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Living organisms navigate through a cyclic world: activity, feeding, social

interactions are all organized along the periodic succession of night and day. At

the cellular level, periodic activity is controlled by the molecular machinery driving

the circadian regulation of cellular homeostasis. This mechanism adapts cell

function to the external environment and its crucial importance is underlined by

its robustness and redundancy. The cell autonomous clock regulates cell function

by the circadian modulation of mTOR, a master controller of protein synthesis.

Importantly, mTOR integrates the circadian modulation with synaptic activity

and extracellular signals through a complex signaling network that includes the

RAS-ERK pathway. The relationship between mTOR and the circadian clock is

bidirectional, since mTOR can feedback on the cellular clock to shift the cycle

to maintain the alignment with the environmental conditions. The mTOR and ERK

pathways are crucial determinants of synaptic plasticity and function and thus it is

not surprising that alterations of the circadian clock cause defective responses

to environmental challenges, as witnessed by the bi-directional relationship

between brain disorders and impaired circadian regulation. In physiological

conditions, the feedback between the intrinsic clock and the mTOR pathway

suggests that also synaptic plasticity should undergo circadian regulation.

KEYWORDS

circadian rhythm, mTOR, LTP, memory and learning, neuronal excitability, chloride
homeostasis

Introduction

The alternation of light and darkness dictates adjustments to all living organisms in the
form of alternate periods of rest and activity. This pattern is present at all complexity scales
from humans all the way down to unicellular organisms. In eukaryotic cells time keeping
is primarily due to a cell autonomous machinery that relies on transcription as well as on
post-transcriptional events to create a molecular clock with a period of about 24 h. The
intrinsic clock is coupled to cell functions by the cyclic activation of molecular effectors
which translate time keeping into changes of cell state. The mechanistic/mammalian Target
of Rapamycin protein (mTOR) is a crucial effector as the periodic activation of this pathway
directly couples the circadian clock to cell proteostasis and function. Importantly, mTOR
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plays a fundamental role in synaptic plasticity as it is implicated in
the conversion of short term to long term plasticity by controlling
protein synthesis in the postsynaptic volume. In this short review
we will discuss the basic elements of these signaling modules
and we will underline some open issues on our understanding of
the complex link between circadian clock, mTOR activation and
neuronal excitability.

The cell autonomous molecular
clock

The flow of time in cells is kept by two interacting processes that
include delay and feedback lines. In most cells, the molecular clock
is due to a feedback loop based on transcription and translation of
promoters and repressors of transcription as illustrated in Figure 1
(Dunlap, 1999; Shearman et al., 2000; Ko and Takahashi, 2006).
The molecular counterpart of the delay line is implemented by
the intrinsic timing of the transcription and translation steps
involved in the process and in the characteristic timing of the
trafficking of the elements between nucleus and cytoplasm (Tamaru
et al., 2003; Kwon et al., 2006). The description of the loop
can be conveniently started with the heterodimerization of the
proteins CLOCK (Circadian Locomotor Output Cycle Kaput) and
BMAL1 (Brain and Muscle ARNT-Like protein 1) in the cytosol
of the cell (Figure 1A). These heterodimers then translocate to the
nucleus where, by binding to DNA regulatory elements, activate the
expression of the per (Period) and cry (Cryptochrome, Figure 1B)
genes (Darlington et al., 1998). The newly translated cytosolic PER
and CRY proteins form heterodimers that eventually translocate
into the nucleus (Tamaru et al., 2003; Kwon et al., 2006) where
they act on the CLOCK:BMAL1 complex to repress their own
transcription (Figure 1C; Gekakis et al., 1998; Sangoram et al.,
1998).

On top of this feedback loop, sits a second modulatory element:
the CLOCK:BMAL1 heterodimers activate the transcription of
two additional genes: Rev-Erb and Ror, two retinoic acid-related
orphan nuclear receptors. These two additional elements exert
opposite actions on BMAL1: while REV-ERB inhibits Bmal1
transcription, ROR promotes it, leading to a complex modulation
of the circadian regulation of BMAL1 abundance (Guillaumond
et al., 2005; Takahashi, 2017; Cox and Takahashi, 2019). These
autoregulated feedback loops complete a cycle in about 24 h and
represent the circadian clock.

