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Persistent activity has been observed in the prefrontal cortex (PFC), in particular

during the delay periods of visual attention tasks. Classical approaches based on the

average activity over multiple trials have revealed that such an activity encodes the

information about the attentional instruction provided in such tasks. However, single-trial

approaches have shown that activity in this area is rather sparse than persistent and

highly heterogeneous not only within the trials but also between the different trials.

Thus, this observation raised the question of how persistent the actually persistent

attention-related prefrontal activity is and how it contributes to spatial attention. In

this paper, we review recent evidence of precisely deconstructing the persistence of

the neural activity in the PFC in the context of attention orienting. The inclusion of

machine-learning methods for decoding the information reveals that attention orienting is

a highly dynamic process, possessing intrinsic oscillatory dynamics working at multiple

timescales spanning from milliseconds to minutes. Dimensionality reduction methods

further show that this persistent activity dynamically incorporates multiple sources of

information. This novel framework reflects a high complexity in the neural representation

of the attention-related information in the PFC, and how its computational organization

predicts behavior.

Keywords: spatial attention, prefrontal cortex, mixed-selectivity, population activity, decoding, neurophysiology,

persistent activity, alpha oscillations

INTRODUCTION

Numerous studies report an increase of spiking activity in different brain areas during the
performance of visual delayed tasks [see Fuster and Alexander (1971), Goldman-Rakic (1995), Shafi
et al. (2007), Barak et al. (2010), Watanabe and Funahashi (2014), Chaudhuri and Fiete (2016),
Zylberberg and Strowbridge (2017), Manohar et al. (2019), for a review]. The general structure of
the tasks consists of the presentation of an informative visual cue about how the subject should act
afterward. After the presentation, there is a delay period in which the subject must keep in mind the
information provided by the cue to appropriately respond to the task demands. This information
can be spatial (e.g., left vs. right), feature-based (e.g., blue vs. red), or symbolic (e.g., left-pointing
arrow vs. right-pointing arrow).

Pioneering electrophysiological studies employing intracortical recordings in non-human
primates have identified neurons that not only show activity associated with the sensory
stimuli serving as a cue but also show activity in the delay period after the cue
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when it is no longer present and the task instructions are
being processed (Fuster and Alexander, 1971; Fuster, 1973;
Funahashi et al., 1989; Miller et al., 1993). These findings have
been extensively corroborated by using different protocols and
techniques in humans and non-human primates (Constantinidis
et al., 2018 for review). Classically, persistent activity in the
prefrontal cortex (PFC) has been considered as a signature
of specific cognitive processes such as working memory
(Constantinidis et al., 2018). However, working memory
interplays with other cognitive functions such as perception
or attention. For example, previous studies have succeeded
in discriminating perceptual and mnemonic representations
of visual features (Mendoza-Halliday and Martinez-Trujillo,
2017a). How the interaction between working memory
and attention is theorized depends on whether attention
is conceptualized as the processing of a limited source of
information (a perception of low-salience visual information)
or the selection of information for processing [covert attention:
Oberauer (2019)]. In the present review, we will focus on covert
attentional processes defined as the a priori top-down selection
and maintenance of the sensory information for prioritization
(e.g., based on its spatial location), in anticipation of its
presentation and processing. In this context, covert attention
can be considered as an instance of working memory as the
information needed to be prioritized, whether feature-based or
spatial, is by definition sustained, i.e., held in working memory
(Desimone and Duncan, 1995). We will describe the structure
and informational content of the observed neuronal activity in
the deployment of covert attention, and discuss it in relation
to the current views on the dynamic and rhythmic nature of
attention [see Gaillard et al. (2020), Gaillard and Ben Hamed
(2020) for a review].

