided into three categories: nociceptive, inflammatory, and
pathological. Nociceptive pain acts as a physiological protective
mechanism with early warning, which is essential for detecting
and minimizing contact with harmful pain stimuli. Inflammatory
pain has an adaptive and protective role which helps to heal the
injured limb by preventing contact and movement. The third
category is pathological pain which has no protective function
and is a kind of incompatibility with the abnormal functioning
of the nervous system (Woolf, 2010). The ability to assess the
intensity of painful stimuli is a major property of the nociceptive
system. Nociception is a process in which thermal, mechanical,
and chemical stimuli are detected by a group of peripheral nerves
called nociceptors (Dubin and Patapoutian, 2010). Due to their
biophysical and molecular properties, pain receptors are activated
only when the intensity of the stimulus exceeds the pain threshold
(Woolf, 2010). This type of pain resolves after tissue healing or
the absence of harmful stimuli (Basbaum et al., 2009; Larson et al.,
2019).

Pain includes sensory and affective aspects. The sensory aspect
of pain includes duration, intensity, and type of pain. Affective
pain is the emotional and unpleasant aspects of pain, including
fear, worry, and anxiety. Two different pathways process the
sensory and affective aspects of pain (Johansen and Fields, 2004;
Basbaum et al., 2009; Navratilova et al., 2012; Zhang et al., 2017;
Zhou et al., 2018; Larson et al., 2019). In the sensory pathway,
the thalamus, primary somatosensory cortex (S1), secondary
somatosensory cortex (S2), and anterior cingulate cortex (ACC)
process the signals received from the spinal cord. Whereas in
the affective pathway, the thalamus, insula, amygdala, prefrontal
cortex, and ACC are involved in processing the emotional aspect
of pain (Xiao and Zhang, 2018). Ascending nociceptive pain
pathways for processing the sensory and affective pain terminate
at S1 and ACC, respectively (Lubar, 1964; Melzack and Wall,
1965; Foltz and White, 1968; Melzack and Casey, 1968; Talbot
et al., 1995; Koyama et al., 2000; Johansen et al., 2001; LaGraize
et al., 2006). ACC areas are getting more attention in the pain
assessment field since it encodes both aspects of pain. Studies on
humans have shown that the ACC also measures nociceptive pain
intensity (Coghill et al., 1999; Büchel et al., 2002). In addition,
several studies using in vivo recordings in rats have shown
that specific neurons in the ACC convey information about the
intensity and onset of pain (Chen et al., 2017). Electrophysiological
recordings in rabbits and rats showed that nociceptive neurons
in the ACC had large, bilateral receptive fields (Sikes and Vogt,
1992; Yamamura et al., 1996; Vogt and Sikes, 2000). In this
study, ACC was chosen to investigate the sensory aspect of pain
and specifically to discriminate pain intensities. The LFP signals

recorded from the ACC region were used to assess pain, as
intracortical signals, at the mesoscopic and macroscopic levels
supply valuable physiological information for depicting pain at an
acceptable timescale comparable with single neural activity (Peng
et al., 2018; Ploner and May, 2018).

Most studies that examined the neuronal response of
nociceptive pain in the ACC region used thermal stimuli and
investigated neuronal responses at the spike and LFP levels. In a
study by Li et al. (2017). recording electrodes were implanted in
the ACC, orbitofrontal cortex, S1, and periaqueductal gray. Local
field potential (LFP) patterns in these regions were investigated
by applying noxious and non-noxious thermal stimulation. They
concluded that alpha and beta power decreased after noxious
stimulation and gamma power increased. Also, the two stimuli
were separated with 86% accuracy (Li et al., 2017). In a similar
study, recording electrodes were implanted in the S1 and ACC.
The results showed that EPs are synchronous in two regions;
however, their amplitude is different. It was also reported that
the amplitude of EPs was directly related to the stimulation
intensity and the phase-amplitude coupling (theta phase vs. gamma
amplitude) was stronger in the S1 than in the ACC (Xiao et al.,
2019). In another study, brain signals were recorded from S1,
ventral posterior lateral thalamic nuclei, medial dorsal thalamic
nuclei, and ACC. Laser stimulation was used to cause pain. They
observed that noxious stimuli have double-peak evoked potentials
(EPs) in all regions, and there is a significant correlation between
stimulation intensity and the number of responsive neurons and
firing rates (Zhang et al., 2011). In another study by Zhang
et al. (2018) electrodes were implanted in the ACC regions, and
thermal stimulation (laser) was used to cause pain. Stimuli were
applied with three intensities: high-intensity noxious, low-intensity
noxious, and non-noxious. The classification results were as
follows: high-intensity noxious vs. non-noxious with 80% accuracy,
non-noxious vs. low-intensity noxious with 65% accuracy, and
high-intensity noxious vs. low-intensity noxious with 65% accuracy
were separated. Theta and high gamma bands were also shown
to be the best bands for pain intensity classification. In addition,
LFP features were better than spike features, but combining these
two features improved the classification results (Zhang et al.,
2018).

