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We present a deep network-based model of the associative memory functions of

the hippocampus. The proposed network architecture has two key modules: (1)

an autoencoder module which represents the forward and backward projections

of the cortico-hippocampal projections and (2) a module that computes

familiarity of the stimulus and implements hill-climbing over the familiarity which

represents the dynamics of the loops within the hippocampus. The proposed

network is used in two simulation studies. In the first part of the study, the network

is used to simulate image pattern completion by autoassociation under normal

conditions. In the second part of the study, the proposed network is extended to

a heteroassociative memory and is used to simulate picture naming task in normal

and Alzheimer’s disease (AD) conditions. The network is trained on pictures and

names of digits from 0 to 9. The encoder layer of the network is partly damaged

to simulate AD conditions. As in case of AD patients, under moderate damage

condition, the network recalls superordinate words (“odd” instead of “nine”).

Under severe damage conditions, the network shows a null response (“I don’t

know”). Neurobiological plausibility of the model is extensively discussed.

KEYWORDS

associative memory recall, hippocampus, familiarity, dopamine, autoencoder,
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1. Introduction

There is a long line of studies that implicate the role of the hippocampus in declarative
memory functions (Milner et al., 1968; Steinvorth et al., 2005; De Almeida et al., 2007).
Damage to the hippocampal region is seen during the course of Alzheimer’s disease and
the normal course of aging (Golomb et al., 1993). In order to serve its function as a memory
unit, the hippocampus must have access to the raw material for memory, which is sensory
information. A quick review of the anatomy of the hippocampus and its place vis a vis the
cortex provides useful insights into the mechanisms of its memory functions.

As a subcortical circuit, the hippocampus receives widespread projections from cortical
areas in the temporal, parietal, and frontal lobes via the entorhinal cortex (Hasselmo, 1999;
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Insausti et al., 2017). A majority of hippocampal afferents
from the posterior brain come from higher-order sensory and
association cortices, areas that are capable of generating abstract
representations of sensory information (Bowman and Zeithamova,
2018). Here representation refers to the compressed lower-
dimensional feature vectors of cortical input. Thus, sensory
information spread out over large cortical areas is projected,
first to parahippocampal and perirhinal cortices, and then to the
entorhinal cortex (EC), which is the gateway to the hippocampus
(Burwell and Amaral, 1998).

The hippocampal formation connects several neural fields like
the Dentate gyrus (DG), CA3, CA1, and subiculum (Schultz and
Engelhardt, 2014). Nearly all the neural fields in the hippocampus
receive projections from the superficial layers of the Entorhinal
Cortex (EC) (Gloveli et al., 1998; Hargreaves et al., 2005; Brun et al.,
2008). ECs afferent connections are formed using one trisynaptic
pathway and two monosynaptic pathways (Yeckel and Berger,
1990; Charpak et al., 1995). The trisynaptic pathway consists of
the perforant pathway between the second layer of EC (EC II)
to DG (Witter et al., 1989), the mossy fibers between DG and
CA3 (Claiborne et al., 1986), and Schaffer collaterals between CA3
to CA1 (Kajiwara et al., 2008). The monosynaptic pathways are
formed between the second layer of EC (EC II) to CA3 (Empson
and Heinemann, 1995; Gloveli et al., 1998) and the third layer
of EC (EC III) to CA1 via perforant pathways (Witter et al.,
1989). CA3 has more recurrent connections compared to the other
hippocampal regions (Amaral and Witter, 1989), a feature that
prompted researchers to attribute to it a crucial role in pattern
completion and memory storage. The fifth layer of EC (EC V)
receives the afferent projections from CA1 directly and indirectly
via the subiculum (Canto et al., 2012; O’Reilly et al., 2013). It is this
fifth layer of EC that sends back projections to widespread cortical
targets that provided the actual sensory inputs (Insausti et al., 1997).

To summarize, there are bidirectional projections between
the sensory cortex (high dimensional) and the hippocampus
(low dimensional) (Hasselmo, 1999; Insausti et al., 2017). The
hippocampal formation comprises multiple loops and extensive
recurrent connections (Yeckel and Berger, 1990; Charpak et al.,
1995). The above structure performs various memory processes
such as memory encoding, recall, consolidation, and replay. The
projections from the cortex to the hippocampus supports the
memory encoding process (Yassa and Stark, 2011). The backward
projections from the hippocampus to the cortical regions support
memory recall by reconstructing the cortical state from the
hippocampal representation (Renart et al., 1999). The loops and the
recurrent connections in the hippocampal formation supports the
memory replay and consolidation processes (Rothschild et al., 2017;
Ólafsdóttir et al., 2018). In the current study, we focus on modeling
two memory processes: memory encoding using pattern separation
and recall using pattern completion.

The projection pattern from cortical areas to the hippocampus
suggests that one of the prime features of the cortical state
represented by the hippocampus is pattern separation (Yassa and
Stark, 2011). Pattern separation refers to differentiating two or
more patterns clearly even though they have several shared features.
To illustrate the concept of pattern separation, let us consider the
problem of representing a cricket ball vs. a tomato (Figure 1A).
A cricket ball is round, red, and hard, while tomato is approximately
round, red, and soft. Thus, the cortical representations of the two

objects are likely to have a large overlap. But since the objects
these feature combinations point to are quite distinct, it is desirable
that the representations generated by the hippocampus are also
adequately distinct, thereby achieving pattern separation.

There is another aspect of hippocampal memory function
known as pattern completion (Mizumori et al., 1989; Rolls, 2013).
Pattern completion refers to the reconstruction of a complete
pattern from a partial or noisy pattern. Let us illustrate this concept
using the same objects: a cricket ball and a tomato (Figure 1B).
When we identify a cricket ball from a picture (red + round)
even without touching it (hard), we are mentally supplying the
missing feature of hardness. Similarly, a tomato can be identified
visually without tactile exploration. These are examples of pattern
completion that involve filling in missing features based on sensed
features.

In order to understand how the hippocampus supports pattern
separation and pattern completion, one must consider a crucial
aspect of the anatomy of the hippocampus circuit. Since we will not
be incorporating detailed hippocampal anatomy in the proposed
model, we content ourselves with a simple schematic (Figure 1).
One noteworthy feature is the presence of multiple loops with the
hippocampus that take input from the superficial layers of EC and
return the output to the deeper layers of EC, which send back
projections to widespread cortical targets (Insausti et al., 1997).

A majority of hippocampal memory models involve
implementations of pattern separation and pattern completion,
distinguishing themselves in terms of anatomical details
incorporated in the model or the specific memory tasks that they
set out to explain (Marr, 1971; O’Reilly and McClelland, 1994; Rolls
and Treves, 1994, 2012; McNaughton and Nadel, 2020). Gluck and
Myers (1993) exploit the cortico-hippocampal projection pattern
(Gluck and Myers, 1993), which they model as an autoencoder
(Hinton and Salakhutdinov, 2006). An autoencoder is a special
type of feedforward network where the network is trained to
map the input onto itself (Hinton and Salakhutdinov, 2006).
The autoencoder comprises two components: the encoder and
the decoder. The encoder processes the input and generates a
compressed, lower-dimensional representation of the input. This
representation is sometimes called feature vector. The decoder uses
the feature vector to reconstruct the input as expected. When the
autoencoder is implemented with convolution layers, it is called a
convolutional autoencoder. The nature of the autoencoder training
ensures that, in this model, the hippocampus achieves pattern
separation. The high-dimensional cortical state is the input to
the autoencoder, while the hippocampus is the low-dimensional
hidden layer. Thus, the cortico-hippocampal projections form the
encoder, while the back projections representing the decoder are
responsible for memory recall.