The period of the circadian clock also depends on the rate of
degradation of its elements. Notably, Casein Kinase 1 (CK1) is a
small family of kinases that targets PER to promote proteasomal
degradation. The inhibition of CK1 causes a reduced rate of
degradation and causes a lengthening of the circadian period
(Hirota et al., 2010; Meng et al., 2010; Kolarski et al., 2021).
In addition, post-translational modifications of the core elements
of the circadian clock have a subsidiary role in stabilizing and
modulating its operation (Mehra et al., 2009; Brenna and Albrecht,
2020). Mutations that affect phosphorylation sites of some of the
core clock elements lead to a surprising variety of downstream
effects. Mutated Per2 is associated to altered wake-rest cycle and
sleep disturbance (Toh et al., 2001; Xu et al., 2007) due to defective
degradation mediated by CK1 (Xu et al., 2005); mutations of Per1

instead leads to feeding disorder and obesity (Liu et al., 2014) and
to worsened outcome of strokes (He et al., 2022). At the low end of
this spectrum of effects, the defective phosphorylation of Cry1 has
a limited impact on voluntary locomotion (Vaughan et al., 2019).

Finally, to underline the robustness of this machinery and
its importance for cell function, there are also multiple levels of
redundancy that prevent the complete failure of time keeping in
case of the loss of some elements. The redundancy is provided by
paralogs of the essential molecular players: CLOCK has a paralog
in NPAS2 (DeBruyne et al., 2007) that can bind with BMAL1.
Although the two paralogs PER1 and PER2 are not functionally
identical and support different downstream functions (Park et al.,
2023), they still offer a degree of redundancy since the double
knock out is necessary to remove periodicity of the clock (Zheng
et al., 2001). Similarly, the KO of both paralogs CRY1 and CRY2,
is required for a completely arrhythmic phenotype (Vitaterna et al.,
1999).

mTOR is a bidirectional linker
between the circadian clock, cell
response, and environmental signals

The interaction of the autonomous circadian clock with
the cell and the complete organism requires two additional
components. First, the phase of the autonomous clock must
be converted in biochemical actions that can be interpreted
by the cell and drive its response. Second, the circadian clock
must be able to receive signals from the environment to
keep the alignment between the internal state and the shifting
environmental conditions. The periodic transcription-translation
cycle driven by the CLOCK:BMAL1 complex not only seeds the
circadian clock, but also entrains several molecular effectors to
the circadian cycle by controlling the transcription of a plethora
of genes (Zhang et al., 2014). One of these genes that has a
crucial role in the transduction of the cellular response to the
circadian rhythm is mTOR (Laplante and Sabatini, 2013; Lipton
and Sahin, 2014; Saxton and Sabatini, 2017). This protein kinase,
conserved from yeast to mammals, regulates numerous signaling
pathways which coordinate cell metabolism and growth with the
environmental conditions and are fundamental for maintaining cell
and organism physiology in a constantly changing internal state
and external environment. mTOR is a serine/threonine protein
kinase which forms the catalytic core of two complexes: mTORC1
and mTORC2 (Laplante and Sabatini, 2013; Lipton and Sahin,
2014; Saxton and Sabatini, 2017; Switon et al., 2017). The main
function of mTORC1 is to control cell growth and metabolism
by the activation of several anabolic pathways including protein,
lipid, and nucleotide synthesis and the regulation of glucose
metabolism. To favor cell growth mTORC1 also inhibits catabolic
cellular processes. mTORC2 is mostly involved in cells proliferation
and survival. To this end mTORC2 has a key role in the
regulation of the actin cytoskeleton in addition to a variety of
other functions (Saxton and Sabatini, 2017). mTOR signaling
exerts a key role in the maintenance of brain physiology, being
involved in several essential neuronal processes and functions,
such as neuronal stem cell proliferation, neuronal circuits
formation (Yoon et al., 2009; Nie et al., 2010) and maintenance
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FIGURE 1