Nociceptive mechanical pain is more common in daily life
compared to other sorts of pain, so investigating this type of pain
is important. To the best of our knowledge, the LFP response to
painful mechanical stimulation has not been studied bilaterally in
the ACC region. The first purpose of this study is to investigate the
similarities and differences in the neuronal response to mechanical
stimuli with high-intensity noxious (HN) and non-noxious (NN)
intensities at the LFP level. The effect of frequency bands and
time intervals on classification accuracy was also examined. The
persistence of the pain effect is another issue that was examined.
In this work, microelectrodes were implanted bilaterally in the
ACC regions (Figure 1A). The second purpose of this study is
to scrutinize the ACC in two hemispheres. To this end, evoked
potential (EP), power, correlation, and PLV of LFP responses
between two hemispheres were analyzed at five-second intervals
after stimulus onset.
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FIGURE 1

(A) Schematic diagram representing electrode implantation. The signals were recorded from areas denoted by red patches. Electrodes were
implanted symmetrically in both hemispheres. The coordinates of the recording regions are +1.8 mm anterior/posterior, ±0.8 mm medial/lateral,
and 2.3 mm dorsal/ventral. (B) Schematic diagram of electrophysiological recordings in freely moving rats. Each trial of peripheral stimulation lasted
either 5s in the case of no withdrawal (non-noxious stimulus or NS). (C) The correct area for mechanical stimulation. (D) The structure of recording
sessions. Recording sessions were held on six consecutive days, with one recording session each day. NN stimulation was applied in the first two
sessions, and HN stimulation was applied in the subsequent four sessions. The structure of NN and HN sessions is shown at the bottom. (E) A sample
output signal of the von Frey device, in which the stimulation-related parameters are continuously sent to the recording device. (F) The interval of
pre-stimulation and post-stimulation to extract features.

2. Materials and methods

2.1. Animals and surgery

Seven male adult Wistar rats weighing 320 ± 38 g were used
in this study. Rats were kept under standard conditions of a 12-
h dark-light cycle with free access to water and food. The animals
were given an average of 10 days to adapt to the new environment
before the experiment began.

A mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg)
was used to anesthetize the rats (Wang et al., 2008; Khorasani
et al., 2016). The depth of anesthesia was checked during surgery
using a pinch test. A total of 20 mg of ketamine was injected
intraperitoneally if the depth of anesthesia decreased. After incising
the skin over the surgical regions, identifying the lambda and
bregma, and determining the location of the holes to reach the
ACC, the implantation site was perforated, and the microelectrodes
were gently inserted into the regions. Microelectrodes were
implanted in the ACC of both hemispheres. The coordinates of the
regions were determined according to the rat brain map (Paxinos
and Franklin, 2019) (+1.8 mm anterior/posterior, ± 0.8 mm
medial/lateral, and 2.3 mm dorsal/ventral) (Figure 1A).

Advent tungsten microelectrodes were used to record cortical
signals, and their diameter without insulation cover was 25
micrometers. Due to their small diameter and high flexibility,
these microelectrodes cannot penetrate the brain; therefore,
four microelectrodes were twisted together to increase their
strength for penetration into the cerebral cortex. The connection
of microelectrodes was checked after insertion, and then the
electrodes were covered by dental cement. After surgery, each rat
was allowed to recover with free access to food and water for
1 week in a separate cage, and signal recordings were done after this
recovery period. Analgesia after surgery was not used during the
recovery period, because using analgesic drugs increases the risk of
interfering with the results (Benrath et al., 2004).

The local ethics committee (The animal care and use committee
of Neuroscience and Neuroengineering Research Laboratory,
Iran University of Science and Technology) approved all the
issues, including anesthetization, craniotomy surgery, and recovery
procedures, and all the procedures were carried out in compliance
with ARRIVE guidelines on the animal.1

1 https://arriveguidelines.org
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FIGURE 2

The evoked potential was displayed as mean ± SEM. (A) The evoked potentials are related to HN stimulation. The difference between each time
sample of HN stimulation interval and baseline interval was statistically evaluated, and samples with a significant difference are denoted by green
dots (Wilcoxon signed rank test with a p-value < 0.05). (B) The evoked potentials related to NN stimulation (Wilcoxon signed rank test with a
p-value < 0.05). (C) The evoked potentials related to NN and HN stimulations are superimposed in a plot (Wilcoxon rank sum test with a
p-value < 0.05). Time 0, demonstrated by the dashed line, represents the onset of mechanical stimulation.

2.2. Mechanical stimulation

In recording sessions, rats were placed in a Plexiglas chamber
with one transparent and three opaque sides so that the
experimenter could observe the behavior of the rat. The chamber
floor had a lattice structure so the experimenter could easily pass
the von Frey filament through the holes and mechanically stimulate
the rat’s hind paw. The diameter of each hole was 2 mm, and the
distance between the holes was 5 mm. The upper surface of the cage
was open to allow the rat to move easily (Figure 1B).

There are several methods for measuring the sensitivity to
mechanical stimulation. This study used the von Frey method,
which is the gold standard method for mechanical stimulation.
Hand-made von Frey filaments were used to apply mechanical
stimulation to the rat’s hind paw (de Sousa et al., 2014). Stimuli were
applied with high-intensity noxious (HN) and non-noxious (NN)
intensities. The diameters of the hand-made von Frey filaments
were equal, and, as the intensity of stimulation is inversely related
to the length of the filament, filaments with different lengths were
used to change the force applied. Stimulation with intensities of 8
and 30 g was used in this study.

An electrical device using a load cell, analog-to-digital
converter, and microcontroller was developed to record the onset
of stimulation and paw withdrawal accurately. The signal from
the load cell was converted to a digital signal using an analog-to-
digital converter and sent to the signal acquisition device by the
microcontroller. This device was powered with a battery pack to
avoid interference with brain recordings. The output of the device
was a digital signal that contains information about the stimulation

onset time, stimulation period, and the time of paw withdrawal
(Figure 1E). Multi-channel systems (ME16-FAI-µPA-System) were
used to record the data. Microelectrodes were attached to the eight-
channel preamplifier, and LFP signals were recorded at a sampling
rate of 1,000 Hz.

