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The mammalian retina captures a multitude of diverse features from the external

environment and conveys them via the optic nerve to a myriad of retinorecipient

nuclei. Understanding how retinal signals act in distinct brain functions is one of the

most central and established goals of neuroscience. Using the common marmoset

(Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for

parsing how retinal innervation works in the brain, started decades ago due to

their marmoset’s small bodies, rapid reproduction rate, and brain features. In the

course of that research, a large amount of new and sophisticated neuroanatomical

techniques was developed and employed to explain retinal connectivity. As a

consequence, image and non-image-forming regions, functions, and pathways, as

well as retinal cell types were described. Image-forming circuits give rise directly

to vision, while the non-image-forming territories support circadian physiological

processes, although part of their functional significance is uncertain. Here, we

reviewed the current state of knowledge concerning retinal circuitry in marmosets

from neuroanatomical investigations. We have also highlighted the aspects of

marmoset retinal circuitry that remain obscure, in addition, to identify what

further research is needed to better understand the connections and functions of

retinorecipient structures.

KEYWORDS

retinal projection, marmoset (Callithrix jacchus), image forming system, non-image forming
system, retinorecipient areas

1. Introduction

Afferents from the retina to the brain have been an important focus in connectional research
for decades (Lane et al., 1971; Martin, 1986; Kaas and Huerta, 1988; Matteau et al., 2003).
Although the geniculostriate circuitry has been the primary center of the research on retinal
projection, it is long established that other retinorecipient nuclei and pathways exist, and over
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recent years a concerted effort to comprehend their functional
significance has emerged (Kwan et al., 2018).

The body of work describing retinal innervation has relied
on several animal models (Cassone et al., 1988; Murakami et al.,
1989; Smale et al., 1991; Nemec et al., 2004; Scalia et al., 2014)
to reveal the retinal terminal distribution (Guillery, 1970; Tigges
and Tigges, 1981; Nascimento et al., 2010) and types of retinal
fibers (Ling et al., 1997; de Góis Morais et al., 2014; Santana
N. N. M. et al., 2018; Santana M. A. D. et al., 2018). Typical animal
models for this research included non-human primates (Moore,
1973; Kaas et al., 1974; Tigges et al., 1977; Pinato et al., 2009),
one of which is the common marmoset (Callithrix jacchus), which
is a small Neotropical monkey, endemic to Northeastern of Brazil.
Furthermore, progress in the knowledge of retinal circuitry has
also been achieved by the refinement of the approaches for tracing
(Salleeba et al., 2019). Pioneer studies used ablation combined with
anterograde degeneration techniques (Campbell, 1969; Hendrickson
et al., 1970; Scalia and Arango, 1979), while recent research has
employed viral tracers (Martersteck et al., 2017; D’Souza et al.,
2021). Even though these useful and sophisticated elements allow
a connectional map of retinal inputs, the functional role of part
of retinal projection remains unknown. Classically, image-forming
(IF) and non-image forming (NIF) systems have been proposed
to categorize a numerous of retinorecipient areas and retinal
pathways (Cavalcante et al., 2005; Daneault et al., 2016). Here we
described the retinorecipient areas with IF and NIF properties from
neuroanatomical tracing techniques in common marmosets. This
review is motivated by the recent emergence of this primate as
a scientific model for studies of neural connections (Majka et al.,
2016; Bakola et al., 2021), including research on retinal innervation.
Marmosets are an already established animal model for brain research
due to their unique neuroanatomy (Solomon and Rosa, 2014;
Mitchell and Leopold, 2015; Fukushima et al., 2019; Morais et al.,
2019; Ríos-Flórez et al., 2021), high reproductive efficiency, and
small bodies (Okano et al., 2012; Ross, 2019). The renewed focus
has been because, at least in part, of the successful generation of
transgenic marmosets via lentiviral-mediated gene transfer (Sasaki
et al., 2009) and by the development of gene-knockout marmosets
via genome editing (Sato et al., 2016). Furthermore, to analyze and
manipulate populations and networks in the marmoset brain, genetic
approaches (MacDougall et al., 2016; Takaji et al., 2016; Mimura
et al., 2021) and pipelines for the processing of neural anterograde

Abbreviations: AOS, acessory optic system; CTb, cholera toxin subunit B;
CTS, circadian timing system; DRN, dorsal raphe nucleus; DLG, dorsal
lateral geniculate nucleus; IF, image-forming; IGL, intergeniculate leaflet;
ipRGCs, intrinsically photosensitive retinal ganglion cells; K, koniocellular; K1,
koniocellular layer 1; lPBN, lateral parabrachial nucleus; lSGS, lower stratum
griseum superficiale; mPBN, medial parabrachial nucleus; M, magnocellular;
MD, mediodorsal nucleus; MDmc, magnocellular mediodorsal nucleus; MDpc,
parvocellular mediodorsal nucleus; MIN, midline and intralaminar nuclei;
MnR, median raphe nucleus; MTN, medial terminal nucleus; NIF, non-image
forming; NPY, neuropeptide Y; P, parvocellular; PACAP, pituitary adenylate
cyclase-activating polypeptide; PBN, parabrachial nucleus; PGN, pregeniculate
nucleus; PGNdol, pregeniculate nucleus dorsal outer lamina; PGNil, inner
lamina of pregeniculate nucleus; PGNol, outer lamina of pregeniculate
nucleus; PGNvol, pregeniculate nucleus ventral outer lamina; PI, pulvinar
inferior; PIcl, central lateral nucleus of the inferior pulvinar; PIcm, central
medial nucleus of the inferior pulvinar; PIm, medial nucleus of the inferior
pulvinar; Pip, posterior nucleus of the inferior pulvinar; PVT, paraventricular
nucleus of thalamus; RGCs, retinal ganglion cells; SC, superior colliculus;
SCN, suprachiasmatic nucleus; SGS, stratum griseum superficiale; SO, stratum
opticum; SZ, stratum zonale; uSGS, upper stratum griseum superficiale; V1,
primary visual cortex; VLG, ventral lateral geniculate nucleus.

tracer images (Abe et al., 2017; Lin et al., 2019; Skibbe et al., 2019)
have become available. These genetic and anatomical techniques
might will become new tools for neuroanatomical and functional
investigations of retinal connections.

In the following sections, we will discuss the connectional criteria
by which retinorecipient regions are categorized into distinct systems,
as well as functional information that is still absent for the retinal
innervation in multiple non-image-forming areas. Furthermore, to
make this review more fluid, we will include references from other
animal models to describe common morphological and functional
characteristics of subcortical nuclei. In general, the comparative
analysis can be found within those primary references. Several
features of the subcortical nuclei of the marmoset are similar to
those of other mammalian species, including rodents, macaques, and
humans, and we will not emphasize them repeatedly.

2. Overall organization of the
marmoset brain

Remarkably, the marmoset brain has several unique features that
differentiated it from other primate species (Miller et al., 2016; Eliades
and Miller, 2017; Hagan et al., 2017; Atapour et al., 2018), most
notably the existence of an area 8C in premotor (Burman et al.,
2015) and the lack of cortical area 44 (Roberts et al., 2007; Paxinos
et al., 2012). At the same time, the marmoset brain shares common
characteristics with other species within the primate order (Chaplin
et al., 2013; Ghahremani et al., 2017), such as the dorsolateral
prefrontal cortex, inferior temporal cortex, and dorsal pulvinar
(Preuss, 2007). Another striking feature of this brain, similar to other
primates, is the existence of the complex interconnected circuitry of
subcortical areas that receive and process, both simultaneously and
in parallel (Callaway, 2005; Nassi and Callaway, 2009). Obviously,
the retina is the first step in this network, in which photic inputs
are captured, transduced, and decomposed into multiple parallel
pathways (Euler et al., 2014; Masland, 2017). These type of retinal
signals are transmitted to the brain by diverse retinal ganglion cells
(RGCs) (Martersteck et al., 2017). Each type of RGC is sensitive to
distinct features of the external environment and conveys them via
the optic nerve to retinorecipient areas (Masland, 2012), with IF
and NIF functions (Sondereker et al., 2020). Bellow, we will briefly
characterize IF and NIF circuits and describe the primary basis for
the segregation between them.

3. Image forming and non-image
forming circuits

Classically, the organization of retinal circuits has been divided
into two functional branches, IF and NIF pathways (Seabrook et al.,
2017; Sondereker et al., 2020). In this review, we have included
the retinorecipient nuclei, that support vision indirectly in the IF
circuitry. Our selection is based on the visuomotor features of these
subcortical structures due to their involvement in the pupillary light
reflex and involuntary eye movements to stabilize the image (see
section 4.2).