The pattern completion aspect of hippocampal memory
function was highlighted by one of the earliest and most influential
models of the hippocampus proposed by Marr (1971). Marr
(1971) visualized a memory as a pattern distributed over a large
number of neocortical neurons. Since the neocortical neurons
have reentrant connections, it is possible to store patterns
by association. Association refers to the establishment of a
relationship between patterns. Activation of some neurons that
represent a partial set of features can cause activation of neurons
representing the remaining features, thereby achieving pattern
completion. Mathematical associative memory models that exhibit

Frontiers in Neural Circuits 02 frontiersin.org

https://doi.org/10.3389/fncir.2023.1092933
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-17-1092933 June 16, 2023 Time: 12:59 # 3

Kanagamani et al. 10.3389/fncir.2023.1092933

FIGURE 1

(A) A schematic that shows how convergent projections from the cortex to the hippocampus achieves Pattern Separation. (B) A schematic that
shows how the loop dynamics over the cortical representations in the hippocampus achieves Pattern Completion.

pattern completion often involve networks with high recurrent
connectivity and attractor dynamics (Hopfield, 1982, 1984; Amit,
1990). For example, Hopfield (1982) proposed a single-layered
recurrent network that demonstrates attractor dynamics which
has an associated energy function (Hopfield, 1982). Kosko (1988)
proposed BAM (Bidirectional Associative memory), which is an
extension of the Hopfield model on hetero-associative memory
with similar attractor dynamics (Kosko, 1988). The high recurrent
connectivity (4%) among the CA3 pyramidal neurons had inspired
a long modeling tradition that treats CA3 as an associative memory
(Amaral et al., 1990; De Almeida et al., 2007). Treves and Rolls
(1994) have taken the associative memory view of CA3 and
presented storage capacity calculations (Treves and Rolls, 1994).
Wu et al. (1996) described the effect of noise of pattern storage in
an associative memory model of CA3 (Wu et al., 1996). This has
evolved a computational perspective that posits CA3 at the heart of
pattern completion functions of the hippocampus.

There are other modeling approaches that describe pattern
completion mechanisms of the hippocampus without specifically
describing CA3 as an associative memory. The models of O’Reilly
and McClelland (1994) and O’Reilly and Rudy (2001) describe
the loop of connections from the superficial layers of EC, to
DG to CA3 to CA1 back to deep layers of EC (Norman and
Reilly, 2002), Hasselmo and Wyble (1997) present a model of
hippocampal attractor dynamics that explains the disruptive effects
of scopolamine on memory storage (Hasselmo et al., 1997). Thus,
there is a spectrum of models that describe pattern completion
functions of the hippocampus either by placing the burden of
storage exclusively on CA3 and its recurrent connectivity or relying
on the general internal loops of the hippocampus to supply the
necessary attractor dynamics.

Similarly, Perlovsky (2001, 2007) and Perlovsky and Ilin (2012)
proposed a new framework, neural modeling fields (NMF), which
uses neural networks and fuzzy logic as a multi-level hetero-
hierarchical system for modeling the mindClick or tap here to
enter text. Here, perception has been modeled as the interaction
between the bottom-up and top-down signals. Learning in this

framework is driven by the dynamics, which increases the similarity
value between the bottom-up signal (input signal for ex. visual
stimuli), and the top-down signals (mental representations). The
similarity is measured as the probability of the given input
signal matching the representations of a particular object. In
this approach, the input signal (bottom-up signal) is compared
for similarity measure with multiple top-down signals. Here the
top-down signals are generated from multiple simulators/models
(running in parallel), each producing a set of prime representations
for the objects expected. Thus the prime-representations (with the
higher similarity measure) and their parameters are selected and
used to fit with the bottom-up signals. With this process, the vague
(noisy) bottom-up signal is transformed into a crisp signal through
an iterative process, thus it demonstrates pattern completion
behavior. The model by Perlovsky uses a set of predefined models
for each object. Though the model recognizes the actual pattern
from the noisy images, one model is maintained for each object.

The aforementioned review of computational models of
hippocampal memory functions shows a common structure
underlying a majority of the models embodying two crucial
features: (1) They impose some form of autoencoder structure, with
feedforward/feedback projections, on the cortico-hippocampal
network, thereby achieving pattern separation and a compact
representation of the cortical state. (2) They use the attractor
dynamics arising, either solely within CA3 or, more broadly, in
the hippocampal loops to achieve pattern completion. Instead of
addressing the sensitive task of having to pick the best among the
above models, we propose to construct a model with the above
features but cast in the framework of deep networks so as to exploit
the special advantages offered by deep networks.

Although often criticized for possessing inadequate biological
plausibility, in recent years, deep networks have enjoyed surprising
success in modeling the activities of visual, auditory, and
somatosensory cortical hierarchies (O’Reilly and McClelland, 1994;
O’Reilly and Rudy, 2001; Norman and Reilly, 2002; Kanitscheider
and Fiete, 2017). For example, Deep networks trained on visual
recognition tasks matched the error patterns from human across
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object classes (Cichy et al., 2016; Geirhos et al., 2018). Deep
network models on Auditory domain such as speech and music
recognition match human-performance (Hinton et al., 2012; Kell
et al., 2018; Jang et al., 2019). Yamins et al. (2014) recapitulated
the aspects of the ventral visual hierarchy using deep neural
networks by relating intermediate layers to V4 and the later
layers to the Inferior Temporal cortexClick or tap here to enter
text. Kanitscheider and Fiete (2017) using a recurrent neural
network demonstrated that the hidden representations of the
network exhibited the key properties of hippocampal place cells in
navigation problems. Various models using deep neural networks
have also been employed in somatosensory systems (Zhuang et al.,
2017), hippocampus, and EC (Kanitscheider and Fiete, 2017;
Banino et al., 2018; Cueva and Wei, 2018). Some studies explain the
learning characteristics of the hippocampus using an autoencoder
structure (Benna and Fusi, 2021; Santos-Pata et al., 2021). A review
by Ramezanian-Panahi et al. (2022) explained the need for this kind
of abstract models for better interpretation of brain dynamicsClick
or tap here to enter text. Although the interpretation of the
inner layers in deep networks is hard at the level of individual
neurons, these networks have well-defined structures at the level
of layers. In the feedforward neural networks, the hierarchical
organization of input from one particular layer to the next layer
recapitulates the aspects of the hierarchical structure of the brain.
Though some progress has been made in using deep networks
for modeling hippocampal spatial navigation functions, modeling
memory functions is still in its early stage (Kanitscheider and Fiete,
2017).