2.3. Experiment protocol

Before the surgery, the rats were placed in the chamber to
evaluate their behavioral response to mechanical stimulation and
make them accustomed to the recording environment. In main
recording sessions, first, the rat was placed in the recording
chamber, and the signals were recorded after the animal got
acquainted with the recording environment. Six sessions of
stimulation and simultaneous recording of brain signals were held
for each rat. In the first two sessions, NN stimulations (8 g) were
applied to the left hind paw, and HN (30 g) stimulations were
administered in the subsequent four sessions. Our rationale for this
arrangement in the recording sessions was the emotional aspect
of pain in the ACC region. Fifty stimuli were applied to the left
hind paw in each NN recording session, in which the interval
between them was 30 s. A total of 10 to 15 stimuli were applied
at the beginning of each session to eliminate fear, worry, and
anxiety in NN sessions. In HN recording sessions, 25 stimuli were
applied with approximately 60-s intervals between two consecutive
stimuli (Figure 1D). All stimuli were applied to the left hind paw
(Figure 1C).

TABLE 1 Demonstration of significant difference between HN and NN stimulation parameters with Wilcoxon rank-sum test.

Evoked potential parameters HN NN Statistical test

The time interval between P1 and the stimulation onset time (ms) 92± 2.26 61± 3.82 p < 10−5

The time interval between N1 and the stimulation onset time (ms) 157± 2.59 157± 3.89 p = 0.81

P1 amplitude 1.15± 0.04 0.21± 0.04 p < 10−5

N1 amplitude −1.17± 0.04 −0.18± 0.04 p < 10−5

The results were expressed based on mean± SEM.
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FIGURE 3

Continuous wavelet transform with Morlet mother wavelet was used to extract the power. Mechanical stimuli are applied at time 0, which is shown
by a dashed line. (A) The power of the HN signal in the time-frequency domain. (B) The power of the NN signal in the time-frequency domain. Power
variations in this stimulation occurred in a shorter interval and a more limited frequency band than HN stimulation. (C) Continuous normalized
powers calculated in different frequency bands. (D) The power of the signal in different frequency bands was calculated in 0–500 ms intervals after
HN and NN stimulation compared to baseline power. (E) Power of frequency bands between 500 ms and 5,000 ms. n.s.(P-value > 0.05),
∗(0.01 < P-value < 0.05), ∗∗(0.001 < P-value < 0.01), ∗∗∗(0.0001 < P-value < 0.001), ∗∗∗∗(p-value < 0.0001) Wilcoxon rank-sum test.

2.4. Pre-processing

The signal was filtered by a 4th-order Butterworth band-pass
filter with (3–350) Hz cutoff frequency to extract LFP information.
Also, the mains artifact and its harmonics were removed with
a notch filter. To eliminate motion artifacts, oscillations less
than 3 Hz in the preprocessing step were removed. In addition,
trials distorted by motion artifacts were detected and removed
using the Grubbs algorithm (Statistics, 2013). Grubbs is an
iterative algorithm that removes one outlier per iteration based
on hypothesis testing. Trials in which more than 10% of samples
were identified as outliers were excluded. Also, the trials in which

the behavioral response of the rat was long-term were considered
defective trials. Given the non-stationary nature of brain signals
and the recording environment, the signal amplitude in each
recording session could be different across sessions. Therefore, the
signal of each channel in each session was normalized. The z-score
method, which was used for normalization, can be formulated as
follows (Cohen, 2019):

z(t) =
x(t)−x

σ
(1)

In this equation, x (t) is the LFP signal of each recording
channel, σ is the standard deviation, x is the signal mean in one
session, and z (t) is the normalized LFP signal.
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FIGURE 4

Local field potential (LFP) decoding analysis using supervised machine learning predicts the intensity of pain. (A–C) Demonstrate the HN–NS,
NN–NS, and HN–NN classification confusion matrices, respectively. (D–F) Show the distribution of selected features by the mRMR method in time
and frequency for classifying HN–NS, NN–NS, and HN–NN, respectively.

Channels that were noisy or had abnormal mean and standard
deviation were identified and removed from further analysis.
In total, one channel from rat 6 and one channel from rat
7 was removed. The LFP signals recorded from the brain
demonstrate the local activities of neurons within the range of
200–400 µm from implanted microelectrodes (Katzner et al.,
2009; Xing et al., 2009). Due to the fact that in our study, the
microelectrodes were implanted close to each other (30–50 µm),
the LFP signals recorded by close electrodes shared a significant
amount of data. Thus, non-noisy recorded channels from each
hemisphere were averaged and used for further analysis. All data
processing was carried out with MATLAB 2020b (The MathWorks,
Inc., USA).

2.5. Evoked potentials (EPs)

Evoked potentials (EPs) in LFPs show the activity of numerous
neurons in response to a stimulus (Bradley and Keil, 2012). EPs
are associated with the low-frequency activity of neurons and are
often extracted by averaging the time-aligned signal over several
trials (Garcia-Larrea et al., 2002; Xiao et al., 2019). In this study, EPs
related to HN and NN stimulation were examined. To investigate
the variations in the EPs pattern, the parameters of the time interval
between the stimulation onset and first positive peak (P1), the
time interval between the stimulation onset and first negative peak
(N1), and the amplitude of P1 and N1 were extracted. Wilcoxon
test was used to evaluate the significance between the extracted
parameters.