The IF circuits give rise to vision directly. The high spatial
and temporal resolution of IF pathways allows them to locate and
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FIGURE 1

Schematic representation of marmoset image-foming system (blue). Distinct types of retinal ganglion cells (RGCs) bilaterally innervate visual thalamic
and midbrain nuclei, such dorsal lateral geniculate nucleus (DLG), inferior pulvinar (PI), outer lamina of the pregeniculate nucleus (PGNol) and superficial
layers of superior colliculus (SC). Parasol, midget and small bistratified cells send axonal projections to parvocellular, magnocellular and koniocellular
layers of DLG, respectively. SC receives dominant projections from parasol cells. Additional wide-field cells, such as narrow thorny, broad thorny and
recursive cell has been described as sending projections to K laminae, CS and PI. The RGC populations that innervates the PGNol, pretectal nuclei and
accessory optic nuclei (AOS) still remain unclear. K1–K4, koniocellular layers 1–4; ME, external magnocellular layer; MI, internal magnocellular layer; PE,
external parvocellular layer; PGNdol, pregeniculate nucleus dorsal outer lamina; PGNvol, Pregeniculate nucleus ventral outer lamina; PE, internal
parvocellular layer; PIcl, central lateral nucleus of the inferior pulvinar; PIcm, central medial nucleus of the inferior pulvinar; PIm, medial nucleus of the
inferior pulvinar; Pip, posterior nucleus of the inferior pulvinar; PM, medial pulvinar; PL, lateral pulvinar.

perceive the shapes of objects, and their specific features, such as
color, contrast, direction, and orientation (Sanes and Masland, 2015;
Baden et al., 2016; Seabrook et al., 2017). The NIF circuits relay global
luminance levels of the external environment to support photic-based
modulation of core rhythmic physiological processes (Fu et al., 2005;
Schmidt and Kofuji, 2009; Do and Yau, 2010; Daneault et al., 2016;
Lazzerini Ospri et al., 2017; Seabrook et al., 2017), such as endogenous
photoentrainment (Erkert, 1989; Wechselberger and Erkert, 1994;

Glass et al., 2001; Silva et al., 2005), hormonal release (Sousa and
Ziegler, 1998; Bertani et al., 2010), body temperature (Hetherington,
1978; Hoffmann et al., 2012), and sleep/awake cycle (Hoffmann et al.,
2012), in addition to modulating the behavioral repertory for mating
opportunities, foraging and predation (Vaze and Sharma, 2013).

Although several studies have been demonstrated
interconnections across both IF and NIF circuits (Dacey et al., 2005;
Estevez et al., 2012; Hannibal et al., 2014; Sonoda and Schmidt, 2016;
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Sondereker et al., 2020), the central element for the segregation
between them is the partitioning of axonal projections from distinct
classes of RGCs to different subcortical nuclei (Seabrook et al.,
2017). It is known that RGCs project to (at least) 21 subcortical
retinorecipient targets in the marmoset brain (Kaas et al., 1978; Costa
et al., 1999; Cavalcante et al., 2005; Engelberth et al., 2008; Lima
et al., 2012; de Sousa T. B. et al., 2013; Kwan et al., 2018), each of
which exhibits a distinct functional role. The development of the
connectomes pipeline for processing anterograde labeling data for
the marmoset brain has opened the avenues for a rich understanding
of retinal connectional patterns (Lin et al., 2019). Some of the
retinorecipient structures, such as dorsal lateral geniculate nucleus
(DLG) transmit retinal signals directly to the visual cortex, whereas
others, such as superior colliculus (SC) indirectly connect to the
cortex via intermediate nuclei, such as pulvinar or via feedforward
pathways to the DLG. In addition, many (but not all) NIF structures
receive cortical input. The functional significance of those cortical
projections is uncertain. As far as we know, none of the hypothalamic
retinorecipient centers, such as the suprachiasmatic nucleus (SCN),
establish synaptic connections to the cortex.

Here, we do not characterize the organization, function, and
homology of RGCs in marmoset retina. Previous publications (Ghosh
et al., 1996; Goodchild et al., 1996; Wilder et al., 1996; Gomes et al.,
2005; Jusuf et al., 2006; Eriköz et al., 2008; Szmajda et al., 2008;
Masri et al., 2017) already provided an excellent in-depth description
of the marmoset RGCs population. Our objective is to provide an
overview of IF and NIF retinorecipient targets in the marmoset brain
in order to demonstrate that there is a substantial body of knowledge
regarding the retinal innervation pattern. This part of its functional
characteristics still needs examination.

4. Image forming system

Anatomically, the IF circuitry is composed of a series of structures
from the retina to the visual cortex, passing through several thalamic
and midbrain nuclei (Daneault et al., 2016; Figure 1). In the first
part of this review, we will focus on the subcortical nuclei of this
system, which receive retinal afferents and exhibit predominantly, or
exclusively IF functional properties, including visuomotor features.

4.1. Thalamus

The IF thalamus is a collection of subcortical nuclei that
receives, processes, and transmits information about the visual scene
to the cortex (Kerschensteiner and Guido, 2017), in addition to
supporting a visuomotor behaviors (Livingston and Fedder, 2003).
The three main visual thalamic nuclei are the DLG, pulvinar complex
(Sherman and Guillery, 2002; Saalmann and Kastner, 2011) and
pregeniculate nucleus (PGN) (Moore, 1989, 1993). These structures
are segregated based on their connectional, neurochemical, and
functional patterns (Sherman, 2016). The DLG and pulvinar are
retinorecipient components of the dorsal thalamus and comprise
the two main, functionally distinct visual (geniculostriate and
extrastriate) pathways, by which retinal information reaches multiple
visual cortices (Harting et al., 1973; Casagrande and Khaytin, 2009).
In contrast, the dorsolateral lamina of PGN, considered the non-
primate homologous to the ventral lateral geniculate nucleus (VLG)

(Moore, 1989, 1993; Lima et al., 2012), is the target of retinal
afferents in the ventral thalamus and may modulate the gaze control
(Livingston and Mustari, 2000; Livingston and Fedder, 2003). Here,
we will highlight the retinorecipient thalamic nuclei involved with IF
circuits in marmosets (Figure 1).

4.1.1. Dorsal lateral geniculate nucleus (DLG)
Traditionally, the DLG is a well-established retinorecipient

thalamic station that relays image-forming visual input from the
retina to primary visual cortex (V1) (Solomon and Rosa, 2014;
Mitchell and Leopold, 2015), albeit subsequent studies have suggested
a more complex functional role of this structure (see Dan et al.,
1996; O’Connor et al., 2002; Belluccini et al., 2019; Dougherty et al.,
2019; see Weyand, 2016, for a description of multifunctional nature
of the DLG). Based on its relay function, which conveys peripheral
(“driver”-type) information to the cortex along the retinocortical
pathway, the DLG is considered a first-order thalamic nucleus
(Sherman and Guillery, 1998; Bickford, 2016). In addition to retinal
innervations that comprises only a minority of the synaptic input to
the DLG (de Sousa A. A. et al., 2013), this nucleus receives projections
from visual cortices, the thalamic reticular nucleus, and visuotopically
organized subcortical structures (Hubel and Wiesel, 1961; Cleland
et al., 1971; Usrey et al., 1999; Zeater et al., 2018). Therefore, the DLG
represents the first stage of visual processing due to its modulatory
influence on visual information before conveying it to the visual
cortex (Kaas and Huerta, 1988; Litvina and Chen, 2017).

The DLG of marmosets has a laminar profile, similarly to
other primates, with parvocellular (P), magnocellular (M), and
koniocellular (K) neurons segregated in multiple and functionally
distinct layers (Spatz, 1978; Fitzpatrick et al., 1983; de Sousa A. A.
et al., 2013; Baldwin and Krubitzer, 2018; Figure 1). Each cell type
differs dramatically in terms of their morphological, physiological,
and connectional features, representing distinct parallel channels for
visual processing (Mitchell and Leopold, 2015). The P pathways
provide high-acuity vision and red-green color vision (Lennie and
Movshon, 2005; Martin and Grünert, 2013), while the visual inputs
conducted by the M channel provide for spatial and motion analysis
(Lee et al., 2010; Percival et al., 2014). A third pathway involves
cells located in the K layers, which form another chromatic channel
that mediates blue/yellow opponency discrimination (Wässle, 2004;
Szmajda et al., 2006, 2008; Roy et al., 2009). In the DLG of
marmosets, through classical architectural procedures, such as Nissl
and hematoxylin, it is possible to recognize two P layers (internal—PI
and external—PE), two M layers (internal—MI and external—ME),
and four K laminae (K1–K4) (Kaas et al., 1978; Spatz, 1978; Warner
et al., 2010).

Connectional studies provided clear evidence of the
retinorecipient nature of the marmoset DLG (Kaas et al., 1978;
Lima et al., 2012; Kwan et al., 2018). In common with other
mammalians, RGC axons project in an orderly anatomically manner
to marmoset DLG (Kaas et al., 1978; Kaas and Huerta, 1988; White
et al., 1998; Kwan et al., 2018). The patterning of retinogeniculate
projections involves retinal topography, ocular map and lamination
specificity of RGCs classes (Pfeiffenberger et al., 2005; Huberman
et al., 2008).

Retinotopy. The RGCs send axonal projections to the DLG
in an orderly fashion to preserve spatial information about the
visual scene, forming retinotopic maps (Grubb and Thompson,
2003; Piscopo et al., 2013; Guido, 2018). Our comprehension
of the retinotopic organization in the DLG of marmosets arises
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from an electrophysiological experiment performed by White et al.
(1998). In this report, using extracellular recordings from the DLG
neuronal responses, they showed that the contralateral hemifield is
represented in this structure (White et al., 1998). Furthermore, these
researchers demonstrated that, within each DLG layer, the dorsal
visual field is represented laterally, and the ventral visual field is
represented medially. The representation of the central foveal vision
is located posterodorsally within the DLG, with the peripheral vision
progressing anteroventrally (White et al., 1998). This visuotopic
pattern is similar to those described for the DLG of other primates.

