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The pedunculopontine nucleus (PPN) is the major part of the mesencephalic

locomotor region, involved in the control of gait and locomotion. The PPN

contains glutamatergic, cholinergic, and GABAergic neurons that all make local

connections, but also have long-range ascending and descending connections.

While initially thought of as a region only involved in gait and locomotion, recent

evidence is showing that this structure also participates in decision-making to

initiate movement. Clinically, the PPN has been used as a target for deep brain

stimulation to manage freezing of gait in late Parkinson’s disease. In this review,

we will discuss current thinking on the role of the PPN in locomotor control.

We will focus on the cytoarchitecture and functional connectivity of the PPN in

relationship to motor control.
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Introduction

In mammals, coordinated movement of the limbs mimicking walking or running can
be achieved without the cortex. This was first demonstrated in decerebrated cats where
only the brainstem and cerebellum remained intact. In these animals, electrical or chemical
stimulation of neurons in so-called brain locomotor regions produces locomotion. The
mesencephalic locomotor region (MLR), consisting of the pedunculopontine nucleus (PPN)
and adjacent cuneiform nucleus (CnF) was the first identified locomotor region and is
present in all classes of vertebrates. Stimulation of this region in decerebrated cats evoked
walking, trotting, or even galloping, depending on the stimulation strength (Shik et al.,
1966a,b). A myriad of studies confirmed these initial observations and as a result, the MLR,
and its projections, have primarily been thought to be involved in the control of movement.
In contrast, goal-directed voluntary movements, such as stepping out of an elevator are
initiated by and require cortical structures. However, recent results suggest that the PPN
may also be involved in goal directed voluntary movement, suggesting it is also involved in
the decision to move (Inagaki et al., 2022). The PPN’s involvement in both the automatic
process of gait and goal-directed gait is perhaps not surprising as the numerous putative
PPN connections, which have mostly been studied in rodents, contain descending as well as
ascending projections to a variety of motor-related areas (Gut and Winn, 2016).

The involvement of the basal ganglia (BG) in the production of movement is evident
in Parkinson’s disease (PD). While PD is a somewhat broad disorder with both motor and
non-motor symptomatology (Schulz et al., 2011; Kalia and Lang, 2015; Poewe et al., 2017),
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the cardinal symptoms are motor and characterized by akinesia,
tremor and gait abnormalities (Schulz et al., 2011; Kalia and Lang,
2015; Poewe et al., 2017). These motor deficits are thought to
be due to the loss of dopaminergic neurons in the midbrain,
most prominently the substantia nigra pars compacta (SNc), and
a resultant reduction in dopamine in the basal ganglia. As such, to
date, dopamine replacement, traditionally with L-DOPA (levodopa)
or other dopamine agonists remains the standard treatment for
the motor symptoms of PD. Unfortunately, dopamine replacement
is often ineffective in patients with advanced PD symptoms such
as freezing of gait (FOG) and postural instability (Giladi, 2008).
FOG is an intermittent failure to initiate or maintain walking
and is one of the most common reasons for patients to fall
(King et al., 2020). The pathophysiology of FOG remains poorly
understood but is associated with deficits in cognitive function
and goal-directed motor planning (Knobl et al., 2012). Notably,
cognitive functional impairments due to damage to the cerebral
cortex, BG, or cerebellum can also disturb posture-gait control and
result in falling.