Stages of the autonomous circadian clock. (A) The cycle begins with the dimerization of CLOCK and BMAL1 in the cytosol and the following
translocation to the nucleus. (B) The CLOCK:BMAL1 heterodimers bind to E-box response elements to promote the expression of several genes
including Cry and Per. Cytosolic PER takes part in a regulatory loop with mTOR by activating TSC1, and upstream inhibitor of mTOR thus contributing
to the entrainment of mTOR to the circadian cycle (Wu et al., 2019). PER activity is curtailed by its degradation mediated by CK1. (C) The CRY:PER
heterodimers translocate in the nucleus and inhibit the association of CLOCK:BMAL1 with the DNA thus repressing gene expression. (D) BMAL1
shuttles between the nucleus and the cytoplasm where it is phosphorylated by S6K and then participates to the rhythmic activation of translation
(Lipton et al., 2015). Orange boxes indicate the activator elements of the translation feedback, while elements in green and magenta indicate the
repressors. Filled arrowheads indicate protein translocations and positive interactions. Lines terminating with a circle indicate inhibitory interactions.

(Raab-Graham et al., 2006; Jung et al., 2014), experience dependent
synaptic plasticity, learning and memory (Casadio et al., 1999;
Hoeffer et al., 2008; Hoeffer and Klann, 2010). mTOR is also
implicated in the regulation of complex behaviors such as sleep,
feeding and circadian rhythms (Cao and Obrietan, 2010). The
centrality of this pathway in the brain is underlined by the fact that
mTOR dysregulations are implicated in cognitive deficits, defective
synaptic plasticity and epilepsy (Buffington et al., 2014; Borrie et al.,
2017; Trovato et al., 2020; Nguyen and Bordey, 2021; Girodengo
et al., 2022; Singla et al., 2022a).

The interplay of the circadian machinery with mTOR is still
a matter of active investigation and involve the interaction of
mTOR with elements of the cell autonomous clock. Translation is
temporally shaped by the circadian regulation of mTOR expression
(Zhang et al., 2014) and ribosome biogenesis (Jouffe et al.,
2013). Further modulatory inputs to mTOR are due to by direct
interactions of elements of the circadian clock to the mTOR
pathway. PER and BMAL1 are involved in a complex regulatory
loop with mTOR (Figures 1B, D) that is not yet completely
understood (Singla et al., 2022a). The hyperactivation of mTOR
due to loss of Tuberous Sclerosis Complex 1/2 (TSC1, TSC2), two
upstream inhibitors of mTOR, disrupts the circadian clock and
causes abnormally high levels of BMAL1 and increased expression

of Per1 and Per2 (Lipton et al., 2017). On the other end, BMAL1
exerts a restraining effect on mTOR, since the genetic reduction
of BMAL1 levels leads to mTOR hyperactivation (Khapre et al.,
2014; Singla et al., 2022b). Furthermore, a positive regulatory
contribution from the clock on mTOR-mediated translation is
provided by the phosphorylation of cytosolic BMAL1 by the mTOR
effector S6K (Lipton et al., 2015) leading to facilitated translation.
This aligns mTOR activity to the late phase of the BMAL1 cycle
when its localization is mostly cytosolic (Figure 1D). A negative
feedback is provided by PER2 that has been shown to restrain
TORC1 by activating TSC1 (Wu et al., 2019).

The suprachiasmatic nucleus

In most metazoans, the main environmental clue is provided by
the light cycle. The intersection between the diurnal light variation
and the circadian machinery occurs in the suprachiasmatic nucleus
(SCN) (Hastings et al., 2018; Patton and Hastings, 2018). The SCN
is a small area (about 10,000–15,000 neurons in the mouse) placed
in the anterior part of the hypothalamus where neurons integrate
light dependent signals originating from the retina entraining
the autonomous clock to the light cycle (Cao et al., 2011). The
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cell autonomous nature of the intrinsic clock is underlined by
the fact that isolated neurons from the SCN support a diurnal
change of firing rate along with changes in intracellular Ca2+,
and exhibit a circadian expression of the gene per2 (Webb et al.,
2009; Noguchi et al., 2017), thus maintaining circadian regulation
just like cultured cell lines. In the mouse SCN, the onset of
neuronal firing is triggered by light exposure in the morning and
leads to Extracellular Regulated Kinase (ERK) activation and to
phosphorylation of CREB (Cyclic AMP Response Element Binding
protein) and to the onset of CRE-mediated transcription (Ginty
et al., 1993). This step is crucial for the entrainment of the circadian
clock to light (Lee et al., 2010; Wheaton et al., 2018) and reflects
the importance of cAMP signaling in maintenance of the circadian
cycle (O’Neill et al., 2008). Following this, the levels of PER
and CRY rise through the late afternoon leading to inhibition
of CLOCK:BMAL1 transcription early at night. The approximate
timing of all of these processes are indicated in Figure 2A (O’Neill
et al., 2008; Cao et al., 2011; Brancaccio et al., 2013; Hastings et al.,
2018; Nishide et al., 2018). The circadian regulation of neuronal
firing in the SCN sends time keeping signals to the entire brain and
body by means of synaptic transmission and hormone secretion
(Herzog et al., 2017).