The concept of familiarity invariably figures in most discussions
of the memory functions of the hippocampus. Studies on
human memory that draw from cognitive, neuropsychological,
and neuroimaging methodologies suggest that human memory is
composed of two processes of memory: recollection and familiarity
(Henson et al., 1999; Yonelinas, 2001; Yonelinas et al., 2005;
Droege, 2017). Sometimes when we meet a person, we may simply
have the sense that the person is familiar but not remember the
person’s name or when and where we have first met that person.
This sense of having met before refers to familiarity, while the
ability to recall the various features that constitute that object refers
to recollection. Many studies have established the link between
the hippocampus and familiarity-based memory functions. Wixted
(2004) showed that the hippocampus is crucial for representing
familiarity (Wixted, 2004). Kirwan and Stark (2004) showed that
the hippocampus is selectively activated during familiarity-based
recollection tasks (Kirwan and Stark, 2004).

Another vital element for memory processing in the
hippocampus is dopamine. A considerable body of neurobiological
literature links dopaminergic signaling with reward processing
(Wise and Rompre, 1989). Using classical conditioning
experiments, Schultz et al. (1997) took a further step and
demonstrated strong analogies between dopaminergic activity
in Ventral Tegmental Area (VTA) and an informational signal
known as temporal difference (TD) error in Reinforcement
Learning (Schultz et al., 1997). This connection has inspired
extensive computational modeling efforts that sought to connect
dopaminergic signaling with the function of the basal ganglia (BG),
an important subcortical circuit linked to dopamine signaling
(Schultz et al., 1997; Chakravarthy et al., 2010; Chakravarthy and
Moustafa, 2018).

Although dopamine signaling, in the context of the BG, is
often associated with motor function, there is extensive evidence
linking dopamine to cognition and memory functions (Goldman-
Rakic, 1997; Kulisevsky, 2000; Koch et al., 2014; Martorana and
Koch, 2014). Packard and White (1989) demonstrated memory
enhancement on the application of dopamine agonists (Packard
and White, 1989). Dopamine agonists, like Bromocriptine,
enhanced memory performance in the elderly (Morcom et al.,
2010). It is possible to find neuroanatomical evidence within the
hippocampal circuitry in order to support the aforementioned
studies that link memory deficits with dopamine. Although
there was an early view that dopamine does not modulate
hippocampal neural activity, subsequently, evidence was gathered
for the existence of mesencephalic dopamine projections in rat
hippocampus (Penfield and Milner, 1958; Gasbarri et al., 1994) and
the influence of dopamine on hippocampal neural fields (Mansour
et al., 1992; Hsu, 1996; Hamilton et al., 2010).

The importance of dopamine in novelty-based memory
encoding and recall has been observed in many studies (Holden
et al., 2006; Duszkiewicz et al., 2019). Some experimental
studies have related dopamine release to learning novel stimuli
(Bardo et al., 1993; Schultz, 1998). Few studies associated higher
dopaminergic activity to novel stimuli and lower dopaminergic
activity to familiar stimuli (Brown and Aggleton, 2001; Kamiński
et al., 2018).

It is well-established that dopamine represents reward
prediction error (Temporal Difference error) in reward-based
decision-making (Schultz et al., 1997). In the novelty aspect, we
relate dopamine to stimulus prediction error. The network would
not have learnt any representation for any novel stimuli, leading
to higher prediction errors. As the network learns the stimuli,
the prediction error also reduces, which leads to lesser dopamine
activity. This explains that the hippocampus represents some value
function that encodes the familiarity information.

Here we have proposed familiarity as a notion that is
complementary to novelty, and the hippocampal-VTA loop codes
the familiarity value for the learned information. With this idea,
we show that the cortico-hippocampal interactions maximize
the familiarity function computed in the hippocampal circuit.
The memorization process involves a gradual transition from
novelty to familiarity. So, it is possible to assume that the goal is
maximizing familiarity.

The hippocampus supports two kinds of associative memories:
auto-associative memory and hetero-associative memory. The
pattern completion is an example of auto-associative memory,
where the input and the output are of same modality. The picture-
naming task is a classic example of hetero-associative memory
(Barbarotto et al., 1998; Cuetos et al., 2005). In this task, the
participants are asked to name the pictures shown on the screen.
This task is used to assess the level of cognitive deterioration
in AD patients. AD is a progressive neurodegenerative disorder
in which neuronal loss is observed throughout the brain. The
initial loss of neurons is detected in the Entorhinal cortex and
hippocampus (Gómez-Isla et al., 1996; Bobinski et al., 1998).
Alzheimer’s patients at different stages show different kinds of
responses in the picture-naming task. The controls and early stage
AD patients predominantly produce correct responses (e.g., to
the picture of a lion, they respond with the word “lion”). In the
mild to moderate stage, they make some semantic errors (e.g.,
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responding with words that are similar or closer to the actual word
semantically–like tiger in place of lion–or the superordinate words–
like animal instead of lion). In the severe stage, they predominantly
make Semantic Errors or No Response (I don’t know) (Barbarotto
et al., 1998; Cuetos et al., 2005).

In this paper, we present a deep network-based model of
hippocampal memory functions. In this model, the feedforward
and the feedback projections between the sensory cortex and
the hippocampus are modeled as encoder and decoder of an
autoencoder. The network receives images as input. The network
has a deep autoencoder structure with the inner-most layer,
the Central Layer (CL), representing the hippocampus–more
specifically, CL can be compared best to Entorhinal Cortex (EC).
Furthermore, attractor dynamics is imposed on the state of CL by
assuming that the state of CL constantly seeks to find the local
maximum of a familiarity function, where the familiarity refers
to the confidence at which an object is remembered (Skinner
and Fernandes, 2007). Once the state of CL with the maximum
familiarity is achieved, the state is passed to the decoder for
the reconstruction of the image. The model incorporates the
two crucial features of hippocampal memory models–pattern
separation and pattern completion. The convergent projections
from the input layer to the Central Layer, which represent the
Autoencoder, are thought to achieve pattern separation. The hill-
climbing dynamics over the familiarity function computed in
the Central Layer, which represents the hippocampus, is thought
to achieve pattern completion. The proposed network exhibits
more accurate recall performance than one without the attractor
dynamics over the familiarity function. The proposed network
exhibits more accurate recall performance than one without
the attractor dynamics over the familiarity function. In general,
autoencoder-based networks inherently removes the noise to some
extent due to the generalization effect. When an autoencoder is
trained to map noisy patterns to noiseless patterns, then better
pattern completion can be observed. But if the autoencoder is
trained to map the same noisy version of the input, then pattern
completion performance is lesser, and this happens due to the
generalization effect. But in the proposed model, we map the input
to the same noisy version. This training process ensures that the
autoencoder does not eradicate the noise in its representation. We
show that familiarity value representation is needed for pattern
completion in the proposed settings.

Going beyond the basic model, we implement the picture-
naming task by introducing two pipelines in the network
architecture–one for the image and another for text. We apply
the resulting “picture-naming model” to simulate the performance
of Alzheimer’s patients. When the hidden layer neurons are
progressively destroyed, in order to simulate hippocampal damage
in Alzheimer’s, the model’s recall performance showed a strong
resemblance to the performance of the patients on the same task.