In patients with advanced FOG, problems with the initiation
of movement and falls lead to a significant loss in their quality of
life. Dopamine replacement is not very effective for FOG and deep
brain stimulation (DBS) of the PPN has emerged as a treatment
for FOG relief for some patients (Mestre et al., 2016). Early
research suggested that cholinergic neurons in the PPN were the
key components for locomotor control (Garcia-Rill and Skinner,
1987), and post-mortem PD tissue studies found significant loss
of cholinergic cells in the PPN (Hirsch et al., 1987; Zweig et al.,
1989). However, using more selective stimulation strategies, this
view has been challenged and instead suggested a larger role for
glutamatergic neurons in both the PPN and CnF (Takakusaki
et al., 2003; Sherman et al., 2015; Roseberry et al., 2016). Neither
the CnF nor the PPN have clear anatomical boundaries and the
precise location of the locomotor regulation region remains a matter
of debate (Yelnik, 2007; Zrinzo et al., 2007; Thevathasan et al.,
2012). Moreover, the mechanism by which DBS of the PPN relieves
FOG also remains unknown. Due to a lack of knowledge about
both the anatomical structure of the MLR as well as the circuity
mechanism of FOG relief, it is not surprising that results have
been variable (Thevathasan et al., 2018). This review will focus on
the functional connectivity of the PPN in relationship to motor
control, largely obtained from studies in rodents, how this may
help understand human motor circuits, and perhaps develop better
treatment options for movement disorders.

Anatomy and cellular diversity of the
PPN

The PPN is the major component of the MLR located
in the caudal mesencephalic tegmentum. The anatomical and
overall morphological structure of the PPN appears similar in
all vertebrates. However, the exact boundaries that define PPN
in humans are still not clear (Windels et al., 2015). The PPN is
bounded laterally by the medial lemniscus, and medially by the
superior cerebellar peduncle and its decussation. Caudal to the
PPN is the retrorubral field and rostrally it is adjacent to the
posterolateral substantia nigra. It is bounded caudally on its dorsal

portion by the CnF and ventrally by the pontine reticular formation
(Pahapill and Lozano, 2000; Jenkinson et al., 2009).

The PPN has a complex cytochemical architecture, formed
by populations of cholinergic, glutamatergic, and gamma-
aminobutyric acid (GABA)ergic neurons (Alam et al., 2011). Based
on cytoarchitecture and neurochemical markers, it was initially
subdivided into the caudal pars compacta (PPNc), consisting of
a cluster of large neurons and the more rostral pars dissipata
(PPNd; Mesulam et al., 1983; Geula et al., 1993; Pienaar et al.,
2017), a nomenclature that has largely fallen out of favor. However,
cholinergic and glutamatergic neurons are more abundant in
caudal regions, while GABAergic neurons do not follow the same
gradient, being more abundant in the rostral PPN (Pienaar et al.,
2017). Some studies have suggested that choline acetyltransferase
(ChAT) and GABA are colocalized in the somas and terminals
of PPN neurons suggesting a dual release of acetylcholine and
GABA (Jia et al., 2003). However, direct evidence for this is lacking
and immunohistochemical findings indicate that PPN neurons
are unlikely to have the co-release of acetylcholine with either
glutamate or GABA as most cholinergic neurons in the PPN do not
express the vesicular transporter for glutamate or enzymes for the
synthesis of GABA (Wang and Morales, 2009).

Anatomical and functional
connectivity of the PPN

The PPN, acting as a transit station in locomotor control,
receives motor commands from the upstream motor areas and
in turn, sends ascending as well as descending projections to
motor areas (Goulding, 2009; Figure 1). Synaptic input to the
PPN arises from several motor-related regions with the strongest
input from the BG (Goulding, 2009; Mori et al., 2016; Caggiano
et al., 2018; Tubert et al., 2019; Dautan et al., 2021). The
largest input is GABAergic arising from the substantia nigra
pars reticulate (SNr) and the internal globus pallidus (GPi; Shink
et al., 1997; Takakusaki et al., 2003, 2004). The PPN also receives
glutamatergic input from the subthalamic nucleus (STN; Jackson
and Crossman, 1981), and dopaminergic input from the substantia
nigra pars compacta (SNc; Ryczko et al., 2016). Input from
the SNr has been reported to inhibit PPN neurons targeting
both the soma and dendrites (Granata and Kitai, 1991), but the
exact targets, or physiological impact of GPi or STN input are
not clear.