2.6. Spectrum analysis

Given that brain signals are non-stationary, the spectral
analysis of these signals is mainly done using time-frequency
analysis. Continuous wavelet transform (CWT) is a widely-
used time-frequency analysis method and can demonstrate the
variations in the spectrum over time (Bu, 2007). Scalogram
figures were used to examine power over frequency and time.
Scalogram is a representation of a wavelet transform, having
axes for time, scale, and coefficient values. According to
the similarity of brain signals to the Morlet mother wavelet
(Herrmann et al., 2014), the Morlet wavelet transform was
used to display the scalogram. The power was normalized
to the baseline using the z-score method to express the
signal power spectrum variations more accurately (Cohen,
2019).

2.7. Classification

The classification of the presence and the intensity of
stimulation, HN, NN, and no-stimulation (NS), was also
investigated. Three steps of feature extraction, feature selection,
and classification were performed to classify the stimuli. To extract
the features, each trial was divided into two parts according to the
stimulation onset. The first part, which includes a time interval
of [−4, −1] second, was considered NS. The second part is [0,
3] seconds, which was regarded as the stimulation time interval
(Figure 1F).
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TABLE 2 The classification results are reported based on the leave-one-subject-out method.

HN and baseline NN and baseline NN and HN

Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa

Rat1 90.70 0.81 78.79 0.57 75.33 0.49

Rat2 81.19 0.62 77.24 0.54 67.05 0.33

Rat3 91.37 0.82 72.07 0.44 83.22 0.63

Rat4 84.86 0.69 66.72 0.33 70.05 0.39

Rat5 97.54 0.95 67.16 0.34 92.16 0.83

Rat6 91.67 0.83 68.87 0.37 79.70 0.59

Rat7 84.23 0.68 70.70 0.41 86.13 0.71

Mean 88.79± 5.6 0.77± 0.11 71.65± 4.7 0.42± 0.09 79.04± 8.9 0.56± 0.17

To extract the feature, first, theta, alpha, beta, low-gamma,
and high-gamma bands were separated with Butterworth band-
pass filter, and then the mean absolute value (MAV) was
extracted for each sub-band (Shukla et al., 2019). Features
were extracted over time from 30-millisecond non-overlapping
windows, resulting in 100 features from each sub-band. Since the
recording was done bilaterally, and the signals of each electrode
were divided into five sub-bands, 1,000 features were extracted
from each trial. Each feature was normalized by the z-score
method. The role and importance of features in classification
are different; therefore, the simultaneous use of all features,
Increases the computational burden and may cause overfitting
issues in estimating the parameters of the classification model.
To avoid the mentioned issues, performing feature selection
and removing irrelevant features is necessary. The minimum
redundancy maximum relevance (mRMR) algorithm was used to
select the best features (Max-dependency, 2005). This method is
based on mutual information, which is expressed by the following
equation:

I
(
x; y

)
=

x
p
(
x, y

)
log

p(x, y)
p (x) p(y)

dxdy (2)

where p (x) and p
(
y
)

are the marginal probability density functions
of the x and y parameters, respectively, and p

(
x, y

)
is the joint

probability distribution. The purpose of the mRMR method is,
firstly, to maximize the average of the mutual information between
each feature (xi) and target (y), and secondly to minimize the
average of the mutual information between the two features,
namelyI(xj; xi. The mRMR objective function is as follows:

max
xj∈X−Sk

I
(
xj; y

)
−

1
k

∑
xi∈Sk

I(xj; xi)

 (3)

After selecting the best features by the mRMR method,
stimulation was classified into three stages (HN–NS, NN–NS,
and HN–NN). Numerous studies in brain signal classification
have used the support vector machine (SVM) method (Xiao
et al., 2019; Davoudi et al., 2021), so in this study, the SVM
algorithm with Gaussian kernel was utilized for classification. SVM
is a discriminative supervised learning model that delineates the
classification boundary by hyperplanes with maximum margin.
Specifically, SVM maps the inputs into a high-dimensional feature
space and then constructs a linear optimal hyperplane in the feature

space (Hosseini et al., 2010). The classification was done by two
validation methods; in the first method, rats’ trials were mixed, and
the results were reported by 10-fold cross-validation. In the second
method, one of the rats was considered as test data, and the other
rats were considered as training data (leave-one-subject-out), and
these steps were repeated for all rats.

2.8. Phase locking value (PLV)

To evaluate the synchronization between two hemispheres, the
connectivity measure of phase locking value (PLV) was exploited
(Bastos and Schoffelen, 2016; Hosseini and Shalchyan, 2022).
The mathematical calculation of PLV is described as follows.
The continuous Morlet wavelet transform is used to calculate
the complex representation of signals at various frequencies. The
phases of signals from both hemispheres are then extracted based
on their Morlet transformation. PLV measure at frequency f
between two signals computed as follows (Zhang et al., 2016):

PLV =

∣∣∣∣∣ 1
N

N∑
k = 1

exp(i
[
φx
(
ω, k

)
− φy

(
ω, k

)]
)

∣∣∣∣∣ (4)

where N is the length of the signals. The phases of signal x
and y at frequency ω are denoted by φx

(
ω, k

)
and φy

(
ω, k

)
,

respectively. The equation calculates the mean of phase angle
differences between the two signals over time. The value of PLV is
between 0 and 1. Where 0 expresses no phase synchronization and
1 is the full phase synchronization. To highlight task-related effects,
the pre-trial baseline interval was subtracted from the signals. In
this study, the PLV measure was used to evaluate the frequency
synchronization between the left and right hemispheres.