The mechanisms underlying the retinotopic order have been well
studied, and much of our current knowledge may be attributed to the
use of transgenic mouse models (Huberman et al., 2008; Kim et al.,
2010; Cang and Feldheim, 2013). These reports reveal the cellular
and molecular events and drive the refinement of the retinotopy of
the DLG, including axon mapping, arbor pruning, neural activity,
synapse elimination, and Eph/ephrin signaling (Hong and Chen,
2011; Ackman et al., 2012). However, the targeting mechanisms of
retinogeniculate projections in marmosets remain unexplained.

Eye-specific and binocular projections Several electrophysiological
(Warland et al., 2006; Zhang et al., 2012), molecular (Pfeiffenberger
et al., 2005; Nakamoto et al., 2018), and anatomical (Godement
et al., 1984; Muir-Robinson et al., 2002; Jaubert-Miazza et al., 2005)
reports have strongly supported the canonical principle of eye-
specific segregation of the RGCs axons in the DLG. According to this
principle, retinal afferents are separated into distinct DLG laminae
and occupy non-overlapping domains (Wallace et al., 2016). In
carnivores and primates, each DLG layer receives visual monocular
input from the ipsilateral or contralateral eye (Wiesel and Hubel,
1966; Casagrande and Norton, 1991). However, binocular responses
or interactions were already has been reported in the DLG of
mammalians (Erulkar and Fillenz, 1960; Xue et al., 1987). Binocular
responses have been described in monkeys and cats in this structure
(Sanderson et al., 1971; Rodieck and Dreher, 1979; Xue et al., 1987),
albeit these interactions are naturally suppressive (Sanderson et al.,
1971) and require conditions of specialized stimulus (Sanderson et al.,
1969, 1971). In rodents, such as rats and mice, the DLG does not
exhibit a discernible lamination, the retinal projections from both
eyes are only partially segregated (Reese, 1988; Leamey et al., 2007)
and many cells have binocular innervation (Grieve, 2005; Rompani
et al., 2017). Similarly, it has been demonstrated that the all K layers of
marmoset DLG receive a binocular input, although K1 and K3 layers
showing columns of ocular segregation (Cheong et al., 2013; Zeater
et al., 2015; Kwan et al., 2018).

In general, the organizational pattern of retinogeniculate
projections in marmosets is similar to that seen in all primates studied
as revealed by anterograde labeling techniques. The retinal inputs in
marmoset DLG are topographically organized and delineated in a
laminar pattern (White et al., 1998; Kwan et al., 2018). The P and
M external laminae receive input from the contralateral nasal retina,
whereas P and M internal layers are innervated by the ipsilateral
temporal retina (Kaas et al., 1978; Kaas and Huerta, 1988; Kwan et al.,
2018). In contrast to monocular excitatory responses of neurons in
P and M layers, connectional and physiological studies demonstrated
that the subset of K cells exhibits binocular responses (Cheong et al.,
2013; Zeater et al., 2015; Kwan et al., 2018). Cheong et al. (2013)
and Zeater et al. (2015), recorded single-cell activity in the DLG
of anesthetized marmosets, and revealed that the subpopulation of
K neurons showed vigorous excitatory response evoked through
stimulation of either eye (Cheong et al., 2013 and Zeater et al., 2015).

Although autoradiographic evidence has shown that K3 receives
a retinal contralateral projection and K1 is innervated bilaterally
by the retina (Spatz, 1978), anatomical studies, using bidirectional
tracers, demonstrated that all K layers are a target of binocular
input, with K1 and K3 laminae exhibiting alternating columns of
ipsilateral and contralateral inputs (Kwan et al., 2018). It is speculated
that connections from K layers with midbrain nuclei, that regulate
spatial attention and orienting, such as CS and parabigeminal nucleus
(Casagrande and Kaas, 1994; Hendry and Reid, 2000), potentially
provide an indirect route to the V1 (Hendry and Yoshioka, 1994;
Solomon et al., 2002; Casagrande et al., 2007) and visual association
cortices (Sincich et al., 2004; Warner et al., 2010) used for higher-
level form and motion analysis (Zeater et al., 2015). However, the
functional and evolutionary role of binocular convergence in the K
layers of the marmoset still needs to be extracted.

Numerous studies have shown that activity-mediated binocular
competition (Lund et al., 1974; Chalupa and Williams, 1984; Guillery
et al., 1985), remodeling of synaptic connections (Chen and Regehr,
2000; Guido, 2008; Hong and Chen, 2011), and retinal waves (Katz
and Shatz, 1996; Cohen-Cory, 2002; Torborg and Feller, 2005; for
review, see Thompson et al., 2017) play an instructional role in
the formation of eye-specific retinogeniculate axons and retinotopic
maps in several species of mammalians (Assali et al., 2014). In
marmosets, these mechanisms of refinement of retinal circuits in the
DLG remain unclear.

RGC class-specific projections. Morphological and connectional
reports reveal diversity among RGCs, which comprise (at least) 17
distinct cell types in the retina of marmosets (Ghosh et al., 1996;
Szmajda et al., 2005, 2008; Jusuf et al., 2006; Masri et al., 2017).
These anatomical works demonstrate that subset of these RGCs types
selectively project to the DLG, suggesting that parallel retinal signals
enter it and remain segregated within this structure (Kaas and Huerta,
1988; Lee et al., 2010).

Consistent with previous findings in macaques, DLG layers of
the marmoset receive input from specific classes of RGCs. Although
melanopsinergic intrinsically photosensitive RGCs (ipRGCs), a
heterogenous subpopulation that mediate NIF functions, send axonal
projections to the DLG (Szmajda et al., 2008), the three best-
understood retinogeniculate pathways originate from the parasol,
midget, and small bistratified cells (Martin and Grünert, 2013). Most
of the RGCs are of the midget type, and project to P layers of the DLG
(Goodchild et al., 1996; Gomes et al., 2005; Jusuf et al., 2006). These
cells are described as having sustained responses to photic stimuli
(Ghosh and Grünert, 1999), selectivity to chromatic (red/green)
signals (Martin and Grünert, 2013), and a small soma with a single
primary dendrite that branches densely into small dendritic fields,
as a main morphological feature (Szmajda et al., 2005; Masri et al.,
2017). The second largest class of RGCs is that of parasol cells
(Chan et al., 2001; Gomes et al., 2005; Eriköz et al., 2008), which are
morphologically characterized by two-four dendrites emerging from
a large soma, forming a large branched dendritic tree (Szmajda et al.,
2005; Masri et al., 2017). They innervate the M laminae of the DLG
(Szmajda et al., 2008), exhibit transient responses to photic input
(Ghosh and Grünert, 1999), and contribute to motion perception
and spatial vision at low image contrast (Szmajda et al., 2005). Small
bistratified cells have synaptic connectivity with K layers of the DLG,
particularly K3 (Szmajda et al., 2008), strong blue on/yellow off-color
sensitivity (Martin et al., 1997), and relatively small dendritic field
diameters (Szmajda et al., 2008; Masri et al., 2017; Paknahad et al.,
2021).
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Connectional works on the DLG of marmosets has demonstrated
that other types of RGCs project to the K layers, albeit their
physiological and functional characteristics are less well defined
(Szmajda et al., 2008; Percival et al., 2013). Retrograde labeling
techniques show that the K1 is a preferential target of narrow thorny
cells (Percival et al., 2014). Based on the connectional pattern of K1
with the extrastriate regions, it is suggested that thorny-koniocellular
circuitry takes part in residual visual capabilities (“blindsight”)
following lesions of V1 in adult or early life (Rodman et al., 1989;
Rosa and Tweedale, 2000; Percival et al., 2014). Furthermore, it has
also been reported that broad thorny and recursive cells send sparse
axons to the K3 lamina (Szmajda et al., 2008; Percival et al., 2011,
2013).

Despite the recent progress in the description of the marmoset
retinogeniculate circuitry, the projection patterns of several classes of
RGCs and their functional role are still unknown. The morphological
diversity in the RGCs of marmosets (Szmajda et al., 2005, 2008;
Jusuf et al., 2006; Moritoh et al., 2013; Masri et al., 2017) and their
homology with RGCs of other species (Dacey, 2004; Berson et al.,
2010; Sanes and Masland, 2015) have been scrutinized previously
and, therefore, will not be addressed here. However, whether the
connectional pattern of wide-field cells (non-midget, non-parasol,
and non-small bistratified cells) in the retina of marmosets shows
the same diversity in their retinorecipient nuclei as has recently been
reported for the RGCs population in non-primates, especially for
mice (Dhande and Huberman, 2014; Robles et al., 2014; Gauvain and
Murphy, 2015; Ellis et al., 2016), will require further analysis.