Persistent activity during visuospatial attention tasks has
been reported both in parietal (Colby et al., 1996; Gottlieb
et al., 1998; Ibos et al., 2013) and prefrontal cortices (Moore
and Armstrong, 2003; Moore and Fallah, 2004). The tasks
involve maintaining a sustained level of information relative
to where (spatial attention) or what (feature-based attention)
relevant task-related events will need to be processed (Posner and
Petersen, 1990). Attention orienting can be driven by bottom-
up or stimulus-driven processes, triggered by the salience of the
incoming visual stimuli (i.e., their shape or color), and a top-
down process that is guided by the relevance of the stimulus (i.e.,
how much it is useful to the task) defining our internal goals
or expectations (Pinto et al., 2013; Katsuki and Constantinidis,
2014). Studies on humans have highlighted the importance of
a frontoparietal network in the control of attention, showing
the involvement of the parietal cortex and the PFC (Corbetta
and Shulman, 2002). In macaque monkeys, the most commonly
used model to study the attentional system in non-human
primates, a homologous frontoparietal attention network is
identified (Figure 1A), involving the lateral intraparietal (LIP)
area (Gottlieb et al., 1998) and the frontal eye field (FEF;
Armstrong et al., 2009; Monosov and Thompson, 2009). The
two cortical regions are highly interconnected (Cavada and
Goldman-Rakic, 1989; Stanton et al., 1995; Buschman and
Miller, 2007; de Schotten et al., 2011; Ibos et al., 2013; Marek,

FIGURE 1 | Physiology of the attentional system. (A) Anatomical localization

of the two core brain regions engaged during spatial attention orienting in the

macaque [shaded in gray; see Cohen and Andersen (2002), Ibos et al. (2013),

Paneri and Gregoriou (2017), for a review], the FEF and the LIP sulcus. (B) The

average multiunit activity (MUA; ± s.e.) recorded from the FEF in one monkey

when a cue is orienting attention toward the preferred (black) or the

anti-preferred (gray) spatial location locked to cue (left) and target (right)

onsets. X-axis represents the time around cue or target onsets. (C) Functional

hierarchy in a frontoparietal network during attentional processes. Exogenous

processes start in the LIP and project to the FEF. Cue interpretation takes

place in the FEF, and the selection of the spatial location and subsequent

endogenous processing is projected from the FEF to the LIP.

2018). Reversible inactivation of the two cortical regions results
in behavioral impairments both in easy visual search tasks
that rely on bottom-up attentional processes (Wardak et al.,
2002; Wardak, 2006) and in conjunction with the search tasks
that involve top-down attentional processes (Theeuwes, 1993).
Although persistent activity has also been described in other
regions, including the regions where it is more prevalent
compared to the FEF and LIP (Leavitt et al., 2017), we focus on
neuronal activity in these two regions in the context of persistent
activity during attention orienting.

PERSISTENT NEURONAL ACTIVITY
DURING SPATIAL ATTENTION ORIENTING

Persistent activity during sustained attentional processes is
classically described in both the FEF and LIP. Figure 1B shows
the average neuronal responses of a sample of FEF attention-
related neurons recorded during the cue-to-target interval of
a spatial attention task. A higher activation is observed when
the cue is orienting attention toward the preferred spatial
position of the neuron (black) compared to when attention

Frontiers in Neural Circuits | www.frontiersin.org 2 June 2021 | Volume 15 | Article 679796

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Amengual and Ben Hamed Non-Persistent Activity During Spatial Attention

is oriented away from the preferred spatial position (gray).
Preferred spatial positions coincide with both enhanced visual
cue-related responses as well as enhanced visual target detection
responses. Such neuronal response patterns are typical of both
FEF and LIP neurons (Ibos et al., 2013). As a result, an important
question in the field has been to understand whether parietal
and prefrontal attentional responses were functionally identical
or not. Simultaneous recordings from both cortical regions
allow addressing this question. In the following sections, we will
first review this question from the point of view of a single
neuron persistent activity and then from the perspective of the
neuronal population.