In the SCN, mTOR activity is regulated by the circadian clock
(Cao et al., 2011) and, importantly, the relationship between mTOR
activity and the circadian clock is bidirectional as changes in mTOR
activity pattern driven by environmental changes can feedback
to the cellular clock. Indeed, as anybody that has flown through
different time zones knows, the cell autonomous clock is gradually
realigned to the day-night cycle by exposure to light during the
subjective dark period. The interruption of darkness in the final
part of the night by an exposure to light causes a rapid build-up
of ERK phosphorylation in the SCN (Obrietan et al., 1998; Serchov
et al., 2016) leading to the activation of mTOR (Cao et al., 2008;
Cao and Obrietan, 2010) and the anticipated expression of PER1
and PER2 (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi
et al., 1997) and BMAL1, thus anticipating the original circadian
cycle (Figures 2B, C). As already mentioned, we do not have a
complete picture of the interactions among the circadian clock,
ERK and mTOR pathways. A quantitative understanding of these
interactions requires the knowledge of the transcriptional and post-
transcription mechanisms at play, the affinity and kinetics of each
reaction and also the detailed description of the delays imposed
by diffusion and shuttling between nucleus and cytoplasm of the
involved entities (Koch et al., 2022).

The cross talk between the mTOR and ERK pathways (Switon
et al., 2017) and the role of ERK in circadian rhythm biology
(Obrietan et al., 1998; Akashi et al., 2008; Goldsmith and Bell-
Pedersen, 2013) are remarkable as the RAS-ERK signaling axis
is essential to integrate synaptic responses with the activation
of tyrosine kinase receptors by permissive factors such as Brain
Derived Neurotrophic Factor (BDNF) or Insulin Growth Factor
(IGF), which play a crucial role in synaptic plasticity. ERK is
activated by multiple pathways which can be differently recruited
in different brain districts (Miningou and Blackwell, 2020). For
example, as mentioned above, ERK is phosphorylated in the SCN by
environmental blue light (Obrietan et al., 1998) while in the visual
cortex the visual stimulus needs to be spatially patterned to activate
the pathway (Cancedda et al., 2003).

In neurons, mTOR is crucial not only for cell housekeeping
but also for local protein synthesis in dendrites, in dendritic spines
and in axons (Altas et al., 2022). Indeed, activity dependent local
activation of mTOR is required for consolidation of long-term
memory (Nguyen, 2002; Cammalleri et al., 2003; Kelleher et al.,
2004; Tsokas et al., 2007; Buffington et al., 2014). In large pyramidal
neurons, the biochemical coupling between soma, dendrites and
dendritic spines is only partial (Logan and McClung, 2019; Walker
et al., 2020). Thus, in our view, an important open question
about the cross talk between circadian clock and synaptic plasticity
is whether there are two pools of mTOR in neurons. First, a
perisomatic pool tightly associated with the circadian time keeping
and responsible for homeostasis of the neuronal proteasome.
Second, a dendritic pool, which activity is less strongly coupled to
the cell clock and that is mostly modulated by the history of local
synaptic activity and by the availability of ligands of the tyrosine
kinase receptors.