2. Methods and results

2.1. Auto-associative memory model

The model of auto-associative memory is explained using a
modified convolutional autoencoder, in which the Central Layer is

associated with attractor dynamics. We call such an architecture an
Attractor-based Convolutional Autoencoder (ACA). The attractor
dynamics arises out of performing hill-climbing over a cost
function, which in the present case is the familiarity function.
The performance of the proposed model is compared with a
standard convolutional autoencoder and a recurrent convolutional
autoencoder. All the three architectures are compared on image
pattern completion tasks.

2.1.1. Dataset
The image dataset is generated using the images of printed

numerals 0–9 (Figure 2A) with size 28 × 28. The dataset consists
of images with various noise levels. The noisy images are generated
using equation (1).

In = |I − η.G | ∈ R28x28 (1)

Here I, and In denotes the noiseless Image, noisy Image,
respectively. G represents the noise matrix, whose individual
element is given as Gij = U(0, 1). Where U(0, 1) is a uniform
random variable with values ranging between 0 and 1. η is a scalar
that specifies the noise percentage, which ranges between 0 and
1. The modulus operator is used to keep the image pixel values
between 0 and 1. The noisy sample images are shown in Figure 2B.
The training dataset contains 100,000 images, the validation dataset
contains 20,000, and test dataset contains 20,000 images. The
images are categorized into ten classes (0–9) depending on the
source image it is generated.

2.1.2. Familiarity value function
Here the assumption is that when a particular pattern is well

learned, the reconstruction gets better. Even from a partial pattern
or noisy pattern, it is quite possible to recall the complete familiar
information. In the proposed model, familiarity is related to the
correctness value that encodes the noise level in the input pattern
(image). Thus, for a familiar pattern, the value will be maximum (1),
and vice versa. The dataset contains an image and a corresponding
familiarity value. Here the familiarity (correctness) value C is
estimated using equation (2).

C = e−
||I−In ||2

2σ2 (2)

where In denotes the noisy version of an image. I represents the
perfect/noiseless Image. Here σ is set to 15. Whereas the value
C for a noiseless image is 1, for a noisy image, the value ranges
between 0 and 1. For each training image, the corresponding value
is calculated using equation (2).

2.1.3. Standard convolutional autoencoder (SCA)
The standard convolutional autoencoder network (Figure 3)

takes an image as input and maps it onto itself (i.e., learns the image
along with the noise). In the present case, the encoder comprises
two convolution layers with max-pooling followed by two fully
connected layers. The decoder comprises two fully connected
layers followed by two deconvolution layers, thereby producing the
output of the same size as the input.

2.1.4. Image encoder
The encoder uses the input image of dimension 28 × 28. It

comprises two convolution layers, with each convolution layer
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FIGURE 2

(A) Digit Images without noise. (B) Image of Zero at different noise levels.

FIGURE 3

Architecture of standard convolutional autoencoder. This network is trained to reproduce the observed input image as the output. i.e., if there is a
noise in the input, the network needs to learn the noise along with the input.

extracting three feature maps over a receptive field of size 3 × 3.
Each convolution layer is followed by a max-pooling layer (Scherer
et al., 2010) of stride 2 generating feature maps, each of size
3 × 14 × 14 and 3 × 7 × 7, respectively. The output of the second
convolution layer is flattened (3× 7× 7 to 147) and connected to a
fully connected layer with 96 neurons. This, in turn, is connected to
the Central Layer with 64 neurons. Here all the layers use the leaky-
ReLU activation function (Maas et al., 2013), but the Central Layer
uses the sigmoid activation function.

2.1.5. Image decoder
The image decoder generates an image using the features

from the Central Layer. Here, the final layer of the encoder is
connected to a fully connected layer with 96 neurons. This, in turn,
is connected to a fully connected layer with 147 neurons, which is
then reshaped to 3 × 7 × 7. This reshaped data is fed to the first
deconvolutional layer, which has three filters of size 3 × 3 with
stride 2 and produces an output of size 3 × 14 × 14. Then the
first deconvolutional output is fed to the second deconvolutional
layer (3 filters of size 3 × 3 with stride 2) to produce the
image output of size 28 × 28. Here the output layer uses a
sigmoid activation function, and all the other layers use leaky-ReLU
activation function.

2.1.6. Recurrent convolutional autoencoder (RCA)
This model uses essentially the same architecture as the one in

the standard convolutional autoencoder network above but with a
difference: instead of decoding the input in one-step, the output
of the network at the current iteration is used as input in the next
iteration (Figure 4). Thereby forming a loop, the network acts as

an attractor, and the stable output obtained after several iterations
is considered as the final retrieved pattern.

2.1.7. Attractor-based convolutional autoencoder
(ACA)

This model also uses the same network architecture as used in
the simple convolutional autoencoder above, but with an important
modification (Figure 5B). Figure 5A shows the schematic diagram
of the cortico-hippocampal network. Here the architecture of the
encoder and the decoder are the same as used in the simple
convolutional autoencoder network. The network maps the input
to itself. Therefore, during training, the network is trained to
reproduce the noisy input as the output. The noisy images are
generated using equation (1).

This model uses the concept of familiarity, and each input to
the network is mapped to a scalar value that represents familiarity.
In the network, the “familiarity unit” is implemented by a single
sigmoidal neuron, which receives the inputs from the central layer
(CL) with 64 neurons (attributed to EC) via a sigmoidal layer
with 32 neurons. This unit outputs a scalar value V representing
the familiarity level of the input. This single node predicts the
familiarity (correctness) value C [equation (2)]. After training, the
familiarity value predicted by the network is used to reach the
nearest best feature with the maximum familiarity value.

2.1.8. Training
2.1.8.1. Standard convolutional autoencoder

Unlike the conventional denoising autoencoders, the standard
convolutional autoencoder is trained to produce the same noisy
input as output. This approach is imposed to imitate the
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FIGURE 4

Architecture of recurrent convolutional autoencoder. This network structure and the parameters are the same as the Standard Convolutional
Autoencoder. One difference is that the current iteration’s output is used as input in the next iteration. After multiple iterations, the settled pattern is
used as output.

FIGURE 5

(A) Schematic diagram of the cortico-hippocampal memory Network. (B) Architecture of Value-based Convolutional Autoencoder Network. CL-
Central Layer. Here the value function estimated from the encoder layer represents the familiarity (correctness value).
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natural conditions, as the brain doesn’t perceive noisy input
and corresponding noiseless output. The standard autoencoder
network is trained to minimize the cost function Lsca (a
combination of multiple cost functions) as given below.

L1 =
∣∣∣∣I − I

∣∣∣∣2 (3)

L2 = −

9∑
i = 0

(
pi.log

(
pi
)
+
(
1−pi

)
.log

(
1−pi

))
(4)

Lsca = L1 + λ1 ∗ L2 (5)

Here,
I−input image.
I-predicted Image.
pi- actual probability of input image being in ith class.
pi- predicted probability of being in ith class.
λ1−trade-off parameter.
L1denotes the image reconstruction error. L2denotes

classification error (cross-entropy). SoftMax layer with ten neurons
is used for classification over the Central Layer. The classification
layer is used to make the encoded features separable for the image
inputs of different numbers. The network parameters are updated
using Adam optimizer (Kingma and Ba, 2015).

2.1.8.2. Recurrent convolutional autoencoder (RCA)

As the standard convolutional autoencoder itself is merely used
iteratively, there is no separate training employed in this case.