4.1.2. Inferior pulvinar (PI)
The pulvinar complex, referred to as the lateral posterior nucleus

in non-primates, is a higher-order thalamic nucleus with multimodal
properties, which harbors visually responsive neurons (Kaas and
Lyon, 2007; Kwan et al., 2018). Functionally, the pulvinar has been
implicated in modulating of visual attention (Chalupa et al., 1976;
Bender, 1982; Petersen et al., 1985; Robinson et al., 1986); integration
of sensory and cognitive signals (Bridge et al., 2016); shaping of the
functional organization of the extrastriate cortex, particularly during
early development (Bridge et al., 2016); and regulating cortico-
cortical communication (Jones, 2001; Sherman and Guillery, 2002;
Shipp, 2003; Saalmann and Kastner, 2011).

Based on the descriptive analysis of chemoarchitectural (Cusick
et al., 1993; Stepniewska and Kaas, 1997; Baldwin et al., 2011, 2013;
Balaram et al., 2013) and anatomical studies (Warner et al., 2010;
Kwan et al., 2018), the pulvinar complex is traditionally subdivided
into anterior (oral) medial, lateral, and inferior nuclei (Olszewski,
1952; Kaas and Huerta, 1988; Kaas and Lyon, 2007; Homman-
Ludiye and Bourne, 2019; Froesel et al., 2021). The two former
nuclei exhibit multisensory (Barbas and Mesulam, 1981; Baleydier
and Morel, 1992; de la Mothe et al., 2006, 2012) and somatosensory
functions (Mesulam et al., 1977; Acuña et al., 1983), whereas the
latter ones, collectively known as visual pulvinar, are dedicated to
visual processing and contain a retinotopic map of the contralateral
visual hemifield, as well as strong connections to the visual cortex
and from the SC (Kaas and Huerta, 1988; Baleydier and Morel,
1992; Stepniewska, 2003; Kaas and Lyon, 2007; Kaas and Baldwin,
2019; Moore et al., 2019). However, only portions of the inferior
pulvinar (PI) are also recipients of retinal projections (Benevento and
Standage, 1983; Nakagawa and Tanaka, 1984).

The PI has functionally distinct areas, with differences in
neuropeptidergic and connectional patterns (Lin and Kaas, 1980;

Cusick et al., 1993; Gutierrez et al., 1995; Stepniewska and Kaas,
1997; Cola et al., 1999; Gray et al., 1999; Adams et al., 2000).
Despite some divergence in the terminology used to categorize the PI
subdivisions (Mathers, 1971; Spatz, 1975; Gutierrez et al., 1995), we
have kept the terms adopted by Stepniewska and Kaas (1997), such as
medial nucleus (PIm), posterior nucleus (PIp), central medial nucleus
(PIcm) and central lateral nucleus (PIcl) of the inferior pulvinar
(Figure 1; Stepniewska and Kaas, 1997; Kaas and Lyon, 2007; Kaas
and Baldwin, 2019). In general, the PIm is the major target of retinal
afferents in the primate pulvinar (Kaas and Lyon, 2007; Baldwin and
Bourne, 2017). In combination with PIp and PIcm, it sends axonal
projections to dorsal stream visual areas for visually guided actions,
whereas the PIcl is mainly devoted to the ventral stream of cortical
processing for visual perception (Kaas and Lyon, 2007; Kaas and
Baldwin, 2019).

As in all primates studied so far, a retinopulvinar projections
in marmosets has been documented (Warner et al., 2010; Kwan
et al., 2018). Anatomical reports identified contralateral retinal
terminations that are sparse and primarily restricted to PIm (Warner
et al., 2010; Kwan et al., 2018), with a few scattered retinal inputs
supplying the PIcm and PIcl (Kwan et al., 2018). These studies also
show very sparse ipsilateral retinal projections in PIm, in addition to
sparser terminals along the boundaries PIp, PIcm, and PIcl (Warner
et al., 2010; Kwan et al., 2018). Furthermore, one of those works
also reveals, through co-injections of bidirectional tracers, the RGCs
subtypes that are the source of these retinal projections to PIm (Kwan
et al., 2018). Contrary to a previous report in macaques (Cowey
et al., 1994), the subpopulation of RGCs that innervates the PIm of
marmosets is that of wide-field cells, mainly broad thorny cells, along
with recursive bistratified, narrow thorny and large bistratified cells
(Kwan et al., 2018; Grünert et al., 2021). Further studies are needed to
discover if other classes of RGCs innervate different regions in the PI
of marmosets.

Over the last four decades, considerable progress has been made
in understanding the retinotopic organization of the primate pulvinar
(Campos-Ortega and Hayhow, 1972; Gattass et al., 1978; Bender,
1981; Petersen et al., 1985; Baldwin et al., 2011; Li et al., 2013).
Connectional and electrophysiological reports show it contains two
retinotopic maps of the contralateral visual hemifield in its lateral and
inferior subdivisions. Their positions and visual field representations
exhibit some species-specific singularities (Gattass et al., 1978;
Bender, 1981; Li et al., 2013). In marmosets, the visuotopic order of
the pulvinar has not yet been investigated in any detail.

4.1.3. Outer lamina of the pregeniculate nucleus
(PGNol)

The PGN is a retinorecipient structure of the ventral thalamus
topographically dorsal and medial to the DLG (Livingston and
Mustari, 2000; Livingston and Fedder, 2003). The prominent
neurochemical content and anatomical connections of the PGN
laminae with the retina (Babb, 1980; Moore, 1989, 1993; Costa et al.,
1998; Pinato et al., 2009; Lima et al., 2012) and IF and NIF subcortical
nuclei (Hendrickson et al., 1970; Mustari et al., 1994; Büttner-
Ennever et al., 1996b; Chevassus-Au-Louis and Cooper, 1998; Kwan
et al., 2018) suggest that it contributes significantly to visuomotor
activities and circadian rhythmicity.

Traditionally, the PGN has been described as a laminar structure
showed distinct regions with respect to retinal innervation patterns,
functional role, and cytoarchitecture (Moore, 1989, 1993). These
subsectors include (1) a large region located dorsomedially to the
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DLG, continuous with the zona incerta, which contains neuropeptide
Y (NPY)-ergic neurons and dense retinal innervation, and (2)
subdivision contain a scattered neuronal cluster located dorsal and
lateral to the DLG (Moore, 1993; Costa et al., 1998; Pinato et al., 2009),
that is contiguous with the reticular thalamic nucleus and sparsely
receives retinal projections (Moore, 1989, 1993; Costa et al., 1998;
Pinato et al., 2009). Despite the divergent nomenclatures of the PGN
divisions (Hendrickson, 1973; Babb, 1980; Livingston and Mustari,
2000), its inner portion of PGN (PGNil) is considered equivalent
to the intergeniculate leaflet (IGL) of non-primates, a modulating
structure of the circadian timing system (CTS) (Moore, 1993; Costa
et al., 1998; Pinato et al., 2009) that will be discussed in the next
sections. The PGNol, by contrast, is likely the primate counterpart
to the VLG (Moore, 1989, 1993; Costa et al., 1998; Lima et al., 2012).

Although more experimental approaches are needed to define
the anatomical organization and functional role of the PGN of
marmosets in the IF circuitry, its outer portion (PGNol) (Figure 1)
has been proposed as a structure equivalent to the VLG (Lima et al.,
2012), based on neuropeptidergic content, cell morphology, and
connectional patterns with the retina (Costa et al., 1998; Lima et al.,
2012) and pulvinar (Kwan et al., 2018). Here, we will follow this
classification for a more complete characterization of the PGN of the
marmoset.

As expected from reports on other species of primates,
anterograde tract tracing has shown the bilateral retinal innervation
in the PGN of marmosets (Costa et al., 1998; Lima et al., 2012).
Cholera toxin B subunit (CTb)-labeled retinal fibers and terminals
project sparsely to the PGNol, with contralateral predominance
(Lima et al., 2012). In the ipsilateral side, the ventral portion of
PGNol (PGNvol) exhibits a lower density of retinal terminal arbors
compared to PGNil, whereas the dorsal part (PGNdol) is poorly
innervated (Figure 1; Lima et al., 2012). These results suggest that
PGNvol and PGNdol are equivalent to the external and internal
portions of the VLG, respectively (Lima et al., 2012).

There has been limited investigation of the classes of RGCs that
project to the PGN (Cowey et al., 2001; Hannibal et al., 2014). In
macaques, neural tracer injections demonstrated that midget cells
predominantly project to the PGN, although terminals from other
RGCs subtypes were also identified (Cowey et al., 2001; Hannibal
et al., 2014). In marmosets, no study has yet investigated the typology
of RGCs that comprise the retina-PGN pathway.

Our knowledge about the visuomotor nature of the PGN
comes mainly from ablation-behavioral evidence (Polyak, 1957) and
electrode recordings of the PGN neuronal responses of macaques to
visual stimuli (Büttner and Fuchs, 1973; Magnin and Fuchs, 1977;
Livingston and Fedder, 2003). Although it was initially proposed
that the PGN participates in the pupillary light reflex (Polyak, 1957),
electrophysiological evidence revealed that it is involved in the
modulation of gaze control; including saccadic movements, pursuit
smooth eye movements, and visual motion or eye position (Büttner
and Fuchs, 1973; Magnin and Fuchs, 1977; Livingston and Fedder,
2003); indicating its functional homology with the VLG. There are
no equivalent reports for marmosets.