As previously mentioned, the PPN was initially defined by
the distribution of large cholinergic neurons, and early studies on
projections from the PPN focused on cholinergic cells (Garcia-Rill
et al., 2019). These neurons are largely present in the caudal PPN,
and send projections to the SNc, SNr and STN, with the largest
projection to the SNc. Activation of this input to dopaminergic
neurons in the SNc drives an inward depolarizing current mediated
largely by nicotinic acetylcholine receptors (Futami et al., 1995;
Xiao et al., 2016) that drives neural activity (Xiao et al., 2016).
The SNr also receives cholinergic afferents, but these appear
to activate M4 muscarinic receptors located on axon terminals
carrying D1 input from the striatum (Moehle et al., 2017). However,
little is known about the physiological impact of cholinergic PPN
input on the SNr or STN. Ascending glutamatergic afferents from
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FIGURE 1

Schematic of synaptic connections of PPN neurons. PPN, pedunculopontine nucleus; GPi, the globus pallidus pars interna; SNr, substantia nigra pars
reticulate; SNc, substantia nigra pars compacta; STN, subthalamic nucleus.

the PPN target many of the same regions of the BG that project
to the PPN with input to the SNc, SNr, STN and striatum (Bevan
et al., 1995; Rohrbacher et al., 2000; Galtieri et al., 2017). In
the SNc, these afferents target dopaminergic neurons, forming
excitatory synapses (Galtieri et al., 2017). The SNr which mainly
consists of GABAergic neurons receives a dense projection from the
PPN (Rohrbacher et al., 2000), and stimulation of these afferents
evokes excitatory postsynaptic potentials (EPSPs) which are partly
blocked by glutamatergic antagonists suggesting that input to
the SNr is partly glutamatergic. Tracing studies have shown that
both glutamatergic and GABAergic axon terminals from the PPN
innervate the STN (Bevan et al., 1995). Outside the BG, the PPN
sends glutamatergic (Assous et al., 2019; Dautan et al., 2020)
and cholinergic (Dautan et al., 2020) input to the striatum that
innervates local interneurons. Finally, a recent study has reported
the existence of a glutamatergic projection from the PPN to the
motor thalamus (Inagaki et al., 2022) innervating parts of the
ventral medial (VM), ventral anterolateral (VAL), mediodorsal
(MD), and intralaminar (IL) nuclei.

Descending PPN projections, initially studied in the
decerebrated cat (Shik et al., 1966a,b), strongly project to the
lower brainstem and medulla (Martinez-Gonzalez et al., 2011).
Moreover, anatomical tracing studies show the presence of both
cholinergic and glutamatergic projections to the spinal cord (Spann
and Grofova, 1989; Sherman et al., 2015).

The role of the PPN in locomotor
control

Together with the CnF, the PPN is part of the MLR and
participates in a diverse array of functions. It is involved in posture

and gait control, sleep-wake regulation, cognition, and learning
(Saper et al., 2010; Mena-Segovia and Bolam, 2011; Petzold et al.,
2015). Functionally, chemical activation of the dorsal MLR leads
to the movement (locomotion), while activation of the ventral
MLR induced stopping (Sherman et al., 2015). Consistent with
these findings, stimulation in the dorsal PPN induced stepping
movements of cat hind limbs, while stimulation of the ventral part
of the PPN caused inhibition of muscle tone (Takakusaki et al.,
2016). Furthermore, lesioning of the MLR, including the PPN, leads
to cataplexy and episodic immobility of gait (Sherman et al., 2015).
These studies suggest that different subparts of the PPN/MLR
contribute to different aspects of locomotor control.