2.1.8.3. Attractor-based convolutional autoencoder (ACA)

The Attractor-based convolutional autoencoder is trained
similarly to the standard convolutional autoencoder along with
an additional cost function for the familiarity value prediction.
Here the attractor-based convolutional autoencoder is trained to
minimize the cost function Laca [Equation (7)].

L3 = ||C − V||2 (6)

Laca = Lsae + λ2 ∗ L3 (7)

Here,
C - desired familiarity value.
V−predicted familiarity value.
λ2−tradeoff parameter.
Lsae-the cost function used in the standard

convolutional autoencoder.
L3denotes the familiarity value prediction error. Here also the

network is trained using Adam optimizer.
In this network, for a given input image, the output is retrieved

after modifying the encoded feature vector using the familiarity
value. The feature vector is modified using the predicted familiarity
value to attain the maximum familiarity value by the hill-climbing
technique. Here Go-Explore-NoGo paradigm is used to implement
the stochastic hill-climbing behavior.

2.1.8. Go-Explore-NoGo (GEN)
Similar to Simulated Annealing (Kirkpatrick et al., 1983),

the GEN algorithm allows us to perform hill-climbing over a

cost function without explicitly calculating gradients. Although
originally derived in the context of modeling the basal ganglia,
it can be used as a general optimizing algorithm. The Go-
Explore-NoGo (GEN) policy (Chakravarthy and Balasubramani,
2018), consists of 3 regimes: Go, Explore, and NoGo. A slightly
modified version of GEN is used in this model. The Go regime
decides that the previous action must be repeated. The NoGo
regime forbids from taking any action. [There is another variation
of the NoGo regime wherein the action taken is opposite of
the corresponding action in the Go regime (Chakravarthy and
Balasubramani, 2018)]. The Explore regime allows choice of
a random action over the available action space. For a given
input image, the feature vector f from the Central Layer and
the corresponding familiarity value V is estimated. The network
aims to identify the nearest feature vector with a maximum
familiarity value of 1. It is achieved using the following algorithm
based on the GEN policy (Chakravarthy and Balasubramani,
2018).

Let.
f - be the current feature vector for the given input image.
V- familiarity value for the feature vector f .
∈ -threshold value.
φ −is a 64-dimensional random vector, where each element φi

is given as.
φi = U(0, 1)

Where U(0, 1) is a standard uniform distribution variable with
values between 0 and 1.

Initialize4f (0) = 0

f (t + 1) = f (t)+4f (t)

δ(t) = V(t + 1)−V(t)

f is updated by the following equations:

if δ(t) > ∈:

4f (t + 1) = 4f (t) − “Go′′

else if δ(t) = − ∈:

4f (t + 1) = −4f (t) − “NoGo′′ (8)

else

4f = φ − “Explore′′

End.

Thus, when the network receives a noisy version of the input
image, the feature vector is extracted in the Central Layer of
the network. The feature vector is modified iteratively using the
above algorithm until the corresponding familiarity value reaches
the maximum. Once the familiarity value attains 1 (or the local
maximum), then the latest modified feature vector is given to the
decoder, and the output image for the proposed model is produced.

2.1.9. Performance comparison
The performance of the above three networks is compared on

the pattern completion task for the same set of images.
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For the standard convolutional autoencoder, the output image
for the given input image is taken while no hill-climbing dynamics
is applied over the encoded feature vector.

The recurrent autoencoder (Autoencoder with the outer loop,
where the output for the current iteration is given as input for the
next iteration) forms a loop, and therefore the network acts as an
attractor. In this case too, there is no additional dynamics applied to
the encoded feature vector, which is the output of the Central Layer.
So, the output settles at a particular image output over multiple
iterations for a given input image. This settled image pattern is
taken as the final output of the network.

The Attractor-based Autoencoder model retrieves the output
after applying the familiarity dynamics to the Central Layer output
using the familiarity value. The familiarity value, V, is extracted
from the single node using the feature vector from the Central
Layer (Figure 5B). Figure 6 shows the familiarity value concerning
the noise percentage for images of zero at different noise levels.
Here the actual familiarity value is derived using equation (2). The
predicted familiarity value is the output of the single value node.

2.1.10. Results
The performance on the pattern-completion task is compared

here for the above three models. Figure 7 shows the output
comparison at different noise levels. The first row has the
input images of “3” at five different noise levels. The second,
third, and final rows show the outputs of the standard (SCA),
recurrent (RCA), and the proposed Attractor-based convolutional
autoencoder Model (ACA), respectively. It clearly shows that the
network with the GEN technique outperforms both the other
methods in reconstructing the proper images from the noisy
images.

Figure 8 compares the noise reduction/removal capability
(RMS error) among the three models. The RMS error is estimated
using the equation (9).

RMS error =
∣∣∣∣Y − Y

∣∣∣∣ (9)

where Y is the expected noiseless Image and Y is the network
output. Even at higher noise levels, the ACA model retrieves
better noiseless images. It explains the need for an inner loop
that estimates and uses the familiarity function. The number of
iterations required to reach the maximum familiarity value is
included in the Supplementary Figure 4.

2.2. Hetero-associative memory model

The hetero-associative memory model is demonstrated
using a multimodal autoencoder network (Ngiam et al., 2011).
The network used here is an extension of the value-based
convolutional autoencoder. The hetero-associative memory
behavior is instantiated in the image-word association task,
which can be compared to the behavior of AD patients in the
picture-naming task.

2.2.1. Multimodal autoencoder network
The multimodal autoencoder network has two components,

the Image Autoencoder and the Word autoencoder. Both the
components here are joined at a Central Layer (Figure 9). The

Image Autoencoder and the Word autoencoder take images and
words as inputs, respectively. A similar network configuration was
used in another model called the CorrNet to produce common/joint
representations (Chandar et al., 2016). The Image encoder uses
two convolution layers with max-pooling followed by two fully
connected layers. The Word encoder uses three fully connected
layers. The outputs of the image encoder and word encoder are
combined to make a common/joint representation. From this
common representation layer, a single neuron is connected via
a sigmoidal layer with 32 neurons, which outputs a scalar value
representing the familiarity level of the input. The image decoder
with two fully connected layers followed by two deconvolutional
layers uses the joint representation to generate the image output.
Similarly, the word decoder with three fully connected layers uses
the joint representation to generate the Word output.

The robustness of associative memory behavior is tested
by resetting the neurons at the Central Layer at different
percentage levels for a given input image and generating the image
and word outputs.

2.2.2. Image encoder
Similar to the previous convolutional autoencoder network, the

image encoder uses two convolution layers with the same number
of filters of the same size. The second convolutional layer output is
connected to a fully connected layer with 96 neurons. All the hidden
layers use the leaky-ReLU activation function (Maas et al., 2013).

2.2.3. Word encoder
The Word input is processed by the encoder with fully

connected layers. The encoder takes a vector of size 135 as input.
This vector represents five characters each by a 27 sized vector,
thus 5 × 27 = 135. A detailed explanation of this vector is given
in the dataset section. The input layer is connected to the first layer
with 128 neurons. The first layer is connected to the second layer
with 96 neurons.