4.2. Midbrain

In different animal species, the IF midbrain (Figure 1)
comprises several nuclear populations that mediate visuomotor
reflexes (Gamlin, 2006; Giolli et al., 2006). Although functional and

connectional similarities between some of these nuclei have been
described (Simpson, 1984; Hoffmann et al., 1988; Simpson et al.,
1988; Mustari et al., 1994), cytoarchitectonic evidence and other
hodological connections have shown that there are distinctions in
several mesencephalic nuclei (Gregory, 1985; Lui et al., 1995; Büttner-
Ennever et al., 1996a,b), segregating them into different oculomotor
subsystems. The most extensively studied midbrain nuclei are the
SC, pretectal complex, and accessory optic system (AOS). The SC
translates sensory inputs into motor outputs to guide innate behavior
(Ito and Feldheim, 2018). The pretectal nuclei, such as the nucleus of
the optic tract and the pretectal olivary nucleus, play a significant role
in the optokinetic nystagmus (Hoffmann and Distler, 1989; Mustari
and Fuchs, 1990) and pupillary light reflex (Pong and Fuchs, 2000;
Szkudlarek et al., 2012). The accessory optic system has functional
significance in the detection of retinal slip signals and relaying them
to the oculomotor circuit for image stabilization (Fredericks et al.,
1988; Masseck and Hoffmann, 2009; Lilley et al., 2018). As far as we
know, systematic studies on the retinal projection to the pretectal
complex in marmosets are needed. In addition, the typology of RGCs
that comprise these retina-midbrain pathways has also not been
completely elucidated. As we argued above, these limitations become
particularly obvious when one considers the discussion of the retinal
projection in the midbrain. Therefore, in this next section, we will
explore the connectional pattern of the retina with the SC and AOS.

4.2.1. Superior colliculus (SC)
The SC, also known as the optic tectum in non-mammalians,

is a multimodal integrative hub for mediating sensorimotor
transformations (Sparks and Mays, 1990; Stein and Meredith, 1993;
Hall and Moschovakis, 2004; Chong et al., 2022). Although higher
cognitive functions are attributed to the SC (Basso and May, 2017),
its two main functional roles are convey retinal signals to other
subcortical visual nuclei (Kaas and Huerta, 1988; May, 2006; Basso
and May, 2017) and integration of multimodal stimuli into motor
commands for orienting movements, and to redirect attention
(Gandhi and Sparks, 2003; Gandhi and Katnani, 2011; Basso and
May, 2017; Villalobos et al., 2018; Farrow et al., 2019).

Residing on the roof (tectum) of the midbrain, the SC has a
laminar profile with seven layers (Kaas and Huerta, 1988; Gandhi and
Katnani, 2011; Timurkaan et al., 2013) grouped into two functional
compartments (Gandhi and Sparks, 2003; Basso and May, 2017). The
superficial one has been described as consisting of three superficial
layers; stratum zonale (SZ), stratum griseum superficiale (SGS), and
stratum opticum (SO); which are involved in the central processing
of visual information and are the targets of retinal signals (Bourne
and Rosa, 2003; Markus et al., 2009). In particular, the SGS is
commonly subdivided into sublayers, an upper and lower lamina
(uSGS and lSGS, respectively), although their distinction, size, and
complexity exhibit species-specific differences (Kaas and Huerta,
1988; May, 2006; Basso and May, 2017). Neurons in the superficial
layers are considered the visuosensory division of the SC (Basso
and May, 2017). In contrast, those in the intermediate (stratum
griesum intermedium, stratum album intermedium) and deep
(stratum griseum profundum and stratum album profundum) strata,
collectively referred to as the deep compartment, are more specifically
devoted to multisensory and motor functions (Casagrande et al.,
1972; Harting et al., 1973; Stein et al., 1976; McPeek and Keller, 2004),
earning the epithet of motor division (Basso and May, 2017).

A ubiquitous aspect of the SC is its connectivity with the
retina (for a review, see Kaas and Huerta, 1988; May, 2006;
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Basso and May, 2017) and so distinguishing the classes of RGCs that
target the SC is of particular interest (Hoffmann, 1973; Marrocco
and Li, 1977; Illing and Wässle, 1981; Leventhal, 1982). Congruent
with studies in macaques, the SC of marmosets receives dominant
projections from parasol cells and terminals from a variety of wide-
field cells, such as broad thorny, narrow thorny, smooth mono
stratified, recursive, large bistratified, and tufted cells, as evidenced by
bidirectional tracer injections (Kwan et al., 2018; Grünert et al., 2021).
Our knowledge of the functional properties of wide-field ganglion
cells that innervate the SC in the marmoset is still scarce. As expected
from studies in other species of primates, electrophysiological records
show that broad thorny cells are a retinal source of ON/OFF type
responses in the SC (Eiber et al., 2018), as well as parasol cells input
can be clearly related to the high selectivity of collicular neurons for
moving stimuli (Tailby et al., 2012).

Although intraspecific variations in the proportion (Wässle and
Illing, 1980; Hofbauer and Dräger, 1985; Dhande and Huberman,
2014; Ellis et al., 2016) and sublaminar arrangement of retinotectal
projections (Pollack and Hickey, 1979; Conley et al., 1985) have
extensively been described, the spatial profiling and delineation of
these pathways remain a matter of interest. As in all mammalians
studied so far, the patterns of retinal afferents in the SC of marmosets
has a characteristic distribution in superficial layers (Figure 1).
Bilateral retinal afferents are distributed primarily to the SGS, with
dense terminals in their sublayers, and weak label in the SO and SZ
layers (Kwan et al., 2018).

One of the distinctive features of the SC is a well-organized
retinotopy, which is evident in all studied mammalians (Lane et al.,
1971, 1973; Cynader and Berman, 1972; Kaas et al., 1974; Updyke,
1974; Ito and Feldheim, 2018). For example, in primates, the SC
contains a topographic map of the contralateral visual hemifield
provided by both eyes. The dorsal visual field is represented medially
and the ventral visual field projects laterally. The representation
of the foveal vision is located rostrally within the SC, with
peripheral representation progressing caudally (Kaas and Huerta,
1988). Consistent with previous reports in macaques (Pollack and
Hickey, 1979), the central retinotopic representations in the SC of
marmosets demonstrate a complex pattern of retinal projections.
Some areas receive binocular inputs in both the uSGS and lSGS,
or contralateral input in the lSGS and binocular input in the lSGS,
and others receive exclusively contralateral input (Kwan et al., 2018).
Moreover, the medial and lateral colliculus exhibit overt delineation
of ipsilateral and contralateral inputs in the SGS (Kwan et al., 2018).
Systematic studies are needed to describe whether the same ordered
representation of visual space found in the surface layers of the SC of
marmosets is also present in the deep compartment of this structure.

4.2.2. Accessory optic system (AOS)
In mammalians, the AOS comprises two sets of accessory

fasciculi, the inferior and superior ones, and three paired terminal
nuclei, the dorsal terminal, lateral terminal, and medial terminal
nuclei (MTN), that receive retinal signals via the accessory optic
tract (for a review, see Giolli et al., 2006; Brodsky, 2012). Different
experimental approaches (Simpson et al., 1979, 1988; Clement and
Magnin, 1984; Natal and Britto, 1988; Benassi et al., 1989; Lilley
et al., 2018) support the functional significance for AOS in detecting
signals of retinal slip and relaying them to the oculomotor circuits for
image stabilization (Fredericks et al., 1988; Masseck and Hoffmann,
2009; Lilley et al., 2018). In particular, the terminal nuclei drive
complementary directions of optokinetic nystagmus, albeit other

oculomotor responses have been attributed to them (Simpson et al.,
1979, 1988; Sun et al., 2015). The MTN and lateral terminal nuclei
drive vertical optokinetic movements, while the dorsal terminal
nucleus mediates the horizontal ones (Krause et al., 2014; Sun et al.,
2015).

In marmosets, autoradiographic and histochemical anterograde
labeling techniques revealed projections from the retina to the dorsal
division of the MTN (Figure 1; Cooper and Magnin, 1986), which
is congruent with anatomical studies in several species of primates
(Itaya and Van Hoesen, 1983; Cooper, 1986; Weber and Giolli, 1986;
Cooper and Magnin, 1987). Although retrograde tracer injections in
different mammalian species showed that bistratified or gamma-like
RGCs project to AOS (Farmer and Rodieck, 1982; Dann and Buhl,
1987), similar studies in marmosets are needed.

5. Non-image forming system

The NIF circuitry is formed by the diencephalic and midbrain
nuclei, which detect environmental irradiance to modulate several
physiological and behavioral processes (Daneault et al., 2016). Except
for CTS, the functional significance of the NIF territories is unknown
or merely speculative, a fact that contributes to its nebulous profile. In
the next topic, we will discuss hodological evidence and the functional
role of NIF domains in the brain of marmosets.

5.1. Circadian timing system

Although the anatomically-oriented discussion is necessary for a
comprehensive understanding of NIF territories, in the next section
we will assemble the neuroanatomical substrate of the CTS network
(Figure 2). Given its pivotal role in generating and modulating
circadian rhythmicity, as well as its adaptive aspect for living
organisms, including marmosets. Below, we will review the central
hypothalamic components of the CTS, since systematic studies of the
retinal innervation in the dorsal (DRN) and median (MnR) raphe
nuclei, a discrete cluster of serotonin-containing neurons implicated
in different circadian functions are absent in marmosets.