2.9. Pearson’s correlation coefficient
(PCC)

Pearson’s correlation coefficient (PCC) measures the linear
association of two variables. Mathematically, it is defined as the
ratio between the covariance of two variables and the product of
their standard deviations (Risqiwati et al., 2020); thus, PCC is a
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normalized value between−1 and 1. PCC is formulated as follows:

PCC =
∑

i (xi − x)(yi − y)[∑
i (xi−x)2

∑
i (yi−y)2

]1/2 (5)

where x and y are the mean of time series x = {x}Ni = 1,
and y = {y}Ni = 1, respectively. We used Pearson correlation to
scrutinize the linear correlation between the neural activity of the
two hemispheres.

2.10. Cross-correlation

Cross-correlation measures the linear relationship between two
different signals as a function of time delay. It is generally used
to quantify signals’ similarity and examine the synchronization
between signals (Silva et al., 2020). The cross-correlation function
between the real-valued signals x(n) and y (n) formulated as
follows:

rxy =
Cxy(k)
SxSy

; k = 0, ± 1, ± 2, ... (6)

rxy is an estimate of the cross-correlation.

Cxy
(
k
)
=

{
1
T
∑T−k

i = 1 (xi − x)
(
yi+k − y

)
; k = 0, 1, 2, ...

1
T
∑T+k

i = 1
(
yi − y

) (
xi−k − x

)
; k = 0,−1,−2, ...

(7)

where x and y are the sample means of the series. The sample
standard deviations of the series are:

Sx =
√

Cxx(0), where Cxx (0) = var (x) . (8)

Sy =
√

Cyy(0), where Cyy (0) = var
(
y
)
. (9)

In this research, we used the cross-correlation method for the
time lag of neural activity of the two hemispheres.

3. Results

3.1. Rats’ behavioral responses

In animal studies, pain is not directly measurable, so rat
behavioral responses are used to measure pain intensity (Deuis
et al., 2017). Behavioral responses to nociceptive pain include
shaking the head, moving the body, lifting, pulling, and licking
the foot (Fan et al., 1995). In the current study, the intensity
of stimuli was selected based on the behavioral response of the
rats. At the beginning of each NN session, 10 to 15 stimuli were
first applied to make the animals accustomed to the experimental
environment and reduce their stress and fear and then the
main part of the NN sessions started. In NN stimulations, the
duration of the NN stimulation period was 5 s, that is, the
filament was in contact with the rat’s hind paw for 5 s. Since
the intensity of the stimulation was less than the pain threshold
value, the rats usually did not respond to the stimulation during
this period. To further ensure the validity of the NN results,
trials in which rats showed a painful response (shaking, moving,
lifting, pulling, and licking) were discarded as invalid trials. The

animals during NN sessions withdrew their paw in less than 3%
of trials. These trials were removed from the analysis. In other
words, the stimulus did not lead to a painful response in NN
sessions. The time interval from the onset of stimulation to the
moment of paw withdrawal was reported based on mean ± SEM.
In HN stimulation to the hind paw, the rats lifted their paw
with a delay of 225 ± 10 ms. Lifting the paw was sometimes
accompanied by licking and gentle bites. According to the rats’
reaction to stimuli, it can be said that filament 8 g was non-noxious,
and filament 30 g was noxious for all rats. Also, reaction time
from session to session and rat to rat was examined. The results
showed that the reaction time significantly differed from rat to
rat; however, no significant pattern was observed from session to
session.

3.2. Evoked potentials analysis

After removing the motion and mains artifact by the
Butterworth filter and removing defective trials, 657 HN and 533
NN stimuli were used for processing. Although pooling data from
different animals and sessions is a potentially dangerous practice,
by examining the signals of each rat in each session, the risk of
“grand average” was minimized as much as possible. According to
Figure 2A, the EP of HN stimulation for 1 s after stimulation was
also significantly different from the baseline. In NN stimulation,
a significant difference occurred in a shorter and interrupted
interval (Figure 2B). The EPs in the HN and NN stimuli had
a similar pattern. However, they differed in the amplitude and
timing of the positive peaks and negative peaks. Statistical tests
were used to compare the EPs of the two stimuli over time more
precisely. The results show that during EPs, the signal amplitudes
after two stimuli were significantly different (Figure 2C). Domain
parameters and the occurrence times of P1 and N1 were extracted
to investigate the stimulus pattern, and the results are reported in
Table 1.

The time of the P1 in NN stimulation is significantly less than
in HN stimulation. However, the N1 in the two stimuli occurred
almost with similar delay, so it can be said that the time interval
between P1 and N1 in HN stimulation is shorter than in NN.
In HN stimulation, the amplitude of P1 was 5.47 times that of
NN stimulation, and this ratio was 6.5 for the N1 valley. In HN
stimulation, the P2 was observed, which was not observable clearly
in NN (Table 1). According to the mentioned cases, it can be
said that the pattern of variations of EPs in two stimulations are
almost similar, but they are different in the amplitude and time of
occurrence of peaks and valleys.