2.2.4. Joint representation
The outputs of both the image encoder and the word encoder

are connected to a layer with 64 sigmoidal neurons. This generates
a common feature vector. The common feature vector is estimated
using the following equation (10).

f = sigmoid(
gI .fPI + gw.fPW

gI + gw
) (10)

where fPI,fPW denotes the pre-feature vector (before applying
activation function) from the Image encoder and the Word
encoder, respectively; gI and gW are binary values representing
the availability of image and word inputs, respectively, where 1
denotes the availability of a particular input, and 0 denotes the
non-availability of input.

2.2.5. Familiarity value function
The Central Layer is connected to a single sigmoidal neuron via

a single hidden layer with 32 sigmoidal neurons. The single output
sigmoidal neuron estimates a scalar value denoting the familiarity
level of the input image-word combination.

2.2.6. Image decoder
The Image decoder uses the same architecture as in the

standard convolutional autoencoder network.
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FIGURE 6

Comparison between the actual familiarity value and the network predicted value at different noise levels.

2.2.7. Word decoder
The Word decoder takes the common feature vector as input

and processes it through 3 fully connected layers that have 96,
128, and 135 neurons, respectively. The first two layers use the
leaky-ReLU activation function. The output layer uses 5 SoftMax
functions, out of 27 neurons each. Here each SoftMax function
specifies one character.

2.2.8. Dataset
The dataset used here is a combination of Images, Words,

familiarity values, and association indices. The images are used
from the dataset as in the autoencoder network.

2.2.9. Words
The Word input is represented using five numbers of 27-

dimensional one-hot vector representations, which together form
a vector of size 135 (= 27 × 5). A single character is represented
by a 27-dimensional vector. Among the 27 dimensions, the first 26
dimensions represent alphabets (a-z), and the last (27th) dimension
represents the special character–empty space. For example, for the
character “e,” the 5th element in the vector is set to 1, and the rest of
the elements are set to 0. The number of characters is chosen to be
five, considering the maximum number of characters in the words
for numbers from zero to nine.

The Word input data is generated for the number-names
(zero, one, two, . . .., nine) and the number-type-names (even, odd)
(Table 1).

The noisy words are generated using equation (11). This way,
12,000 noisy words are generated and used.

Wn = |W − η.G | (11)

Where W, and Wn denotes the proper and noisy Words,
respectively. G is a noise vector with dimension 135, and

each element of which is sampled from the standard uniform
distribution U(0, 1).

2.2.10. Familiarity value
The familiarity value for both the Image and Word is calculated

using the Gaussian formula as in Equations (12, 13).

VI = e
−
||I−In ||2

2. σ2
I (12)

VW = e
−
||W−Wn ||2

2. σ2
W (13)

Where I, W, In, Wn denotes the noiseless Image, noiseless
Word, noisy Image, and noisy Word, respectively. Here σI is set
to 50 and σW is set to 8. Thus, a noise-free image/word has a
familiarity of 1; when there is noise, it will have a value between
0 and 1 depending on the level of noise.

When both the image and word inputs are presented to the
network, the combined Familiarity is calculated by multiplying the
familiarity value of the Image and the Word. This familiarity value
is used by the network to reach the nearest best feature vector with
maximum value by the Go-Explore-NoGo technique.

2.2.11. Association index (γ)
The association index, γ, is a scalar that specifies the relation

between the Image and the Word. For various combinations of the
above images and words, the association index is generated. The
rules followed for generating the association index are listed below.

• If a word denotes the same number-name or number-type-
name for the given Image, then γ is set to +1.
• If a word does not match with either the number-name or

number-type-name for the given Image, then γ is set to−1.
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FIGURE 7

Image reconstruction comparison for Image three at different noise levels. SCA, standard convolutional autoencoder; RCA, recurrent convolutional
autoencoder; ACA, attractor-based convolutional autoencoder.

FIGURE 8

Comparison of reconstruction error between SCA, RCA, and ACA at
different noise levels.

For example, “0” (Image) and “zero” (word) have an association
index of +1, similarly “0,” and “even” also get the association index
of +1. But, “0” and “odd” have an association index of −1. At
a particular instant, at least one among the Image or word data
should be present. When one modality among Image and Word
is absent, the association value is set to 0.

The motivation here is not to learn the association index.
The association index is used to establish the correlation among
the feature vectors corresponding to the co-occurring images and
words. Here the occurrence of image and the number-name (ex.,
“0”–“zero”) happens 80% of the time, and image and number-type-
name (ex., “0”–“even”) happens 20% of the time. This ensures a
higher correlation among the feature vectors of an image to the

number-name than the correlation among the feature vectors of the
image to the number-type-name.

Along with all the above input data, two more binary values gI
and gW are also used, which represent the presence of the image
input and the Word input, respectively.

2.2.12. Training
For training the network, a combination of Image, Word,

familiarity value, and the association index are used. The three
input-output combinations used for training the network are
shown in Table 2.

The multimodal network is trained to produce the same given
inputs as outputs irrespective of the noise in the input.

Different Image-Word combinations are used for training the
network. The various combinations are as follows:

1. Noiseless Image, noiseless Word.
2. Noisy Image, noiseless Word.
3. Noiseless Image, noisy Word.

Here’ noisy image and noisy word’ combination is not
used for training.

Among the above three combinations in the training dataset,
each of the above combinations has 100, 100,000, and 12,000
data, respectively. Though each group has a non-uniform data
count, while training, each batch contains 100, 1,000, and 120
combinations from the three groups, respectively. Since the
noiseless image-noiseless word combinations are used across all the
batches, and there is some overlap among these groups, it helps
avoid overfitting the dataset with a larger size.

The network is trained to minimize the cost function
L [Equation (19)]. A combination of 5 cost functions
L1,L2,L3,L4,L5 are used for training. L1,L2,L3,L5 are
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FIGURE 9

Network architecture of multimodal autoencoder with an associated value function. CL, central layer. The network receives two types of inputs
(Image and Word). The CL establishes the association between the Image encoded feature vector and the Word encoded feature vector. The value
function predicts the noise level in the input combination.

image reconstruction error, word reconstruction error, the
correlation coefficient of Image pre-feature vector and Word
pre-feature vector, and value reconstruction error, respectively. L3
is used to form the relationship between the feature vectors of the
Image and the Word. L4 is used to make the Image and Word
feature representations closer.

L1 =
∣∣∣∣I − I

∣∣∣∣2 (14)

L2 = −
∑

i

(
Wi.log

(
Wi
)
+ (1−Wi) .log

(
1−Wi

))
(15)

L3 =

∑
(fPI − fPI) (fPw − fPw)√

6(fPI − fPI)
2
6(fPw − fPw)

2
(16)

L4 =
∣∣∣∣fPI−fPw

∣∣∣∣2 (17)

L5 =
∣∣∣∣V − V

∣∣∣∣2 (18)

L = L1 + λ1∗L2 − λ2 ∗ γ ∗ L3 + λ3 ∗ L4 + λ4 ∗ L5 (19)

Where,
I–input image.
W–input word.
I-predicted Image.
W-predicted Word.
fPI -the pre-feature vector for Image.
fPw - the pre-feature vector for the Word.

TABLE 1 Word inputs.