Glutamatergic and cholinergic neurons are the main excitatory
projection neurons in the PPN/MLR and have been suggested to
play different roles in locomotor regulation. However, a variety
of contradictory results have been reported. Initial studies were
focused on cholinergic neurons due to their strong involvement
in PD, with loss of PPN cholinergic neurons reported in PD
patients. This disruption was associated with the gait impairment
and cognitive deficits seen in PD patients as well as in animal
PD models (Perry et al., 1985; Zweig et al., 1989; Karachi et al.,
2010; Bohnen and Albin, 2011; Müller and Bohnen, 2013; Perez-
Lloret and Barrantes, 2016). Experimentally, cholinergic neurons
were first described to be required for gait in rodents (Kucinski
and Sarter, 2015; Xiao et al., 2016) and selective lesioning of
cholinergic PPN neurons in monkeys induced gait and postural
impairments (Karachi et al., 2010). However, another study
reported that in rodents, neither nonspecific lesioning of the PPN,
or selective lesioning of cholinergic PPN neurons induced gait
abnormalities (Gut and Winn, 2015). More recently, advances
in genetic techniques have contributed to better insight into
the function of distinct PPN neuron populations in locomotion.
However, the results from recent studies are still debated
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(Roseberry et al., 2016; Caggiano et al., 2018; Josset et al., 2018;
Dautan et al., 2021), a summary of this data is detailed in
Table 1.

Stimulation of glutamatergic neurons in the PPN has led
to a variety of outcomes, with some studies reporting that
activation stimulates or increases movement (Caggiano et al.,
2018; Masini and Kiehn, 2022), while others report a reduction
in movement (Dautan et al., 2021). This most likely results
from targeting different glutamatergic neuronal populations, for
example, descending projecting neurons involved in the automatic
process of gait vs. the ascending projection neurons that may
be involved in goal-directed voluntary movements. There does
however appear to be an emerging consensus. Within the MLR,
while stimulation of glutamatergic neurons of the CnF evokes rapid
locomotor activity (Caggiano et al., 2018), stimulation of the PPN
affects slower movements (Josset et al., 2018). What is becoming
apparent is that within the PPN, glutamatergic neurons contain
functionally diverse subgroups projecting to different brain regions.
Thus, glutamatergic neurons that project to the SNr are involved
in movement regulation as well as behaviors such as rearing and
grooming while the spinal cord projecting glutamatergic neurons
are related to body extension control (Ferreira-Pinto et al., 2021).
Optogenetic activation of PPN glutamatergic input to the motor
thalamus elicits cue-triggered motor initiation (Inagaki et al., 2022).
Moreover, glutamatergic PPN neurons projecting to the BG show
differences in both gene expression and location as compared to
those projecting to the medulla and spinal cord (Ferreira-Pinto
et al., 2021), again pointing to distinct populations.

With a strong role in locomotor control, not surprisingly, the
PPN is affected in some movement disorders. Following on from
its use as a target for treating PD, recent studies have begun
targeting the PPN in animal models of PD. Thus, a very recent
study reported that activating glutamatergic PPN neurons rescued
locomotor function in PD mouse models (Masini and Kiehn,
2022). Applying a combination of chemogenetics and optogenetics,
they found that selective activation of caudal glutamatergic PPN
neurons contributed to the relief of motor deficits in PD mice,
and these effects were independent of CnF neurons (Masini and
Kiehn, 2022), suggesting that more attention may need to be
drawn to the caudal part of the PPN in relation to the PPN
and PD treatment. These recent rodent studies highlight the
complex role of the PPN in locomotor control with involvement
in movement control as well as motor initiation. Further studies
are required to clarify the cell type specific contribution of PPN
neurons to locomotion including their gene expression profiles and
exact anatomical location to better understand their involvement
in motor neural circuits. Better insight into PPN-related neural
circuits will enable very specific circuit manipulation, helping
improve DBS targeting as well as develop novel therapeutic
interventions for movement disorders.