Attention-Related Persistent Responses in
Single Neurons
Several studies have addressed the functional interactions
between the PFC and the parietal cortex during attentional
processes. In easy visual search tasks (e.g., detecting a red square
among the green squares), which have been shown to rely on
bottom-up attentional processes (Treisman and Gelade, 1980),
parietal neurons are activated earlier than prefrontal neurons
(Buschman andMiller, 2007). In striking contrast, in conjunction
with the visual search tasks (e.g., detecting an orange vertical
bar among the red vertical bars and red and orange horizontal
bars), which have been shown to rely on top-down attentional
processes (Treisman and Gelade, 1980), the reverse is observed
(Buschman and Miller, 2007). This suggests that spatial attention
or spatial selection mechanisms flow from the parietal cortex
to the PFC and the PFC to the parietal cortex when driven by
the environment and the subject’s internal goals, respectively.
However, visual search tasks do not allow researchers to
dissociate the neuronal processes related to attention orientation
from those related to perceptual cue processing. In order to
address this limitation, Ibos et al. (2013) designed a task that
allows to temporally dissociate between cue processing, cue
interpretation and attention orientation, and target selection.
This task had two features (Supplementary Figure 1). It was
based on a modified version of a rapid serial visual presentation
(RSVP) task (Potter, 2018) such that, on each trial, the cue
and the target are embedded in two parallel continuous streams
(succession) of isoluminent distractors. In such a context, both
parietal and prefrontal neurons do not respond to the visual
transients between one visual stimulus and the next. Thus,
any specific enhancement of neuronal responses to the cue or
to the target or in between the cue and the target can be
interpreted as an attention orientation signal or a perceptual
signal. The second specificity of this task lies in the fact that
the attentional orientation cues are highly symbolic. The green
cues indicate that the target will appear in the same visual
stream as the normal cue while the red cues indicate that
the target will appear in the opposite visual stream. In other
words, both the left red cues and right green cues oriented
attention to the right while both the right red cues and left
green cues oriented attention to the left. While both parietal
and prefrontal neurons showed an enhanced processing of
the cues and targets embedded in the RSVP streams, the

cue-related responses had shorter latencies in the parietal
cortex than in the PFC, and the target-related responses had
shorter latencies in the PFC than in the parietal cortex. Thus,
this confirms the idea that spatial selection mechanisms flow
from the parietal to the PFC and the PFC to the parietal
cortex when driven by the environment and by the subject’s
internal goals, respectively (Figure 1C). In addition, neurons
explicitly encoding the instruction for the spatial attention
orientation independently of the color and location of a cue
were only identified in the PFC and had longer response
latencies than the cue-related parietal responses, indicating that
the attentional cue interpretation was performed within the
PFC (Figure 1C). Overall, this thus defined a clear hierarchical
functional organization within the parietofrontal network in
which the processing of high-saliency stimuli initiates in the LIP;
and the active attention orientation control according to the
subject’s goals takes place in the FEF, thus driving a perception
of low-saliency stimuli.

As shown by Ibos et al. (2013) and with relevance to the
present review, the prefrontal attention orientation neurons
encoded the attention instruction in a sustained manner. This
was also the case of a substantial proportion of the cue-related
neurons of both cortical regions that responded to one specific
category of cues such as cue color or cue position. Thus,
these neurons are also expected to contribute to the coding
of attention orientation instructions when combined across the
population. The fact that FEF neurons explicitly encode the
cue instruction suggests functional differences of how both
the FEF and LIP represent a spatial orientation signal in the
population level and sustain these representations in time. It
has been hypothesized that the ability of individual neurons in
a recurrent neuronal network to sustain the information over
time depends on the correlated fluctuations of activity within
the local neuronal microcircuitry (Maimon and Assad, 2009).
The recurrent fluctuations of neuronal activity occur over a
wide range of timescales depending on the local properties
of the brain region (Murray et al., 2014). To measure the
timescales of these fluctuations, the time lag autocorrelogram
of the spike count of individual neurons is calculated. As this
time lag increases, the autocorrelation decays as a function
of the fluctuation timescales (Churchland et al., 2011). The
timescale of these fluctuations is mathematically characterized
by the decay of autocorrelation as a function of the time lag
(τ ), which corresponds to the fitting of the autocorrelogram
with an exponential decay and an offset. The intrinsic timescales
differ across the brain areas, showing shorter timescale values
in the parietal cortex and longer timescale values in the PFC
(Murray et al., 2014). The observation points in the direction
of favoring a temporal hierarchical organization between the
parietal and the PFC (Murray et al., 2014). One question
is whether and how this impacts the functional coding of
the neuronal populations as a whole. This is explored in the
next section.