Number-names

Zero One

Two Three

Four Five

Six Seven

Eight Nine

Number-type names

Even Odd

fPI- the mean pre-feature vector for Image.
fPw - the mean pre-feature vector for the Word.
λ1, λ2, λ3, λ4 - tradeoff parameters.
γ−association index.
V–desired familiarity value.
V−predicted familiarity value.
Here, the mean of the pre-feature vectors is estimated for a

particular batch of images and words, respectively. The network
parameters are updated using Adam optimizer (Kingma and
Ba, 2015). After training, the results are generated with various
combinations of inputs.

2.2.13. Results
The results are generated by giving only one input (either Image

or word) at a time. Figure 10 visualizes the common feature vector
(size 64) in 2D space (using the two principal components with the
highest portion of the total variance explained). The Word inputs
are given to the network while keeping the image inputs blank
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TABLE 2 Input-output combinations for the multimodal autoencoder.

Input Output

Image, Word Image, Word, Combined Familiarity Value, and
Correlation-coefficient

Image Image, Image Familiarity Value

Word Word, Word Familiarity Value

(zero values). A total of 0–9 specifies words’ zero,’ “one,”. . ., “nine,”
respectively, where “10” corresponds to the word “even,” and “11”
corresponds to the word “odd.” Note that the words corresponding
to the odd type and even type form separate clusters.

The results below (Figures 11, 12) are generated by giving
image input alone while keeping the Word input to be empty (zero
values).

2.2.14. Simulating the behavior of Alzheimer’s
disease (AD) patients on picture-naming task

Alzheimer’s disease is characterized by the loss of cells in the
Entorhinal cortex, a cortical area that serves as the gateway to
the hippocampus (Gómez-Isla et al., 1996; Bobinski et al., 1998).
Since the Central Layer, and the associated Familiarity computation
network represent the Hippocampus in the proposed model, AD
pathology is simulated by randomly killing/resetting a percentage
of the neurons in the Central Layer. Then Go-Explore-NoGo policy
is applied over this modified feature vector to reach the feature
vector with maximum familiarity value. Note that the killed/reset
neurons do not participate in the computation. The graphs below
are generated by counting each word output’s responses at the
Word decoder out of 1,000 times.

We consider three kinds of responses for a given image
input while resetting neurons at the Central Layer. They are
number-name responses (zero, one, . . ., nine), number-type-
name-responses (even, odd), and non-name (nonword) responses
(anything other than number-names and number-type-names).

The response percentage of all the number-names and number-
type-names for the image input “9” is shown in Figure 11. In
order to simulate AD pathology at different levels of degeneration,
in the Central Layer, different percent of neurons (0, 10, 20,
30, 40, and 50%) are reset, and the average response count is
calculated. From this, we can observe that as the percent of
neurons being reset increases, the correct responses decrease. When
the image input “9” is presented, and no Central Layer neuron
is reset, the network produces the word “nine” all the time as
expected. When 10–30% of neurons are reset, it produces the word
“nine” most of the time. Among the wrong responses, most of
them are either number-name responses or number-type-name
responses of the same type/category (in this case: one, three. . .,
nine, and odd). In other words, the responses of number-names
(one, three, five, seven, and nine) and number-type-name (odd)
of the same group are high compared to the number-names
(zero, two, four, six, and eight) and number-type-name (even)
of a different group. This can be related to the semantic error.
When 40–50% neurons are reset, the sum of all the number-
name and number-type-name responses falls below 30%, and
the non-name response count is higher, which is similar to No-
response.

Figure 12A shows the count of correct number-name response
(“nine”) and wrong number-name responses (all the number-
names except “nine”) while resetting different percent of neurons
for the input of image “9.” This doesn’t include the number-type
name responses such as “odd” and “even.”

Figure 12B shows the count of the correct number-type-name
response (“odd”) and wrong number-type-name response (“even”)
while resetting different percent of neurons for the input of image
“9.” The number-name responses such as “zero,” “one,” etc., are not
counted here.

From Figures 12A, B, We can observe that, as the percentage
of neurons being reset increases, the response count of correct
number-names (nine) reduces gradually, whereas the response
count of the wrong number-names and the correct number-type-
name (odd) increase gradually for some time and decrease after
that. Here among the wrong number-name responses, most of
them are of the same type but different number-name responses
(one, three, five, and seven), which can be related to the semantic
error.

Figures 12C, D show the count of even number-name
responses vs. odd number-name responses (excluding the number-
type-names) for the image input “4” and “9,” respectively. It
can be observed that, for a given image input, the chance of
producing a number-name word response of the wrong category
is very small. This also explains the logic behind the occurrence
of semantic errors. The analysis of different response types and
Alzheimer’s patient’s behavior in picture-naming task is shown in
the Supplementary Figures 1–3.

3. Discussion

We present a deep network-based model of the associative
memory functions of the hippocampus. The cortico-hippocampal
connections are abstracted out into two structural modules of the
proposed model. In the first module, the bidirectional cortico-
hippocampal projections are modeled as an autoencoder network.
In this second module, the loop of connections from EC into the
hippocampal complex and back to EC is modeled as hill-climbing
dynamics over a familiarity function.

In the first part of the study, the model is used to simulate
auto-associative memory functions using pattern completion task
under normal conditions. The pattern-completion task is modeled
using a convolutional autoencoder with an associated familiarity
function. The autoencoder’s encoder and decoder are related to the
feedforward and feedback projections between the sensory cortices
and the hippocampal formation. There are many conventional
denoising autoencoders proposed to solve this problem (Tian et al.,
2019). These models use a supervised learning approach, where the
noisy patterns are mapped to noiseless patterns during training.
This kind of mapping does not fit the actual scenario, where the
brain is not always presented with noisy and noise-free versions of
the same pattern. The present study maps the noisy patterns to the
same noisy version itself. The model learns to construct a noise-free
version on exposure to a large sample of noisy patterns.

The Standard Convolutional Autoencoder does not have any
attractor dynamics since the output is retrieved just in one step.
The Recurrent Convolutional Autoencoder (RCA) shows attractor
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FIGURE 10

Vector representation of word features in 2D space. These features are generated by giving the Word inputs alone. Two clusters are formed for each
category (even and odd). This explains the characteristic of pattern separation, where similar patterns form a cluster and non-similar patterns are far
away in the feature space.