3.3. Power variations in different bands

Local field potential (LFP) provides information about the
collective behavior of neural groups. Different frequency bands
represent the activity of these neurons; for example, the power of
high-frequency LFP (gamma) can be an indirect representation of
spikes generated by nearby neurons (Buzsáki et al., 2012). So it is
essential to study the LFP signals in the frequency domain. In this
study, the Morlet wavelet transform has been used to investigate
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FIGURE 5

(A) Demonstrates the evoked potential of HN stimulation bilaterally and examines the statistical differences between the two hemispheres during
the time interval [–0.5, 2] s. (B) NN evoked potential in two hemispheres. The Wilcoxon signed rank test with a 95% confidence interval was used to
determine the significance of differences. (C) Band power in the interval of [0–500] ms and HN stimulation (Ipsilateral and contralateral).
n.s.(P-value > 0.05), ∗∗(0.001 < P-value < 0.01), ∗∗∗∗(p-value < 0.0001) Wilcoxon signed rank test.

the time-frequency domain. The power of each frequency was
normalized to its baseline value to illustrate the power changes
more clearly. The time interval selected for the baseline was [−1,
0] seconds. Each extracted frequency was normalized to its baseline
by the z-score method (Cohen, 2019).

In HN stimulation, power increased visibly from 3 to 120 Hz
immediately after stimulation. After 500 ms of HN stimulation, the
power changes varied at different frequencies. At frequencies of 30
to 120 Hz, the amount of power was still higher than the baseline
value for about 5 s after stimulation. Nevertheless, at frequencies
8–30, the amount of power was reduced to less than the baseline.
This power reduction persisted for up to 5 s after stimulation
onset (Figure 3A). In NN stimulation, power changes were also
noticeable, but these changes were less severe than HN stimulation
(Figure 3B).

Statistical tests should be used to make definitive statements
about power changes. Signals were divided into five sub-bands (4–
8 Hz theta, 8–12 Hz alpha, 12–30 Hz beta, 30–80 Hz low-gamma,
and 80–120 Hz high-gamma) to examine the frequency activities
in more detail (Figure 3C). To further investigate power changes,
power was extracted at intervals of [0, 0.5] seconds (EPs interval)
and [0.5, 5] seconds (after EPs interval). Significant differences
between the power of LFPs after HN and NN stimulation were
determined using the rank-sum test. In the interval of [0, 0.5]
seconds, the power of all sub-bands was significantly increased
in proportion to the intensity of stimulation (Figure 3D). Power
changes persisted after the EPs interval. However, the behavior of
the changes was different. It was observed that in the interval of 0.5–
5 s, the theta and beta bands with increasing stimulation intensity,
the power decreased significantly. In low-gamma and high-gamma

bands, the power was significantly increased, directly related to the
stimulation intensity (Figure 3E).

3.4. Classification performance

Local field potentials (LFPs) in the ACC encode information
about the intensity of stimulations. In the previous section “3.3.
Power variations in different bands,” the power of the LFP sub-
band was used to investigate the difference between the two
stimulation. However, other features can also demonstrate the
separability of the three states, HN, NN, and NS, in more detail.
A total of 657 HN trials and 533 NN trials, and 1,190 NS trials
were used for classification. One thousand features were extracted
from each trial. After choosing the best features by the mRMR
algorithm, classification was done. Two validation approaches
performed classification.

In the first method, all rats’ trials were combined, and the
results were reported by 10-fold cross-validation. In the HN–NS
classification, the best accuracy was achieved with 123 features.
The best features were generally selected from the high-gamma
and beta bands in the time interval of 0–500 ms (Figure 4D).
The SVM method could reliably distinguish these two classes with
89.6% accuracy and kappa = 0.79 (Figure 4A). The area under
the ROC curve (AUC) was 0.94, which shows that this classifier
could separate the two classes with outstanding results (Mandrekar,
2010). In the NN–NS classification, 74 features were selected
that were generally from the alpha and beta bands in the initial
1,200 ms (Figure 4E). According to the confusion matrix, the SVM
method could separate these two classes with acceptable results
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FIGURE 6

The correlation between the two hemispheres over time is plotted as mean ± SEM. The statistical test results were calculated with a p-value < 0.05.
(A) Correlation of the two hemispheres over time in HN stimulation. (B) Correlation of the two hemispheres over time in NN stimulation. The
Wilcoxon signed rank test with a 95% confidence interval was used. (C) Cross-correlation between the two hemispheres in HN stimulation.
(D) Cross-correlation between the two hemispheres in NN stimulation.

FIGURE 7

Time-frequency plot of PLVs for HN and NN sessions. The figures are normalized to baseline activity. (A) PLV time-frequency plot for HN stimulation.
(B) PLV time-frequency plot for NN stimulation.
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(accuracy = 71.1%, kappa = 0.41, and AUC = 0.71) (Figure 4B).
In the NN–HN classification, 57 features were selected as the best
features. Best features were generally selected from the high gamma
band in the time interval 0–600 ms (Figure 4F). The two stimuli
were separated with 84.7% accuracy and kappa = 0.69 (Figure 4C).
The AUC value was 0.91, which demonstrates that this classifier
could separate these two stimuli with outstanding results. The
best features for discriminating the intensity of stimulation were
generally selected in the EP occurrence time interval, the gamma
and beta bands are the most effective bands in differentiating pain
intensities, respectively (Figures 4D–F).

In the second method, leave-one-subject-out was used. The
algorithm was repeated 100 times for each rat in this method,
and then the results were reported (Table 2). HN stimulation was
separated from NS with 88.79% accuracy, which was 1% lower than
the previous method. NN stimulations were distinguished from NS
with 71.65% accuracy, which was not significantly different from
the former method. HN stimulation was separated from NN with
79.04% accuracy, which was 5.5% lower than the previous method.
Given that the results of leave-one-subject-out and 10-fold cross-
validation were close to each other, we can say that the processing
methods are comprehensive and can be generalized to new rats.