Population Activity
Single-neuron responses support an idea of the
sustained/persistent neuronal activity (quantified as the
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sustained average spiking rate in time when computed across
the trials) during delay epochs in cognitive tasks. What is the
nature and origin of this “persistence” of persistent activity?
Classical models of persistent activity propose that the observed
spiking activity of a given neuron during the delay periods of
a task is a marker of an active state of the neural ensemble
it belongs to, which keeps the neural population available
for processing the encoded information (Lundqvist et al.,
2018a for a review). However, a closer inspection of the single
neuron persistent activity reveals that a spiking activity is better
characterized by sparsity than by persistence, suggesting that the
information might be held within the local functional network
by the changes in synaptic weights rather than in the spiking
activity per se (Zucker and Regehr, 2002; Lundqvist et al.,
2016). It is proposed that this type of information encoding
during the delay period might be more long-lasting and more
resistant to the disruption by additional inputs compared to
a purely persistent spiking activity (Lundqvist et al., 2018b).
This observation has been supported by the computational
models that predict the sustainability of persistent activity
through virtue of recurrent connections between the neurons
that have an affinity for shared specific stimulus properties
(Compte, 2000; Compte et al., 2003). However, it must be
acknowledged that the absence of persistent activity can also
be accounted for by analytical and experimental biases. For
instance, one must take into account that each cortical neuron
receives inputs from several other neurons (up to several
thousands), which might cause a high response variability at
small timescales but less so at longer timescales. Corroborating
this view, Leavitt et al. (2017) show evidence of persistent
activity during a working memory task using the temporal
scales larger than 400ms whereas the smaller timescales did not
show such an effect. Another possible reason for the absence
of persistent activity is the use of single-cell approaches, which,
during the mapping of a given cortical area, might miss a
specific region in which the persistent activity takes place. In
this respect, it is, however, worth noting that sparsity in the
spiking activity has been observed in the studies by using dense
multielectrode recordings.

Thus, one of the implications of the above framework is that
persistent activity is best understood in the level of the neuronal
population rather than in the level of individual neurons. This
view assumes, among other things, that information coding
cannot be unambiguously read out (i.e., decoded) from the
spiking rate of a single neuron, but is best characterized by
the patterns of activation and connectivity across a population
of neurons. That is to say, quoting from Averbeck et al.
(2006), “As in any good democracy, individual neurons count
for little; it is population activity that matters.” Accordingly,
there is increasing evidence that individual neuronal response
profiles do not fully mirror the dynamics of the functional
neuronal population they belong to and that the dynamics of
the connection weights between the individual neurons must be
taken into account (Barak et al., 2010; Crowe et al., 2010; Stokes
et al., 2013).

When using the cued target detection tasks to orient attention,
it is often assumed that attention is behaviorally allocated in a

stable and sustainable manner in the cued location. Likewise,
it is assumed that the neurons that encode this information
do so in a stable manner, i.e., with a constant number of
spikes in time. However, the evidence points that neither of
these assumptions might be correct (see the next section). One
way to assess code stability in time is to use cross-temporal
decoding approaches (King and Dehaene, 2014; Astrand et al.,
2015; Varoquaux et al., 2017). These approaches assume that
the attention orientation code is implemented by the neuronal
population locked to the cue presentation. Thus, a decoder is
trained at identifying whether attention is oriented toward one
among multiple spatial locations (e.g., left vs. right) based on
the neuronal population activities collected in a given (typically
short, ∼100ms) time interval at a fixed delay from the cue
presentation. The decoder is then tested at decoding attention
orientation on the novel activities sampled all throughout the
cue-to-target interval. If the decoder maintains a high decoding
performance at all times (Figure 2A), then this indicates a
stable code. Alternatively, if the decoder only achieves maximal
decoding from the neuronal activities sampled at the same delay
from the cue as the training activities, then this indicates a
dynamic recurrent coding of attention orientation (Figure 2B).
This means that the same cascade of neuronal activities unfolds
throughout the cue-to-target activity from one trial to the next,
reliably encoding spatial attention at each time but with a
different neuronal code. Both a stationary regime and a dynamic
regime can coexist in a given neuronal population, leading to
a mixed cross-temporal decoding map (Figure 2C). Using a
regularized linear regression classifier as a decoder (Astrand et al.,
2014a), training on 70% of the available trials and testing it
on the remaining 30% over multiple random draw repetitions
(Ben Hamed et al., 2003), Astrand et al. (2015) show that, in
the PFC, the neuronal population composed of the attention
orientation cells represents the spatial attention orientation
in a sustainable manner (Figure 2A). The entire task-related
FEF neuronal population expresses a mixed cross-temporal
decoding map, suggesting the combination of both stationary
and dynamic processes (Figure 2C). Thus, this indicates that the
functional characterization of the individual neuronal responses
does not fully account for how the information is encoded
in a given area. In contrast, the parietal neuronal population
expresses a highly dynamic coding of the spatial attention
orientation (Figure 2B). In other words, a parietal code for
the spatial attention orientation changes from one time to
the next.