Circadian clock, synaptic plasticity,
and cortical excitability

The importance of circadian rhythm is underlined by the link
between circadian clock and proper brain operations, as disruption
of the circadian rhythm prevents normal cognitive functions and
can result in brain pathology (Logan and McClung, 2019; Walker
et al., 2020). Everybody knows that the time of the day influences
cognitive performances. The link between circadian rhythm and
behavioral performances has been explored first in a mouse model
in a seminal paper of several decades ago (Davies et al., 1973). In
that study rats were allowed to explore an illuminated environment
joined to a smaller dark chamber where they were subjected to
electric shock. After 24 h rats were placed again in the experimental
environment and the degree of passive avoidance was measured
as the amount of time that the rat preferred to spend in the
illuminated chamber. The avoidance response was much larger
when training and testing were performed during the light phase.
The authors concluded that this result “probably reflects a 24-h
rhythm in some aspects of learning or retention.” Other studies in
nocturnal rodents confirm that learning assays involving negative
stimuli peaks during the day (Chaudhury and Colwell, 2002;
Eckel-Mahan et al., 2008; Wang et al., 2009), thus suggesting a
increased plasticity of the pathways processing negative emotions.
In contrast, behavioral assays of memory and learning involving
positive or neutral stimuli peaked at night (reviewed in Snider et al.,
2018; Goode et al., 2022). From this body of evidence, we can
expect that long-term potentiation (LTP), a correlate to memory
and learning, should also be modulated through the day-night
cycle. Indeed, studies performed in nocturnal rodents show that
hippocampal LTP is remarkably affected by the time of the day
and that this modulation stands even after rearing the animals
in darkness for a few days, thus demonstrating the dependency
on the intrinsic circadian clock rather than on the light cycle.
Surprisingly, there is no complete agreement on the direction of
the effect: while several studies indicate that hippocampal LTP
measured in CA1 is stronger at night, during the active phase of
nocturnal animals (Chaudhury et al., 2005; Bowden et al., 2012;
Nakatsuka and Natsume, 2014; Besing et al., 2017; Davis et al., 2020;
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FIGURE 2

(A) Relative time course of the processes controlling time keeping in the SCN. ZT stands for Zeitgeber Time with 0 at dawn. Exposure to blue light at
the end of darkness causes an increase of neuronal activity in the SCN and phosphorylation of ERK. The activation of the ERK pathway is followed by
the activation of gene expression mediated by CREB and the activation of mTOR leading to protein synthesis. Phosphorilated S6 kinase (pS6K) is a
proxy for mTORC1 activation. The temporal flow of the autonomous circadian clock is reported by the expressions of BMAL1 and PER that have a
phase difference of about 12 h. (B) Light delivered during the late night increases firing in the SCN thus anticipating ERK phosphorylation, mTOR
activation and protein synthesis. In this way, BMAL1 expression is anticipated thus leading to an overall anticipation of the circadian loop. (C) mTOR is
the converging point between the environmental stimuli and the autonomous circadian clock.

Goode et al., 2022), other studies provide a different picture, with
the peak of LTP during the day (Raghavan et al., 1999; McCauley
et al., 2020). These differences underline the complexity of the
problem of linking circadian rhythm with models of synaptic
plasticity and behavioral assays. Notwithstanding these differences,
that might arise from diverse factors such as animals age, timing
of the slice preparation and other experimental details, the link
between LTP, time of day and circadian clock is unquestionable.

This connection is strengthened by the observation that genetic
alterations of the circadian clock lead to memory and LTP
impairment. The ablation of the per1 (Rawashdeh et al., 2014)
or bmal1 (Wardlaw et al., 2014) genes in mice impairs not only
a proper operation of the circadian clock, but it also degrades
memory and hippocampal LTP. Finally, in the APP/PS1 mouse
model of Alzheimer’s disease, the impairment of circadian rhythm
is accompanied by loss of the circadian difference for novel object
recognition and hippocampal LTP (He et al., 2020).