3.5. Interhemispheric neural
characteristics

By investigating the EP of two hemispheres, we found that,
in NN stimulation, there was no significant difference between
EPs in the two hemispheres (Figure 5B). In HN stimulation, the
absolute amplitude of P1 and N1 in the ipsilateral was significantly
higher than the contralateral (p < 10−5, Wilcoxon signed-rank
test) (Figure 5A). However, in NN there was no significant
difference. Latencies of P1 and N1 in the two hemispheres
were not significantly different (p > 0.05, Wilcoxon signed-rank
test). The LFP band power of two hemispheres in HN and NN
was investigated in two-time intervals ([0–500] ms and [0.5–
5] seconds). Investigating the signal power between the two
hemispheres showed that the LFP power was significantly different
in the two hemispheres only in HN stimulation. The power of
the theta, alpha, and beta bands on the ipsilateral hemisphere was
significantly higher than the contralateral in the interval of 0–
500 ms (Figure 5C). However, no significant difference between
LFP band powers in the two hemispheres was observed in any
stimulation, in the 0.5–5 s interval.

To investigate the activity synchronization between two
hemispheres, a cross-correlation analysis was performed. Cross-
correlation measures the synchronization between two signals by
time lagging one of them and calculating the correlation between
them as a function of time lag. To calculate the time lag between
hemispheres, first, the cross-correlation in each trial was calculated,
and finally, the average of all trials was determined. The time lag
between two hemispheres’ activity is equivalent to the time that the
greatest correlation occurred. Cross-correlation peaked in both HN
and NN stimulations at time = 0 (Figures 6C, D). This result shows
that the activity of the two hemispheres in ACC is synchronous.

The correlation over time was calculated to examine the LFP
signal in the two hemispheres more accurately. For this purpose,

the correlation between the two hemispheres in each trial was
calculated using a 500-ms sliding window with a 1-ms step and
averaged over all trials. In HN stimulation, immediately after
stimulation, the correlation between the two hemispheres increased
significantly and then decreased. This decrease was so great that
it became lower than the baseline value (Figure 6A). These
correlation variations persisted for up to 4 s after stimulation and
then returned to pre-stimulation values. In NN stimulation, the
correlation changes were like HN stimulation, but these changes
were not significant, and returning to the baseline level occurred
sooner than in HN stimulation (Figure 6B).

Generally, connectivity measures the interaction between
different regions. Correlation connectivity represents the similarity
of two regions from an amplitude domain perspective. To study
the phase difference between the two hemispheres, we employed
the PLV analysis. In this study, PLV was calculated over time and
frequency using continuous wavelet transform. Variations in PLV
after stimulation were various in different bands. After applying the
HN stimulus, the two-hemisphere PLV increased in all bands in the
EP interval. After about 500 ms of stimulation, PLV continuously
decreased to less than the baseline value. The reduction of PLV
is more evident in the beta and low-gamma bands. The recovery
period was non-identical in different bands. In addition, at low
frequencies, the PLV recovery cycle was longer than the high
frequencies. The duration of variations in HN stimulation lasted
approximately 4 s (Figure 7A). PLV fluctuations between the two
hemispheres are not informative in NN sessions (Figure 7B).

In general, it seems that mechanical stimulation affects the
phase synchronization between the two hemispheres of the ACC
area, and the greater the stimulation intensity, the greater the
duration time, and intensity of the oscillations.

4. Discussion

The ACC response to mechanical stimuli in time and frequency
was investigated in the present study. Previous studies have mostly
examined the brain signal induced by thermal stimulation (Iannetti
et al., 2008; Frot et al., 2016), and usually, the recording was
done unilaterally. To the best of our knowledge, this is the
first study investigating the effect of mechanical stimulation in
the ACC regions bilaterally. We evaluate the neuronal activity
of the ACC region from the perspective of EP analysis, power
analysis, stimulation intensity classification, and connectivity of
two hemispheres. The main goal of this study is to investigate
the persistence of the pain effect in brain signals and examine the
interactions between the two hemispheres. As far as we know, this is
the first study that examines the correlation and phase lag of the two
hemispheres over time. Also, another innovation of this research
was the investigation of variations in power, EPs, correlation of two
hemispheres, and the phase lag of two hemispheres over time to
check the persistence of pain effect on brain signals.

Evoked potential (EP) wave latency and amplitude
demonstrate, respectively, the length of time spent and the
number of neural resources participating during information
processing (Lin et al., 2019). Therefore, neural correlates of EP
waves were specially investigated in detail. To extract EPs, 657
HN and 533 NN trials were averaged from seven Wistar rats for
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a valid EP waveform. The pattern of EPs variations in the two
stimuli was similar but differed in amplitude and latency of EPs
waves. It was observed that the amplitude of P1, N1, and P2
increased significantly with increasing intensity of mechanical
stimulation. It was also concluded that the stimulation intensity
has a direct relationship with the P1 latency; that is, with the
increase of the intensity, the P1 latency increased significantly.
However, the two stimuli had no significant difference in the N1
latency. Reviewing previous studies showed that the pattern of
EP in thermal stimulation (Li et al., 2017; Zhang et al., 2018) was
similar to mechanical stimulation.