Additionally, in the PFC, the mixed attention orientation
coding coexists with a stationary code for a cue position and a
highly dynamic code for a cue color. This indicates that a given
functional neuronal population can concurrently code different
sources of information in multiple coding regimes, respectively.
In other words, the information is multiplexed, and the system
is able to simultaneously process (multiplex) the different driving
inputs that involve different neuromodulatory sensitivities and
synchronization influences (Liu and Hou, 2013; Feng et al.,
2014). At this point, it is important to disambiguate multiplexing
of information from coding generalization. Whereas, the first
refers to the ability of the neural population to simultaneously
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FIGURE 2 | Temporal dynamics of a spatial attention signal. Full cross-temporal classification analysis of the attention-specific FEF population (A), entire LIP

population (B), and entire FEF population (C). Classifiers are trained to classify spatial attention from the population activities at every time step within 600ms following

a cue onset and prior to a target onset (x-axis, thick black line corresponds to the cue presentation). The performance of each classifier is tested from the population

activities obtained from naïve trials at every time step within the same time period relative to the cue. Red colors represent high performance whereas the blue-colored

regions represent low performance [chance level at 50%, figure adapted from Astrand et al. (2015)].

encode the different sources of information in multiple coding
regimes, the second refers to the ability to decode the different
sources of information by using the same code. Prior studies
have shown evidence that the PFC neural population codes
associated with one specific source of information do not
fully generalize (Tremblay et al., 2015b; Mendoza-Halliday and
Martinez-Trujillo, 2017b).

In a given cortical region, the specific neuronal coding
regime (stationary vs. dynamic) might fully depend on the
information to be encoded (e.g., attention orientation would
always be encoded in a stationary manner while the color in

a dynamic manner), as an intrinsic property of the neuronal

population. Alternatively, this could actually be task-dependent

(e.g., attention orientation would be encoded in a stationary
manner in the cued target detection task, but dynamically
in a spontaneous visual exploration task). This remains to
be tested. Likewise, how these cortical areas read out these
multiple codes and exploit them is a topic of future research.
Multiple mechanisms might be at play. For example, similar
to the previous working memory studies (Fujisawa et al., 2008;
Mongillo et al., 2008), Astrand et al. (2015) propose that
the active mechanisms that sustain the attentional information
in the neural population might involve short-term plasticity
mechanisms. In contrast, the constant inputs to the neuronal
population might result in time-dependent response patterns if
the synaptic weights that represent the connectivity across the
neurons are continuously being changed by the influence of the
input pattern of activity (Buonomano and Maass, 2009).

In this section, we have shown that whereas individual
neurons in the PFC show a persistent average activity and the
underlying neural population encodes the information using
different regimes spanning from fully stationary to dynamic
and mixed. This calls for a reinterpretation of the persistent
activity at a single-neuron level during spatial attention orienting.
In the next section, we show that, at the single-trial level,
neither the single-neuron responses nor the neuronal population
information is persistent.

IS PERSISTENT ATTENTION-RELATED
INFORMATION ACTUALLY PERSISTENT?

Single Trial, Spatially, and Temporally
Resolved Access to Attention Selection
Signals
The use of classification procedures to decode the brain activity
associated with specific aspects of human behavior forms the
basis of one of the greatest technological achievements in
neuroscience for the last two decades, namely brain–computer
interfaces (BCIs) (Chapin et al., 1999; Wolpaw et al., 2002).
These methods are based on the use of simultaneous neuronal
population activities from a given cortical region in order to drive
the devices that can help patients with specific dysfunctions or
deficits to improve their quality of life. Most BCI technologies are
designed to address motor-related dysfunctions such as motor
prosthesis or driving external palliative devices such as cursors
(Trejo et al., 2006) or robotic arms (Sunny et al., 2016), among
others. Little research has been directed to develop the BCI
devices that rely on decoding higher-order cognitive processes
such as attention (Andersen et al., 2010; Astrand et al., 2014b),
due to the fact that such a cognitive content is internally
generated by the neuronal signals that are often multiplexed
with different types of information, including sensory and motor
information. This renders their real-time access very challenging.