Given the bidirectional involvement of mTOR and RAS-ERK
pathways as both entrainers and effectors of the circadian rhythm
and the role that these pathways play in synaptic plasticity it is
not surprising that there is a tight link between plasticity and the
circadian clock as supported by a wide body of literature (Saraf
et al., 2014; Snider et al., 2018). Here, we would like to emphasize
very recent data that suggest the relevance of a novel mechanism,
so far only identified in non-excitable cells and cardiomyocytes,
coupling circadian activation of mTOR with intracellular ion
homeostasis. This mechanism is suggested by a manifestation of
circadian biology that has been known for several years but it
has not permeated the neurobiology community yet: during the
circadian cycle the intracellular concentration of Na+, K+, Cl−,

and Mg2+ oscillates in phase (Feeney et al., 2016; O’Neill et al.,
2020). This process was demonstrated first in non-excitable cells,
until a recent beautiful study has demonstrated that the circadian
clock causes a periodic change of intracellular K+, Na+ and Cl−

in cardiomyocytes (Stangherlin et al., 2021). As expected, this
process influences cells excitability leading to a diurnal cycle of
the frequency of the spontaneous heartbeat that accelerates in
correspondence of elevated intracellular Na+ and K+. The periodic
changes in intracellular ion concentration are controlled by ion
cotransporters and this is driven by the cyclic circadian activation
of mTOR so that high ion concentration occurs in correspondence
of low mTOR activity (Stangherlin et al., 2021). Importantly,
flattening mTOR activity by its pharmacological inhibition cancels
the circadian rhythm of heartbeat frequency.

If changes of intracellular Na+ and K+ occurred also in
neurons, they would affect the resting membrane potential during
the circadian cycle and the amplitude of action potentials. Since
electroneutrality must be maintained, the circadian influx or efflux
of Na+ and K+ must be compensated by a correspondent flux
of Cl−. The presence of a circadian oscillation of intracellular
Cl−, would have complex effects on neuronal excitability mediated
by changes of the driving force of the current flowing through
the ionotropic GABAA receptor. This is the situation present in
neurons of the SCN where intracellular Cl− changes under the
control of the circadian clock with the peak concentration reached
during the day, and the nadir at night (Wagner et al., 1997).
This rhythmicity is maintained even in isolated neurons from
the SCN (Shimura et al., 2002). Intracellular Cl− influences the
size of GABAA currents, and it can be considered as a master
regulator of neuronal inhibition. In the SCN the circadian change of
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intracellular Cl− modulates the postsynaptic effects of GABA and
contributes to the control of the periodic activity of this network
(McNeill et al., 2018; Ono et al., 2018).

Up to now, it has been assumed that the modulation of baseline
intracellular Cl− during the day was a peculiarity of the SCN.
However, two very recent studies suggest that a diurnal change
of Cl− might be a more general feature of cortical physiology. In
the first study intracellular Cl− has been estimated in slices by
means of the measurement of the reversal of the GABAA currents.
It was observed that intracellular Cl− increased at night during
the active phase and the authors hypothesized that the Cl− load
encodes for sleep pressure (Alfonsa et al., 2023). The second study
employed a genetically encoded sensor for intracellular Cl− and
two photon in vivo imaging (Lodovichi et al., 2022) to detect
a large physiological diurnal fluctuation of baseline Cl− inside
cortical pyramidal cells, with high Cl− when mice are awake
(night), relative to when they are usually asleep (day) (Pracucci
et al., 2022). This concentration shift causes a drastic increase of
neuronal excitability at night as witnessed by a lowered epileptic
threshold. The increased excitability at night can be countered
by bumetanide, an inhibitor of the cotransporter NKCC1 that
import Cl− in neurons. Although neither studies demonstrated
that the observed diurnal change of intracellular Cl− is directly
linked to the circadian clock, it is tempting to speculate that the
observed changes are, at least to a certain extent, due to the same
mechanisms observed in cardiomyocytes (Stangherlin et al., 2021).
These data might contribute to explain the dependency of LTP on
the time of the day. If the intracellular chloride of CA1 pyramidal
neurons was higher at night, this would attenuate the inhibitory
currents compared to daytime thus leading to enhanced LTP. This
interpretation is consistent with the fact that the moderate LTP
observed by day can be increased to the level reached at night
by Gabazine, an antagonist of GABAA receptors (Nakatsuka and
Natsume, 2014). More in general several mechanisms have been
implicated in circadian changes of neuronal excitability (Paul et al.,
2020) and these changes are likely to affect the early phase of LTP.
Furthermore, consolidation of LTP, that is well known to depend
on translation and transcription in the post synaptic domain, can
also be modulated by the circadian clock via mTOR (Kelleher et al.,
2004; Hoeffer and Klann, 2010). However, we should be cognizant
of the fact that we ignore if the rules of circadian activity of
mTOR also extend to the post synaptic volume. Another important
signaling axis that has recently been implicated in circadian
regulation of memory and learning is the MNK-eIF4E (mitogen
activated protein kinase-interacting kinase-eukaryotic translation
initiation factor). This pathway is required for hippocampal LTP
consolidation (Hoeffer et al., 2013) and it has been shown that
MNK-mediate phosphorylation of eIF4E is regulated along a daily
cycle with a peak during the day and its activity modulates novel
object recognition (Liu et al., 2022). Finally, it should be noted that
astrocytes play a crucial role in the circadian activity of the SCN
(Hastings et al., 2022) and, although we know very little about their
circadian biology in the cortex, it has been recently demonstrated
their participation in the circadian modulation of plasticity in the
hippocampus (McCauley et al., 2020).