Parkinson’s disease and the PPN

PD is the second most common neurological disorder with
a global incidence of 17 per 100,000. PD is age-related, usually
affecting adults over the age of 50, with the risk of developing
PD being 1.5 times higher in males than in females (Beitz,

2014; Poewe et al., 2017). The pathological hallmark of PD is
degeneration and loss of dopaminergic neurons in the SNc (Cuenca
et al., 2019). The resulting loss of dopamine input to the striatum
results in the cardinal symptoms of PD: bradykinesia, rigidity,
tremor and postural imbalance. For the past 50 years, dopamine
replacement therapy with levodopa has been and remains the
mainstay pharmacological treatment for symptomatic relief of PD.
The effectiveness of dopamine replacement therapy depends on
different factors including age, disease stage and progression of
symptoms (Ferreira et al., 2013). However, levodopa treatment is
less effective as the disease progresses, and postural instability and
gait difficulties increase (Park and Stacy, 2011; Jenner, 2015). On
a cellular level, degeneration becomes apparent not only in the SNc
but also in other brain regions including the PPN (Rinne et al., 2008;
Hepp et al., 2013; Pienaar et al., 2013; Chambers et al., 2019). Late in
PD, there is a loss of cholinergic neurons in the PPN (Rinne et al.,
2008; Müller and Bohnen, 2013; Kucinski and Sarter, 2015), and
ascending cholinergic fibers can have a role in motor control (Xiao
et al., 2016). Thus, as with Alzheimer’s disease (Rabins and Lyketsos,
2006; Seltzer, 2006), delivery of anti-cholinesteres have been tried in
PD. However, the results have been very variable and this therapy is
not in common use (Chen et al., 2021).

When dopamine replacement therapy alone is no longer
sufficient to relieve PD motor symptoms, DBS has become
and is a still evolving treatment option. In DBS, electrodes are
implanted into specific brain regions and an implanted stimulator
provides frequency modulated electrical simulation resulting in
therapeutic relief for motor symptoms (Benabid, 2003). For the
past 20 years, the GPi and STN (Breit et al., 2001; Lozano et al.,
2019) have been the DBS targets for PD that yield a marked
improvement in motor symptoms. While the exact mechanism
of action of DBS that provides therapeutic relief is not clear,
there is evidence that stimulation in the STN or the GPi alters
the oscillatory activity in the BG that is awry in PD (Guridi
and Alegre, 2017). The parameters that determine the measurable
effectiveness of DBS are the stimulation amplitude, frequency and
pulse width as well as the stimulation paradigm. The optimal
stimulation protocol varies from person to person and is often
largely dependent on what works for an individual, as assessed
by the neurologist. Any given location of the electrodes in
the brain may contain a variety of cell types that are part of
different neurocircuits and also may contain fibers of passage
from distant brain regions that can be driven orthodromically
or antidromically. There is consensus that there is room for
improvement when it comes to manipulating neural networks to
ameliorate movement disorders.

As PD disease progresses, many PD patients develop FOG
(Zhang et al., 2021), described by patients as “having their feet glued
to the floor”. As the body initiates forward movement but the feet
remain in place, it is not surprising that FOG is associated with a
high risk of falling and hospitalization with a substantial reduction
in quality of life (Bloem et al., 2004). The inability to initiate a
step often occurs when the on-going locomotor pattern requires
adaptation (e.g walking around an object) and is exacerbated
under time constraint (e.g., stepping out of an opening elevator
door). The difficulty in self-initiating movement can sometimes
be overcome by sensory cues like visual cues on the floor, with
rehabilitation therapy taking advantage of sensory cues as a means
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TABLE 1 Summary of cell type-specific motor control of the PPN.