Mammalian species possess an endogenous system that
synchronizes time cues, most importantly the environmental light-
dark cycle, to orchestrate rhythmic biological functions, as well as
ethological outputs (Xie et al., 2019; Finger and Kramer, 2021). This
temporal coordination is traditionally driven by four main elements:
(a) synchronizing pathways responsible for phototransduction
and transmission of bioelectrical signals to a central oscillator;
(b) a central oscillator, also known as the central pacemaker or
master clock, a neural structure that governs circadian rhythms;
(c) modulating nuclei which modify the function of the master
clock and provide an indirect source of photic signaling; and (d)
efferent pathways which relay timing signals to different body
systems (Morin and Allen, 2006; Rosenwasser and Turek, 2015;
Hastings et al., 2018). Despite this configuration being a simplified
model of the CTS, a range of evidence has demonstrated that this
circuitry is more complex (Zehring et al., 1984; Vosshall et al., 1994;
Brancaccio et al., 2013; Mei et al., 2018). It is now clear that the
CTS is a hierarchically organized network, comprising a body-wide
multiplicity of circadian oscillators (extra-SCN brain clocks and
peripheral clocks), in addition to cell-autonomous oscillators within
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FIGURE 2

Diagrammatic representation of the marmoset circadian timing system (green). The suprachiasmatic nucleus (SCN) and inner laminar of pregeniculate
nucleus (PGNil) are retinorecipient structures involved with the biological rhythms. Note that although melanopsin-containing intrinsically photosensitive
retinal ganglion cells (ipRGCs) were evidenced in marmoset retina, the retinal cell type(s) providing the input to circadian centers have not yet been
identified. 3v, third ventricle; oc, optic chiasma; RHT, retinohypothalamic tract.

virtually every cell class (Mure et al., 2018). The complexity of the
circadian clock networks surpasses the purpose of this review. Recent
publications (Astiz et al., 2019; Hastings et al., 2019; Finger and
Kramer, 2021) approached molecular machinery, communication,
and anatomy of the CTS for in-depth comprehension.

5.1.1. Suprachiasmatic nucleus (SCN)
As the primary oscillator of the CTS, the SCN (Figure 2) of the

anterior hypothalamus conveys temporal information, synchronizing
the other clocks in the brain and body to produce coherent circadian
rhythms at physiological and behavioral levels (Astiz et al., 2019).
Immediately dorsal to the optic chiasm, and flanking the third
ventricle (Moore and Lenn, 1972; Van den Pol, 1991), the SCN
is conventionally divided into two functionally distinct domains,
a ventrolateral/core and dorsomedial/shell subnuclei, distinguished
by neuronal cytoarchitecture (Van den Pol, 1980; Mammen and
Jagota, 2011), neurochemical phenotype (Moore et al., 2002; Morin,
2013; Allali et al., 2017), organization of afferent innervation (Moga
and Moore, 1997), distribution of efferent projections (Leak and
Moore, 2001), pattern of gene expression (Dardente et al., 2002), and
electrical activity (Schaap et al., 2003). The functional significance
of SCN compartments remains to be explored in detail, however,
it is hypothesized that the prominent role of the core subregion is
to maintain cellular coupling within the SCN and integrate relevant
afferents for the entrainment of the master clock, while its shell
subregion may have primary responsibility for coordinating the phase

configuration of oscillators present in peripheral tissues and brain
regions other than the SCN (Dibner et al., 2010; Welsh et al., 2010;
Evans et al., 2015).

The interneuronal network of the SCN has been examined over
the years. Tracing techniques have revealed the multiple neuronal
connections linking the central clock with other brain territories.
The foremost afferent systems of the SCN arise from the retina, IGL,
pretectal complex, and the MnR (Hendrickson et al., 1972; Card and
Moore, 1984; Meyern-Berstein and Morin, 1996; for a review, see
Rosenwasser and Turek, 2015). At the same time, the SCN forms
afferent connections with hypothalamic and extra-hypothalamic
domains, allowing the adjustment of outputs from this nucleus. In
addition to receiving these projections, the SCN produces diffusible
signals targeting thalamic, hypothalamic, and forebrain territories
(Buijs et al., 1993, 2017; Kalsbeek et al., 1993; Leak and Moore, 2001;
for review see Hastings et al., 2019).

In all mammalians studied so far, the SCN receives direct
photic inputs from ipRGC via the retinohypothalamic tract (RHT),
a monosynaptic pathway that also innervates other NIF centers
(LeGates et al., 2014). The RHT is both necessary and sufficient
for photic entrainment of the SCN, as revealed by ablation, lesion,
and genetic studies (Klein and Moore, 1979; Johnson et al., 1989;
Panda et al., 2002). In marmosets, a dense bilateral retinal projections
to the SCN have its core sub-domain as the main target, with
a contralateral predominance. Sparse terminals and fibers were
observed in the shell portion, specifically at intermediate and caudal
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levels of the SCN (Costa and Britto, 1997; Costa et al., 1998, 1999).
Although the ipRGCs and their subclasses have been identified in
the retina of marmosets (Ghosh et al., 1996; Jusuf et al., 2006;
Szmajda et al., 2008; Masri et al., 2017), the subtypes that form the
RHT remain uncertain. Further research is needed to verify this
issue.

5.1.2. Inner lamina of pregeniculate nucleus (PGNil)
The PGNil of marmosets (Figure 2), which lies dorsomedial to

the DLG, is the probable homologous of the IGL found in the brain
of non-primates. This hypothesis is classically based on the presence
of the NPY+ cells, as well as a dense plexus of serotonergic and retinal
fibers (Moore, 1989, 1993; Costa and Britto, 1997; Costa et al., 1998;
Pinato et al., 2009; Lima et al., 2012) in the ventral area of the PGN.
This is supported by other cytoarchitectonic (Polyak, 1957; Niimi
et al., 1963; Hendrickson, 1973; Babb, 1980; Livingston and Mustari,
2000) and neurochemical evidences (Moore, 1993; Costa et al., 1998;
Lima et al., 2012).

The anterograde tracer labeling shows that the PGNil receives
a bilateral retinal innervation, with a contralateral predominance
(Costa and Britto, 1997; Costa et al., 1998). Particularly on the
ipsilateral side, a dense fiber plexus was evident when compared
to the PGNol (see section 4.1.3.). Consistent with other species of
primates (Moore, 1993; Théoret et al., 2000; Pinato et al., 2009),
the bilateral retinal projections are concentrated in the ventral
portion of the PGN of marmosets, near the P layers of the DLG,
and they are sparsely distributed in the dorsal area, closer to the
reticular thalamic nucleus (Costa et al., 1998; Lima et al., 2012).
A comparative analysis between monkeys and humans proposes
that this ventral domain would be equivalent to the IGL of rodents
(Moore, 1993), a modulating nucleus, which integrates a variety of
stimuli, both photic and non-photic, and transmits this consolidated
information to the SCN (Sanetra et al., 2021). However, whether the
PGNil neurons of marmosets show the same functional properties
reported for their rodent counterpart (Dark and Asdourian, 1975;
Harrington and Rusak, 1986; Cipolla-Neto et al., 1995; Goel et al.,
2000; Gall et al., 2013; Sanetra et al., 2021) also needs further
examination.

One open question about the retina-PGN pathway is the
RGCs subtypes that innervate the PGNil. Although double
immunohistochemistry for pituitary adenylate cyclase-activating
polypeptide (PACAP) and CTb showed that the most ventral part of
the PGN in macaques receives projections from the ipRGC (Hannibal
et al., 2014), information about the typology of this retinal population,
as well as hodological evidence of this connection, is still absent for
marmosets.

5.2. Thalamus

Different non-image forming processes involve distinct thalamic
nuclei, which form miscellaneous thalamocortical circuitry that
helps to maintain homeostasis, with nociception, visceral activity,
cognition, arousal, and sensorimotor activity being the most crucial
functions. The mediodorsal nucleus (MD), as well as the midline
and intralaminar nuclei (MIN) are key structures implicated in
this functional repertory. In the next section, we will describe the
retinorecipient targets in the thalamus of marmosets, with NIF
properties (Figure 3A).

5.2.1. Mediodorsal nucleus (MD)
The MD, also referred to as medial dorsal thalamic nuclei, nucleus

medialis dorsalis, and the dorsomedial thalamus (Mitchell and
Chakraborty, 2013), is a high-order thalamic relay nucleus (Guillery,
2005; Sherman, 2016) that participates in several corticosubcortical
circuits, mainly those involving the prefrontal cortex (Mitchell, 2015;
Golden et al., 2016). Topographically lateral to the midline nuclei and
medial to the intralaminar thalamic complex, the MD is primarily
involved in cognitive functions, such as learning (Gaffan and Parker,
2000; Parnaudeau et al., 2013, 2015; Ouhaz et al., 2015, 2017, 2018),
odor perception (Courtiol and Wilson, 2014, 2015; Wilson et al.,
2014), emotion (Timbie and Barbas, 2015), and memory processing
(Funahashi, 2013), although other additional functions are suggested
(Blanchard and Blanchard, 1972; Gillett and Webster, 1975; Li et al.,
2004).