Circadian rhythm, sleep, and
plasticity

The alternation of sleep and wakefulness is the most obvious
behavioral correlate of circadian rhythm and, given the role of
sleep on brain plasticity, memory formation and consolidation
(Smith, 1996; Smith and Rose, 1996; Stickgold, 1998; Tononi and
Cirelli, 2014; Findlay et al., 2020) and this is an important area of
intersection between circadian mechanisms and synaptic plasticity.
In rodents, memory storage for several different tasks is impaired
when REM sleep deprivation follows the training-learning phase
(Fishbein, 1971; Zamore and Veasey, 2022). The seminal study
by Wilson and McNaughton demonstrated that during slow wave
sleep (and during period of inactivity) hippocampal neurons fire
intermittent, synchronized bursts (ripples) that replay the pattern
of activity representing the behavior performed in the prior
awaking period (Wilson and McNaughton, 1994). In the following
years, the role of sharp wave ripples in memory consolidation has
been confirmed by studies performed in behaving animals, in vitro
human tissue and by modeling studies (Buzsáki and da Silva,
2012; Joo and Frank, 2018). Synapses cannot follow a trajectory
in which they are only strengthened by experience and not all
the information and tasks experienced during the awake period
are worthy to be consolidated and preserved. Thus, synapses must
undergo downscaling during sleep, to remove irrelevant synapses
and to allow the incorporation of new information in the next
awake cycle in the global synaptic pool. To seek to understand
the mechanism underlying synaptic homeostasis and how the
sleep-awake cycle contribute to it, Tononi and Cirelli (2014)
proposed an elegant idea, the synaptic homeostasis hypothesis
(SHY), according to which during the awake phase, learning about
relevant environmental stimuli results in strengthening of synapses
throughout the brain. During sleep, spontaneous activity weakens
synaptic connections and repristinates synaptic homeostasis
(Tononi and Cirelli, 2014). Overall, the picture that emerges is
that sleep operates both the consolidation of salient memory and
enables weakening of previously strengthened synapses to restore
homeostasis and enable another cycle of learning and memory.
Thus, even this simplified analysis shows that the two phases of the
learning process, namely, the experience dependent plasticity and
the homeostatic rearrangement of synapses, are roughly distributed
at two opposite poles of the circadian cycle.

Synaptic strength and function in wake and sleep are coupled
to distinct genetic signatures. In rodents, several microarray
experiments indicate that wakefulness is associated to the
expression of activity-regulated genes which control experience
dependent plasticity. The expression of these genes (such as Arc,
Bdnf, Homer1a) was found to be modulated by ERK. In rodents,
ERK phosphorylation in cortical neurons increases or decreases
with wake and sleep. Indeed, deletion or inhibition of ERK
phosphorylation were shown to modulate wake and sleep duration
(Mikhail et al., 2017). Therefore, the circadian regulation of ERK
signaling pathway correlates the waking experience with synaptic
plasticity, while sleep renormalizes synaptic strength, in line with
the hypothesis that “sleep is the price for synaptic plasticity” (Tononi
and Cirelli, 2014). The cyclic activation of mTOR, that was shown to
contribute to memory consolidation in hippocampus (Saraf et al.,
2014; Snider et al., 2018) is likely to contribute to this more general
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process of synaptic homeostasis, although direct evidence is still
missing. Circadian oscillations of the ERK signaling pathway were
reported to regulate complex functions such as sleep and learning
and memory also in invertebrate, highlighting the robustness of
such circadian intracellular signaling cascade in regulating synaptic
homeostasis from fly to mammals. Sleep deprivation and social
enrichment was found to increase ERK phosphorylation, while
disruption of ERK signaling pathway reduced sleep duration and
prevented neuronal plasticity triggered by social environmental
enrichment. Using a CRE luciferase reporter in flies, ERK
phosphorylation was shown to be coupled to CREB activation
since CRE-luciferase activity increased with ERK phosphorylation
and was reduced by ERK disruption (Vanderheyden et al., 2013).
These data again indicate that the diurnal regulation of ERK
signaling translates neuronal activity in synaptic plasticity and
controls sleep and wake duration. This regulation is biunivocal,
as disrupting sleep/wakefulness duration alters ERK signaling and
neuronal plasticity.