Activate Silence

MLR glutamatergic neurons Stationary state: initiate locomotion (Roseberry et al., 2016)
Running: robust locomotion (Roseberry et al., 2016)

Inhibition of MLR glutamatergic Neurons impedes
Running (Roseberry et al., 2016)

MLR cholinergic neurons Stationary state: No effect (Roseberry et al., 2016)
Running: increase in speed (Roseberry et al., 2016)

MLR GABAergic neurons Stationary state: No effect (Roseberry et al., 2016)
Running: deceleration (Roseberry et al., 2016)

PPN glutamatergic neurons â Failed to initiate (Josset et al., 2018)
â Short photoactivation (10 ms) modifies locomotor pattern

(muscles response; step cycle; Josset et al., 2018)
â Decreased locomotor speed (Josset et al., 2018)
• Initiation (high-frequency stimulation >10 Hz, longer

onset than activation of the CnF; Caggiano et al., 2018)
• Ongoing: increase speed (Caggiano et al., 2018)
◦ Reduce motor activity (Dautan et al., 2021)

â Only long photoinhibition (1 s) of glutamatergic PPN
stops Locomotion (Josset et al., 2018)

• Bilateral silencing decreases speed (Caggiano et al., 2018)

CnF glutamatergic neurons â Initiate locomotion (Long pulse: 10-ms pulse duration at
20 Hz for 1 s; Josset et al., 2018)

â Short activation (10 ms) modifies locomotor pattern
(muscles response; Josset et al., 2018)

â Long activation (1 s) resets rhythm and induces running
gaits (Josset et al., 2018)

• Initiation speed (Caggiano et al., 2018)
◦ Increase motor activity (Dautan et al., 2021)

â Rarely stopped Locomotion (Josset et al., 2018)
• Bilateral silencing decreases speed (Caggiano et al., 2018)

PPN cholinergic neurons â Failed to initiate (Josset et al., 2018)
â Little effect on locomotor speed or gait (Josset et al., 2018)
• Slow or stop on-going locomotion (Caggiano et al., 2018)

â Rarely stopped locomotion (Josset et al., 2018)

to reduce FOG episodes (Ginis et al., 2018). Voluntary movements
are often planned before being executed and not initiated until a
sensory cue is presented. A possible explanation for why sensory
cues may overcome FOG is that self-initiated and cue-triggered
motor initiation may involve different parallel motor circuits in
the brain.

Where FOG results from self-initiating circuit failure
due to BG degeneration, the cue-triggered movement circuit
bypasses the degenerated BG, using brain areas that are spared
from degeneration to initiate movement. Where FOG results
from self-initiating circuit failure due to BG degeneration, the
cue-triggered movement circuit bypasses the BG, using brain areas
that are spared from degeneration to initiate movement. If this is
the case it is not surprising that dopamine replacement therapy and
DBS of the GPi and STN are ineffective against FOG (Hausdorff
et al., 2009; St George et al., 2010). Some studies reported that
GPi-DBS and STN-DBS improved FOG during medicine-off
periods, however, the outcomes are not satisfactory, especially in
the medicine-on condition (Volkmann et al., 2004; Schlenstedt
et al., 2017; Kim et al., 2019). Treatment-resistant gait disturbances
like FOG promoted the investigation of alternative targets for DBS.
The original interest in the PPN in relationship to PD began in the
1980s when neurodegeneration of cholinergic neurons in the PPN
region was observed in late-stage PD. As the PPN receives strong
efferent innervation from the BG, it was a potential target for DBS
(Rinne et al., 2008; Pienaar et al., 2013; Chambers et al., 2019).
The benefit of PPN DBS was shown in primate models of PD with
low-frequency electrical stimulation (2–20 Hz) of the PPN relieving
akinesia (Jenkinson et al., 2004, 2006). The first clinical reports
showing the benefit of PPN DBS, found that bilateral PPN-DBS
in PD patients without medication significantly improved gait and
postural symptoms including FOG (Plaha and Gill, 2005; Stefani
et al., 2007). Notably, unlike in primate models, all clinical studies
used high-frequency (100–130 Hz) PPN stimulation.