Pain intensity classification was done in previous studies, but
the stimuli were generally thermal (Wang et al., 2003, 2008; Zhang
et al., 2011, 2018; Li et al., 2017; Urien et al., 2018; Xiao et al.,
2019). In the present work, the intensities of mechanical stimuli
were classified. A recent study used both the spike and LFP features
to classify laser stimulations, which reported 80% classification
accuracy between HN and NN stimulation (Zhang et al., 2018).
In another study, data from four regions, ACC, S1, orbitofrontal
cortex (OFC), and periaqueductal gray (PAG), were used to classify
HN and NN thermal stimuli. They achieved an accuracy of 86%
(Li et al., 2017). In our study, only LFP features were used for
classification. The classification results were analyzed by leave-
subject-out and 10-fold cross-validation methods. Classification
accuracies based on the 10-fold cross-validation method in HN–
NS, HN–NN, and NN–NS scenarios were 89.6, 84.7, and 71.1%,
respectively. The results of the leave-one-subject-out method were
close to the 10-fold results, which shows the comprehensiveness
and generalizability of the model. In addition, based on the feature
selection analysis, we showed which time interval after stimulation
and which frequency bands are more effective in distinguishing
pain intensity (Figure 4). In noxious stimulation, features were
generally selected from the [0 to 500] ms interval and gamma and
beta bands. However, in non-noxious stimulation, the best features
were selected from [500 to 1,000] ms and alpha and beta bands.

In the brain, the experience of pain is associated with neuronal
oscillations at frequencies ranging from infra-low fluctuations to
high-frequency oscillations (Ploner et al., 2017). Painful stimulation
creates distinct time and frequency patterns in brain signals.
A previous study noted that the ACC region’s alpha and beta band
power decreases due to painful thermal stimulation, and the gamma
band power increases (Li et al., 2017). Another study showed
that theta and high-gamma band power increased significantly
due to painful thermal stimulation (Zhang et al., 2018). In this
study, power was extracted during the EP occurrence interval
(0–0.5 s) and after the EP occurrence interval (0.5–5 s) using
continuous Morlet wavelet transform. The power of all bands
increased significantly during the EP interval, and the power
was directly related to stimulation intensity. However, the band
power variations were different in the post-EP interval. During this
interval, low frequencies (theta, alpha, and beta) had an inverse
relationship with stimulation intensity. Whereas high frequencies
(low-gamma and high-gamma) had a direct relationship with
stimulation intensity. Power variations persist for up to 5 s
after stimulation, which indicates the permanence of the noxious
stimulation effect in the ACC regions. The power analysis findings
corroborate the classification results. It mainly showed that high
gamma, beta, and theta band power activities represent the most
discrimination between HN and NN stimulations. In fact, the

power variations of these bands have gone through a more stable
process with fewer fluctuations until the return to the baseline
activity (Figure 3C).

In a previous related study to evaluate the brain function caused
by thermal stimulation, electrodes were implanted bilaterally in
S1, ventral posterior thalamus (VP), ACC, and medial dorsal
thalamus (MD) regions. Their result showed that the medial pain
pathway (ACC, MD) had bilateral, faster, and smoother responses.
However, in the lateral pain pathway (S1, VP), the responses
were transient and delayed, and these regions were activated
contralaterally (Wang et al., 2003). In more detail, our study
investigated the similarities and differences of EPs, correlation,
and PLV in the two hemispheres. The results showed that the
EPs in the two hemispheres were very similar and had the same
pattern. However, in HN, the amplitudes P1 and N1 on the
ipsilateral side were significantly greater than contralateral. In
addition, our results show that EPs occur simultaneously in both
hemispheres. Furthermore, the analysis of the correlation between
two hemispheres showed that in HN stimulation, the correlation
value changes after applying the stimulus, and after about 4 s,
the correlation value returns to the pre-stimulation value. Perhaps
this 4-s interval is related to the persistence of the pain effect.
Correlation variations over time in NN stimulation were not
significantly different from baseline activity. To further investigate
the relationship between the two hemispheres, the PLV of the
two hemispheres over time was examined. The results showed
that the stimulation intensity was directly correlated with the PLV
variations period. In other words, the more intense the stimulation,
the longer it takes for PLV to return to the baseline value.

5. Conclusion

In a nutshell, the objective of this research was twofold. First, we
aimed to investigate the discrimination of mechanical stimulations
from ACC brain recordings in a rat model. Our results based on
EP, power, and time-frequency analysis revealed that mechanical
stimulations at different intensities can be distinguishable from
ACC activities. The second goal was to study the activity of
the two hemispheres from amplitude and phase perspectives at
various frequencies and time intervals. We showed that the ACC
is activated bilaterally. The variations found in correlation and PLV
analysis of both hemispheres would persist for a few seconds after
stimulation onset. Although the presence of noxious mechanical
stimulus was less than 250 ms, the effect of mechanical pain would
persist for up to 4 s after stimulation. This claim is supported based
on bilateral desynchronization activities via correlation and PLV
connectivity analysis. The power analysis also revealed that the
variations in power would return to baseline value after about 4 s
corroborating the results found in bilateral connectivity analysis.

6. Limitations

In this work, only one area was recorded bilaterally. Although,
increasing the areas of implantation can lead to the examination
of brain connectivity in more detail. Also, it is possible to use
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electrodes that can record neural activity at spike and LFP levels.
In the task design part, by increasing the variety of stimulation
intensity and also applying stimulation to both paws, allows us
to examine the effects of mechanical stimulation on the brain
signal in more detail.

Also, motor activity is an integral part of pain-related tasks
in freely moving experiments, therefore, due to the proximity of
the ACC region and the motor cortex, there is concern about
interference in neuronal activity. In this research, we tried to
minimize the effects of movement by removing the trials that had
long movements and examining the activity of neuronal activity
in two intervals.
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