The awake-sleep cycle appears important also for the
full expression of plasticity during the critical period, when
neuronal activity shapes the growing circuits by weakening and
strengthening specific synapses to sculpt the mature architecture
of neuronal connections. Previous studies showed that ocular
dominance plasticity is triggered by monocular deprivation during
wakefulness and consolidated during the following sleep (Frank
et al., 2001; Dumoulin et al., 2015). How sleep could consolidate
ocular dominance plasticity remained obscure. ERK signaling
pathway was shown to be critical for experience dependent
plasticity in the visual cortex as inhibition of ERK pathway prevents
cortical LTP and the shift of ocular dominance toward the open
eye (Di Cristo et al., 2001), furthermore, ERK activation during
sleep is required for ocular dependent plasticity consolidation
(Dumoulin et al., 2015). Although the mechanism underling ERK
dependent consolidation is still unclear, it is likely that this signaling
pathway modulates the expression of genes involved in synaptic
plasticity such as bdnf. Deepening the understanding of the role
of sleep on synaptic homeostasis, it was found that following
monocular deprivation in rodents, REM sleep promotes synaptic
strengthening or weakening in different cortical layers (Renouard
et al., 2022). These data indicate that the effects of sleep on synaptic
plasticity are circuit specific and depend on the previous waking
experience. The molecular basis of this process remains elusive.
It is worth noticing that sleep modulates experience dependent
plasticity, but it is also affected by waking experience. Slow wave
activity during sleep is significantly reduced upon dark rearing,
during the critical period in cats and rats (Miyamoto et al., 2003).
All together these results suggest that sleep and ERK signaling
pathway associated to sleep-wake cycle are critical for normal
brain development. Indeed, most neurodevelopmental disorders,
in particular autism spectrum disorders (ASD), are associated
to sleep disturbances. The molecular basis contributing to the
pathogenesis of these diseases is mostly related to alterations in
proteins associated to synaptic plasticity, that as we have seen in this
brief review, are critically regulated by the wake-sleep cycle through
the phasic activation of ERK and mTOR pathways (Medina et al.,
2023).

The existence of a diurnal rhythm of intracellular Cl− in
the brain (Pracucci et al., 2022) and its bidirectional relationship

with sleep (Alfonsa et al., 2023) might represent an important
connection between circadian clock, neuronal excitability and brain
homeostasis.

Conclusion

Work and societal habits are increasing the separation between
the periodic need for rest from the natural day-light cycle.
Furthermore, physiological rhythms can also be disrupted by life
habits: since the circadian clock is exquisitely sensitive to the
exposure to blue light during the rest phase, the widespread
use of electronic devices at night subtly interferes with the
correct cycle maintenance. Disturbances of the natural circadian
rhythm invariably leads to negative consequences, including sleep
disturbances, attention deficits with consequent societal challenges
due to loss of performances, and increased susceptibility to
mistakes and accidents. Besides the more apparent consequences
on health and wellbeing, the disruption of the circadian rhythm
has widespread consequences on cognition, memory and learning.
We suggest that shedding light on the relationship between
circadian biology, neuronal excitability and synaptic plasticity
will lead to a better understanding of these key aspects of
brain function that are rooted in a fundamental feature of
biological systems.
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