FIGURE 11

The response counts for all the number-names and the number-type-names while resetting different percent of neurons (0, 10, 20, 30, 40, 50, and
60%) for the image input of number 9. Here neuronal loss is related to resetting the neurons. Correct response (“nine”) is observed when there is no
neuronal loss. For 10–30% neuronal loss, the responses belonging to the same category (“one,” “three,” “five,” “seven,” and “odd”) are observed,
which is related to the semantic error. For 40–50% neuronal loss, most responses are non-word responses, which is attributed to no response.

dynamics due to the loop created between the output and input
layers. There is no explicit energy function handled in this RCA
model. In the Attractor-based Convolutional Autoencoder (ACA),
we combine Reinforcement Learning and Attractor Dynamics in
an interesting way. We show that the Value (Familiarity) function
actually serves the role of an explicit energy function, the hill-
climbing over which generates the required attractor dynamics.
It uses GEN-based attractor dynamics for hill-climbing, which
is thought to be generated by the loop dynamics within the
hippocampus. In RCA, when there is significant noise in the

input image the network state can be kicked into a nearby
attractor. Thus, it shows the wrong number image instead of
the expected number image (Figure 7). As the noise level
increases, it possibly jumps to an attractor corresponding to a
different number. In SCA, as the output is retrieved directly
from the input, the RMS error increases gradually. In ACA, the
joint training of autoencoder along with the familiarity value
function seems to create deep basins of attraction for each
stored pattern, without minimum chance of creating spurious
attractors.
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FIGURE 12

(A) Response percentage comparison of correct number-name (“nine”) vs. wrong number-names (“zero,” “one,”...,” eight”) for image input 9, (B)
comparison of percentage of correct number-type-name (“odd”) vs. wrong number-type-name (“even”) responses for image input of “9.” (C) Sum of
the count of even number-name responses vs. odd number-name responses for image input 4. (D) The sum of the count of even number-name
responses vs. odd number-name responses for image input “9.” These results show that the possibility of a wrong number-name or wrong
number-type response is minimal for a given image input, which explains the logic behind the observation of semantic errors.

3.1. Familiarity and the hippocampus

Several proposals were made regarding neuroanatomical
substrates of familiarity and recollection. Based on the memory
performance of patients with medial temporal lobe damage,
some researchers suggested that while the hippocampal region
is necessary for recollection, the surrounding cortical structures
like the parahippocampal gyrus are essential for familiarity
(Eichenbaum et al., 1994; Huimin et al., 1999). Another
proposal links recollection with medial temporal lobe structures
and familiarity with existing memory representations in the
neocortex (Mandler and DeForest, 1979; Mandler, 1980; Graf
and Mandler, 1984; Graf et al., 1984). Other proposals suggest
that the hippocampus is important for both the familiarity and
recollection processes (Manns et al., 2003; Malmberg et al.,
2004; Wais et al., 2006). Wixted and Squire (2010) show
that familiarity is supported by the hippocampus when the
memories are strong (Wixted and Squire, 2010). They also
argue that the hippocampus and the adjacent regions do
not exclusively support only one process (Wixted and Squire,
2010). Although several authors accept the existence of dual
processes–recollection and familiarity–there is no consensus on
the neural substrates of recollection and familiarity. We now
present a neurobiological interpretation of the computation

of familiarity in the hippocampal circuitry. Mesencephalic
dopaminergic signals have a major role to play in the proposed
theory.

3.2. The role of dopamine in the memory
functions of the hippocampus

Lisman and Grace (2005) presented an extensive review of
experimental literature to establish dopaminergic projections to the
hippocampus and show that dopaminergic neurons that project
to the hippocampus fire in response to novel stimuli (Lisman
and Grace, 2005). Electrophysiological recordings showed that
dopamine cells in VTA, projecting to the hippocampus, increased
their firing rate in response to novel stimuli; the activity of
these neurons reduced with increasing familiarity (Steinfels et al.,
1983; Ljungberg et al., 1992). Considering that novelty is the
complementary notion to familiarity, the above body of evidence
can be invoked to support our model that requires the computation
of familiarity in the hippocampus. With the above background
information, the central hypothesis of the proposed model may
be expressed as follows: the cortico-hippocampal interactions with
regard to memory operations are based on maximizing familiarity
computed within the hippocampal circuit. Since the process of
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memorizing a pattern entails a gradual transition from novelty to
familiarity, this assumption of maximizing familiarity seems to be
intuitively plausible.

In the present study, the familiarity function [equation (2)] is
trained by supervised learning that involves a direct comparison
of the target pattern with the predicted pattern. It is also possible
to train the familiarity function by Reinforcement Learning (RL)
(Sutton and Barto, 2018), where a close match between the target
and recalled pattern results in a reward. The familiarity function
then, in mathematical terms, becomes the value function.

An RL-based formulation of hippocampal memory functions
has an added advantage. The reward signal can be used not only
to represent the level of match between the target and recalled
pattern but also to represent the saliency of the pattern to the
animal/subject. Several existing accounts that posit CA3 as the site
of memory storage in the hippocampus, argue that the decision
to store or not to store depends solely on the mismatch between
the target and stored pattern (Treves and Rolls, 1992; Hasselmo
et al., 1995). But a memory mechanism that stores all novel stimuli
encountered by the animal in its interactions with the world,
irrespective of the saliency of the stimuli to the animal, would
glut the animal’s memory resources. The best possible way is
to store only the important stimuli by filtering it based on the
salience factors such as reward, novelty, recency, and emotional
involvement (Cheng and Frank, 2008; Singer and Frank, 2009;
McNamara et al., 2014; Santangelo, 2015). These notions will be
explored in our future efforts.

3.3. Modeling hetero-associative
memory function in Alzheimer’s disease
(AD)

The second part of the work demonstrates hetero-associative
memory using a multimodal autoencoder. In this case, the network
is trained to form association between images and words at
the Central Layer. Here the trained feature vectors belonging to
the same category form a cluster (even and odd). AD patients’
behavioral response during the picture-naming task is reproduced
by killing/resetting the neurons at the Central Layer.

In general, Alzheimer’s disease is linked to dysfunction in
the cholinergic system. According to the cholinergic hypothesis,
disruptions of the cholinergic system in the basal forebrain are
attributed to the impairment of cognitive functions in Alzheimer’s
disease (Perry et al., 1978; Bartus et al., 1982; Bartus, 2000).
Later studies have challenged the hypothesis by showing that
the selective cholinergic lesions in the basal forebrain do not
induce memory deficits as expected by this hypothesis. Early stage
Alzheimer’s patients do not show reduced cholinergic markers in
the cortex (Davis et al., 1999; Dekosky et al., 2002). A few studies
showed evidence of Alzheimer’s disease-related degeneration in
the entorhinal cortex but not in the basal forebrain (Palmer,
2002; Pennanen et al., 2004). So the first neurodegenerative
event in Alzheimer’s disease is possibly not the cholinergic
depletion in the cortical structures (Gilmor et al., 1999; Dekosky
et al., 2002; Mesulam, 2004). Some studies suggest that the
degenerative process in the entorhinal cortex as the initial signs
of Alzheimer’s disease (Gómez-Isla et al., 1996; Pennanen et al.,
2004; Stoub et al., 2005) and this could lead to the cause

of memory dysfunctions (Du et al., 2001; Rodrigue and Raz,
2004).

In the proposed model, the severity of AD is related to the
percentage of neurons killed at the Central Layer, which represents
the EC. The output of the network matches the behavioral
response of AD patients at different levels of severity. The intact
network produces the correct number-name responses for the
given image input, which matches the responses of controls and
AD patients at an early stage. The network with a lower percentage
of neurons killed demonstrates some semantic error responses
(correct number-type name response or wrong number-name of
the same type), which matches the responses of mild-moderate
stage of AD patients (ex. tiger instead of lion or animal instead of
lion). A high percentage of neuronal loss shows semantic errors and
no response (non-word response) that matches the response of the
severe stage of AD patients (ex. I don’t know) (Barbarotto et al.,
1998; Cuetos et al., 2005).
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