In primates, the MD is considered one of the largest thalamic
nuclei and is cytoarchitectonically divided into at least four distinct
subnuclei (Bentivoglio et al., 1993; Bachevalier et al., 1997). Despite
the existence of further subdivisions, the MD domains are typically
distinguished into magnocellular (MDmc), parvocellular (MDpc),
caudodorsal, and lateral (Ouhaz et al., 2018). An exception to this
neuroanatomical organization is described in the MD of marmosets,
which is characterized by two different subregions based on cell
morphology (Roberts et al., 2007), a rostromedially MDmc division,
and a caudolateral MDpc one (Ray and Price, 1992; de Sousa
T. B. et al., 2013). The major neural connections of the primate
compartments of the MD are unique to each subregion and have
been extensively summarized (Mitchell and Chakraborty, 2013;
Mitchell, 2015). In addition to receiving driving inputs mainly
from the prefrontal cortex (Krettek and Price, 1977; Goldman-
Rakic and Porrino, 1985; Groenewegen, 1988; Ray and Price, 1993;
McFarland and Haber, 2002; Xiao et al., 2009), the distinct portions
of the MD have differential connectional patterns with areas of the
medial temporal lobes (perirhinal and entorhinal cortex and the
amygdala (Krettek and Price, 1977; Aggleton and Mishkin, 1984;
Aggleton et al., 1986; Russchen et al., 1987; Groenewegen et al., 1990;
Saunders et al., 2005), as well as the cingulate cortex, insular cortex,
and supplementary motor cortex (for a review, see Mitchell and
Chakraborty, 2013; Mitchell, 2015; Ouhaz et al., 2018). Furthermore,
the MD is a target of modulatory inputs from the pallidum, the
reticular thalamus, midbrain, and brainstem regions (Kuroda and
Price, 1991a,b; Sherman and Guillery, 1996), structures particularly
related to ocular movements, such as the substantia nigra pars
reticulata (Wurtz and Goldberg, 1972; Harting et al., 1980; Ilinsky
et al., 1985; Russchen et al., 1987) and the motor layers of the SC
(Erickson et al., 2004).

The retinal afferents in the MD of marmosets was revealed by
anterograde tracer histochemistry (de Sousa T. B. et al., 2013). This
work showed an exclusive retinal contralateral innervation, with
sparse retinal arbors and terminals into MDmc and MDpc subnuclei
(Figure 3A) in the caudal aspect of the MD. Furthermore, retinal
fibers oriented dorsoventrally, and detailed morphology of the retinal
axons were described, including simple endings, large caliber axons
with numerous varicosities, and rosette-like clusters (de Sousa T. B.
et al., 2013). The retina-MD pathway has also been described in
rock cavy (Kerodon rupestris), as revealed by an anatomical study,
although this innervation is restricted to the medial parts in the mid
and caudal levels of this nucleus (Nascimento et al., 2010).

Although electrophysiological (Schlag and Schlag-Rey,
1986; Tanibuchi and Goldman-Rakic, 2003; Wyder et al., 2003;
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FIGURE 3

Diagrammatic representation of diencephalic marmoset non-image-foming nuclei (green). Retinal projections were described in mediodorsal nucleus,
midline and intralaminar thalamic structures (A) and hypothalamic domains (B). The RGCs subtypes that project to these regions have not yet been
elucidated. 3v, third ventricle; ac, anterior commissure; AHA, anterior hypothalamic area; aq, cerebral aqueduct; CD, central dorsal nucleus; CM, central
medial nucleus; D3v, dorsal 3v; Iam, inter-antero medial nucleus; LH, lateral hypothalamic area; LPO, lateral preoptic area; MDmc, magnocellular division
of mediodorsal nucleus; MDpc, parvocellular division of mediodorsal nucleus; MPA, medial preoptic area; opt, optic tract; Pf, parafascicular nucleus; PvT,
paraventricular thalamic nucleus; RcA, retrochiasmatic area; Re, reuniens nucleus; Rh, rhomboid nucleus; SO, supraoptic nucleus; SPVZ; sub
paraventricular zone. Scale bar: 500 µm. Adapted from Paxinos et al. (2012).

Tanaka, 2007) and anatomical studies (Wurtz and Goldberg, 1972;
Kievit and Kuypers, 1977; Goldman-Rakic and Porrino, 1985;
Russchen et al., 1987) indicate the MD participates in visuomotor
integration in primates (Wurtz and Albano, 1980; Tanaka, 2007),
the functional role of the retinal-MD circuit remains unexplored.
It is speculated that the retina-MD projection potentially provides
an indirect route from the retina to the prefrontal cortex, whose
photic input might exert a specific influence on prefrontal cortical
functioning (de Sousa T. B. et al., 2013). Furthermore, substantial
research is needed on the issue of the RGCs subtypes that innervate
the MD.

5.2.2. Midline and intralaminar nuclei (MIN)
The MIN are a higher-order nuclear complex, which was initially

thought to be a non-specific arousing circuit in the brain due,
among other features, to their widespread connectional pattern with
the cortex (Bentivoglio et al., 1991; Saalman, 2014; Zhou and Zhu,
2019). Anatomical and functional data have demonstrated that the
MIN are involved in specific brain functions, from cognitive to
sensorimotor properties (Bentivoglio et al., 1991; Groenewegen and
Berendse, 1994; Van der Werf et al., 2002; Vertes et al., 2022).

Furthermore, the growing electrophysiological evidence supports the
functional role of the MIN in the control of the transmission of
cortical information (for a review, see Saalman, 2014). Due to space
limitations, we will not discuss the architecture, connectivity and
functions of the marmoset MIN, and will confine this review to
retinothalamic projections. Previous studies (Bentivoglio et al., 1991;
Groenewegen and Berendse, 1994; Van der Werf et al., 2002) provide
a well-documented characterization of the MIN.

Anterograde labeling from the marmoset retina has revealed a
moderate plexus of retinal fibers, forming a “continuum” in the
dorsoventral direction (Figure 3B). This innervation starts from
the paraventricular nucleus (PVT), reaching the inter-antero-medial
reuniens and rhomboid nuclei. In the intralaminar complex, a sparse
terminal plexus was found contralaterally, in the central dorsal
nucleus. The central medial and parafascicular nuclei also exhibited
scattered terminal fibers (Cavalcante et al., 2005).

As far as we know, except for the rock cavy, the retinal afferences
to the MIN have not been reported in any vertebrate species.
Only the PVT receives a direct retinal projection in the rock cavy
(Nascimento et al., 2008). Under these circumstances, it is easy
to suppose that retinal innervations in the MIN of marmosets,
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except for the PVT, are a species-specific characteristic. However,
anatomical and evolutionary studies in other species are needed
to verify the possible universality of these afferences and elucidate
their functional significance. Moreover, it is important to stress that
both were studies performed the anterograde transport of CTb,
a tracer extensively used for monosynaptic mapping (Lai et al.,
2015). Therefore, it is unlikely that the labeled CTb-fibers/terminals
described in those works could be due to the transsynaptic transport
from other retinorecipient domains (see comments in Costa et al.,
1999). Furthermore, the CTb immunoreactive elements were not
observed in well-stablished secondary visual areas, such as the
visual cortex (Cavalcante et al., 2005; Nascimento et al., 2008),
which corroborates the evidence. Surely, specific functional and
evolutionary work is needed regarding the participation of retinal
projections in the functional and phylogenetic aspects of the MIN.
Further studies on the class of RGCs that innervates the MIN of
marmosets are also required since this specific cell population was
not yet characterized.

One interesting aspect to be considered is the retina-PVT
pathway identified in the marmoset brain (Figure 3B). PVT is the
main component of the midline thalamic nuclei, which extends
rostrocaudally and ventral to the third ventricle (Kirouac, 2015).
This nucleus is considered a hub of neural circuits underlying drug
addiction, anxiety, emotional processing, and defensive responses
(Zhou and Zhu, 2019; Barson et al., 2020; Kirouac, 2021). However, it
is suggested that the PVT also takes part in the circadian regulation,
based on lesion studies (Bhatnagar and Dallman, 1999; Moga and
Moore, 2000; Salazar-Juárez et al., 2002). The fact that the PVT
receives input from CTS structures, including IGL, DRN, and MnR
nuclei (Cornwall and Phillipson, 1988; Moga and Moore, 2000;
Leak and Moore, 2001; Li and Kirouac, 2012), as well as reciprocal
connections with the SCN (Moga et al., 1995; Vertes and Hoover,
2008) also indicates that it may be involved in functions related to the
modulation of circadian rhythms. This is in line with the view that the
neural activity of PVT is enhanced during the active phase of the light
cycle (Peng et al., 1995; Novak and Nunez, 1998; Kolaj et al., 2012).
Since this structure has been hypothesized to be involved in circadian
modulation, PVT neurons may be the centers of regulatory circuits of
the sleep-wake cycle and circadian system (see comments in Colavito
et al., 2015). Nevertheless, functional properties and phylogenetic
evidence of the retina-PVT pathway require further research.

5.3. Hypothalamus

The NIF hypothalamic network in the marmoset brain comprises
extra-SCN nuclei involved in control of many fundamental processes,
from circadian rhythms to reproductive behaviors. In this section, we
will highlight evidence from retinal innervation, as well as discuss the
possible functional aspect of this NIF circuitry.