Although the initial studies on the benefits of PPN-DBS on
FOG have subsequently been confirmed (Wilcox et al., 2011), some
have reported only a marginal benefit (Ferraye et al., 2010), and
others showed no benefit at all(Wang et al., 2017; Yu et al., 2020).
These discrepancies between groups are perhaps not surprising
for a number of reasons. Firstly, programming of PPN DBS is
made particularly challenging as FOG is not displayed readily like
tremors, and benefits to FOG may not appear until days or weeks
after electrode activation. Secondly, electrode placement varies
between the reported studies as the targeting methods vary among
groups. To date, there is no consensus as to the exact location where
the electrode should be placed, with even the exact location of the
PPN still being up for debate (Thevathasan et al., 2018; Tubert et al.,
2019). Due to the unclear boundaries of this region, the PPN is
more difficult to clearly identify using magnetic resonance imaging
(MRI) of clinical field strengths (1.5T and 3.0T), compared with
other DBS targets like the STN or GPi (Plantinga et al., 2014). Thus,
the stereotactic placement of electrodes is more variable than for
the STN or GPi (Zrinzo et al., 2008; Hamani et al., 2016). Although
the recently developed 7T ultrahigh-field MRI provides higher-
resolution neuroimages of the PPN (Cong et al., 2018; Wang et al.,
2019), there are still limitations for clinical applications. Firstly,
7T scanners are not widely available for clinical use, the scanning
is slow (Cong et al., 2018) and often not tolerated by some PD
patients. Second, even if higher resolution MRI can be obtained,
the PPN has no obvious fiber tracts or other anatomic features
delineating its boundaries and the current boundaries of the PPN
as depicted in current atlases seem somewhat arbitrary. Thus,
stereotactic placement may be on the border or even just outside the
presumed PPN. Thirdly, as discussed above, the PPN region does
not have a homogenous cell population. Glutamatergic, GABAergic
and cholinergic neurons are unevenly distributed throughout the
PPN area with glutamatergic and cholinergic neurons projecting to
a large variety of motor-related brain regions.
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How stimulation within the PPN leads to therapeutic relief is
not known. However, as PPN-DBS has been reported to improve
both FOG as well as simple reaction tasks (Hirsch et al., 1987;
Thevathasan et al., 2010; Fischer et al., 2015), it raises the possibility
that PPN DBS is indeed acting on this cue-triggered movement
initiation motor circuit with the ascending glutamatergic PPN
neurons that feed into the corticothalamic motor planning loop
(Inagaki et al., 2022). Advances in neurocircuit dissection using
rodent models have progressed immensely in the last decade. The
treatment of gait disturbance in PD patients with PPN DBS is ikely
to yield inconsistent clinical outcomes until research groups and
treating clinicians reach a consensus of the optimal targeting site in
the PPN area, which may not be found until we identify and locate
the neurons that are key in ameliorating FOG.

Conclusions

Location and cell type specific neural activation studies in
rodents have shown that the PPN plays a significant role in a variety
of locomotion control circuits. Recent advances in circuit activation
and visualization tools will help pinpoint the exact population
of PPN neurons and the corresponding neural circuit related to
these locomotion circuits. These studies are necessary to investigate
the complex mechanisms that engage the PPN in locomotion
modulation especially gait regulation, in order to unveil how DBS
in the PPN relieves advanced PD gait symptoms. At a clinical level,
due to the limitations of current techniques, it is not feasible to
target a specific group of neurons or very specific locomotor circuits
during traditional DBS surgeries. However, a better understanding
of the functional diversity and movement circuits within the PPN
by rodent studies will help improve PPN-DBS targeting for PD.
By placing the electrode more caudally in the PPN, glutamatergic
neurons would be preferentially stimulated. Furthermore, it seems
that subpopulations of the PPN neurons projecting to different
axonal targets displayed diverse distributions within the PPN,
opening the door to circuit-specific manipulation as a treatment

option for PD patients in the future. Undoubtedly, only when
technologies for cell-type specific DBS become available, can they
be utilized to improve clinical outcomes for PD patients.
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