5.3.1. Extra-SCN regions
Although the SCN is a well-known hypothalamic target of the

retina, hodological studies demonstrated retinal projections to other
domains of this structure in several mammalian species (Pickard and
Silverman, 1981; Johnson et al., 1988; Murakami et al., 1989; Levine
et al., 1991; Youngstrom et al., 1991; Tessoneaud et al., 1994; Abizaid
et al., 2004; Hattar et al., 2006). These nuclei play different NIF
functional roles, from circadian rhythmicity to reproductive behavior

(Saper and Lowell, 2014). In marmosets, diffuse retinohypothalamic
projections were described in lateral and medial preoptic, anterior
hypothalamic, lateral hypothalamic, and retro chiasmatic areas,
besides the supraoptic nucleus, and subparaventricular zone, as
revealed by tract-tracing procedures (Costa et al., 1999; Figure 3B).
This latter structure is known as a critical hypothalamic hub
for driving rhythmic output from SCN and ultimately modulate
circadian rhythms of a several physiological process (Saper, 2013;
Vujovic et al., 2015; Wu et al., 2018). A comprehensive overview of
these hypothalamic regions in mammalians is beyond the scope of
this review and a detailed discussion of these nuclei can be found
within classical (Moore and Lenn, 1972; Moore, 1973) and recent
works (Canteras et al., 2011; Morin and Studholme, 2014). Here, we
will focus on retinal innervation and the functional significance of
these afferences.

Costa et al. (1999), via the analysis of anterograde tracing,
showed that several hypothalamic areas receive retinal projections,
particularly those involved in many distinct light-mediated behaviors,
such as sleep, body temperature, circadian rhythm phase control,
and neuroendocrine processes related to reproductive functions
(Costa et al., 1999). However, there are no functional studies of
these retinohypothalamic projections. The organization of RGCs that
innervate the hypothalamic extra-SCN regions has also not been
researched in marmosets.

5.4. Midbrain

Retinal afferents innervate a restricted cell grouping in the
midbrain, which exhibits NIF functional characteristics, such as pain
responses (Tracey et al., 2002; Loyd and Murphy, 2009), defensive
and aversive behaviors (De Oca et al., 1998; Benarroch, 2012), central
autonomic control (Saper and Stornetta, 2015), and modulation of
circadian rhythms (Ciarleglio et al., 2011; Whitney et al., 2016).
In a variety of species, retinal inputs have been described in the
periaqueductal gray (Fite et al., 1999), DRN (Foote et al., 1978;
Kawano et al., 1996; Reuss and Fuchs, 2000), and parabrachial
complex (PBN) (Fite and Janusonis, 2002). It is important to
explain that, although the periaqueductal gray plays a critical role
in neurovegetative functions and behavioral responses to threatening
stimuli (Faull et al., 2019), its retinal innervation is yet to be
determined in marmosets. Furthermore, as previously mentioned,
there is no hodological evidence in marmosets demonstrating the
retina-DRN pathway. Thus, these factors restrict the explanation of
the retinal input to the PBN, a hub for autonomic functions, and
interoceptive and exteroceptive inputs relevant to sensory processing
(Chiang et al., 2019).

5.4.1. Parabrachial complex (PBN)
In most mammals studied to date, the PBN has been described

as a cell cluster in the dorsolateral pons, which is dissected by the
superior cerebellar peduncle into two distinct subnuclei, the medial
parabrachial (mPBN) and lateral parabrachial (lPBN) nuclei (Fulwiler
and Saper, 1984; Hansell and Frank, 1991; Chiang et al., 2019;
Figure 4). However, anatomical studies in mice, cats, and monkeys
demonstrated a third subdivision of the PBN, the Kölliker–Fuse
nucleus, a collection of neurons located in the ventrolateral region
of the superior cerebellar peduncle (Saper and Loewy, 1980; Fulwiler
and Saper, 1984). In marmosets, the PBN is formed by mPBN and
lPBN, based on cytoarchitectonic data (Engelberth et al., 2008).
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FIGURE 4

Schematic representation of the parabrachial complex in coronal
section of the marmoset brain. The types of RGCs that send afferents
to mPBN (green), a NIF site in midbrain, have not yet been
documented in marmoset. aq, cerebral aqueduct; lPBN, lateral
parabrachial nucleus; mPBN, medial parabrachial nucleus; Py,
pyramidal tract. Scale bar: 500 µm. Adapted from Paxinos et al. (2012).

As the interface between the medullary reflex control and
the behavioral and integrative regulation of the central autonomic
network, the PBN has long been recognized as a pivotal structure in
autonomic control (Saper and Stornetta, 2015). Traditionally, sensory
input relevant to taste is processed by the mPBN, and viscerosensory
information (visceral malaise, itch, blood pressure, hydric ingestion,
and sodium appetite) has been consistently correlated with the
lPBN activity (Hugelin and Vibert, 1974; Hansell and Frank, 1991;
Reilly, 1999; Davern, 2014; Menani et al., 2014). Furthermore, its
functional role in processing nociceptive and thermosensory stimuli
has been revealed in electrophysiological, optogenetic, and behavioral
approaches (Yahiro et al., 2017; Barik et al., 2018; Xu et al., 2019; Sun
et al., 2020).

This functional complexity is based on the hodological pattern of
the PBN (Gioia et al., 2000). Retrograde and anterograde tract tracing
both revealed that the PBN is the target of axonal inputs primarily
from the nucleus tractus solitarii (Ricardo and Koh, 1978; Tokita
et al., 2009) as well as trigeminal and spinal dorsal horns projections
(Cechetto et al., 1985; Hylden et al., 1985). Other connectional studies
demonstrated that the PBN innervated by several areas of the brain,
such as the ventral thalamus, insular cortex, limbic cortex, central
nucleus of the amygdala, bed nucleus of the stria terminalis, and
hypothalamus (Saper and Loewy, 1980; Fulwiler and Saper, 1984;
Bernard et al., 1993; Bester et al., 1997; Krout and Loewy, 2000; Grady
et al., 2020).

Regarding retinal innervation, retrograde labeling techniques
show that there is discrete and exclusive retinal input in the mPBN of
marmosets (Figure 4; Engelberth et al., 2008). This pattern is different
from all mammalians studied so far, in which their projection appears

to involve the lPBN (Fite and Janusonis, 2002). It is speculated
that this hodological variation in retinal innervation of the PBN
of marmosets could have a functional partition, a characteristic
that rodents apparently do not exhibit (Engelberth et al., 2008). To
our knowledge, no comparative or phylogenetic study evidenced
whether the retina-mPBN circuitry is a general primate attribute or
just a species-specific feature. Furthermore, the functional role of
the retina-PBN pathway has also not been clarified in marmosets.
Engelberth et al. (2008) suggest that this connectional pattern may
represent a photic integration node and viscerosensory stimuli to
modulate visual processing.

6. Conclusion

We aimed to demonstrate the current state of knowledge on the
IF and NIF circuitry of marmosets. The most studied structures of IF
processing, in marmosets and other primates, are the DLG, PI, and
SC. One the other hand, the SCN is a well-characterized NIF domain
in all animals studied so far. The evidence, considered here for these
nuclei, supports considerable progress made in understanding the
retinal connectivity of marmosets in the past decades. Consequently,
it can be considered an excellent non-human primate model to
investigate the anatomy and function of the IF and NIF systems.

Besides the regions of intense research interest mentioned above,
our knowledge regarding the IF and NIF networks in marmosets
remains incomplete. In the case of IF midbrain structures; such as
the pretectal complex; our limited knowledge reflects, in part, the
difficulty in delineating the cytoarchitectonic boundaries of these
nuclei and the fact that few publications describe the presence
of retina-PTC pathways. Regarding NIF territories, the functional
properties and phylogenetic significance of the retinal innervation
in the mPBN and MIN of the marmoset are uncertain. Further
comparative work is needed to solidify knowledge regarding the
function and universality of these pathways.

It is important to note that little is known about the functionality
and RGC types that innervate the retinorecipient nuclei of
marmosets. Although the wide-field RGC classes have been reported
by their projections to DLG, PI, and SC, their functional aspect
remains opaque. In the case of all NIF territories, the retinal
population is uncertain or merely hypothetical, particularly related
to the function of the involved system, such as the CTS. Substantial
morphological retinal studies combined with hodological techniques
are needed to draw conclusions regarding the origin of retinal fibers
in the NIF domains.

The two last decades have seen a rapid advancement in the
establishment of robust protocols for viral tracers, computational
pipelines, structural MRI, functional MRI, and genetic modifications
among other important developments. We believe that these
approaches could reveal the precise functional and connectional
organization of retinorecipient areas in all species of vertebrates,
including marmosets, with three-dimensional reconstruction of their
retinal axonal projections and targets, from fetal to all aging levels.

Finally, we have noted that, although retinal connectivity has been
a prominent focus for hodological research for years and impressive
progress has been made in understanding its functionality, pivotal
information is still absent, as mentioned throughout this review.
These issues represent the next set of challenges for keeping this
field relevant and for building essential tools to comprehend IF
and NIF functions.
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