Non-human primate studies addressing this question have
specifically targeted the cortical regions in which spatial attention
has been shown to be sustained, thus favoring the PFC over the
parietal cortex. Astrand et al. (2014a) first demonstrated a single-
trial left/right attention classification for comparing multiple
classifiers. Tremblay et al. (2015a) extended these observations
to a four-quadrant classification of attention. Astrand et al.
(2016) push this decoding procedure one major step forward,
introducing the highly spatially resolved (x, y) tracking of the
attentional spotlight [i.e., the actual portion of space being
selected (Posner and Petersen, 1990)], at a spatial resolution of
the order of 0.1◦ (see Supplementary Figure 2 for a description
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of the methods). Specifically, a regularized optimal linear
estimator is used to associate the recorded bilateral response
patterns produced during the correct target detection trials
shortly before a target onset with the cued two-dimensional (x,
y) spatial location of attention. This decoder is used to predict
the (x, y) location of the attentional position inferred from the
bilateral prefrontal response patterns recorded in novel trials
naïve to the decoder. Decoding is applied at multiple time steps,
thus allowing to track the attentional spotlight in time during
the cue-to-target period. Using this methodological approach,
attention could be decoded everywhere on the workspace during
the cue-to-target presentation interval, and not necessarily static
at the cued location prior to the target presentation (Astrand
et al., 2016, 2020). This corresponds to the distinct neuronal
response patterns on successive trials. Therefore, although the
average neuronal response patterns might seem to be sustained
(Figure 3A), on individual trials, spiking probability varies
from one trial to the next (Figure 3B), corresponding to a
different attentional exploration trace from one trial to the next
(Figures 3C,D).

Importantly, Astrand et al. (2016) show that attention had a
higher probability of being closer to the target on the correct
target detection trials than on the trials in which the target is
missed. Likewise, attention had a higher probability of being
closer to a distractor when a false response to the distractor
(as opposed to being closer to the target) was performed. This
observation was further confirmed on other tasks (Di Bello et al.,
2020; Gaillard et al., 2020). In this context, De Sousa et al. (2021)
further enhance a correlation between the decoded attention and
overt behavior using a novel two-step decoder, the essence of
which is to refine the decoder training on only those trials that
were initially identified as trials in which attention was oriented
close to the target. All in all, the abovementioned studies confirm
the association between the decoded readout of spatial attention
and the observed task-related behavior of the subject. Despite the
clarity of this relationship between the distance of the decoded
attention to the real target (or distractor) position and the
probability to respond to a target (or distractor), one intriguing
question is why trials that are characterized by attention decoded
at a similar distance from a target (or distractor) sometimes result
in a correct detection (or a false alarm) and other times in a miss
(or distractor rejection). Inter-neuronal correlations turn out to
be significantly lower on the correct trials than on the miss or
false alarm trials, suggesting that error trials might arise when
the neuronal population is in a lower informational capacity state
characterized by higher noise correlation values (Astrand et al.,
2016; Ben Hadj Hassen and Ben Hamed, 2020), which will be
explored in Section Noise correlation and neuronal population
information capacity. Overall, this work thus demonstrates
that, from one trial to the next, although attention is often
assumed to be stable at the cued location, it is not quite often.
Rather, attention explores space dynamically, shifting from one
location to the next every 100ms or so. Because the attentional
dynamics is revealed through the decoding of attention-related
information from population neuronal activity, this indicates
that the attentional dynamics is subserved by rapid changes in
the spiking rates of individual neurons, during the attention

orienting delay, as shown in Figure 3C. Thus, while stable
attention was generally assumed to be subserved by persistent
neuronal responses, this section demonstrates that attention is
dynamic and is subserved by dynamic neuronal responses and
not by persistent neuronal activity.

Attention Explores the Space Rhythmically
Classically, the spotlight theory of attention assumes that
attention is only focused at one location of space at a time
[Eriksen and St. James, 1986; see the discussion in Posner and
Petersen (1990), Gaillard and Ben Hamed (2020)]. This view
posits that it is possible to shift the spotlight of attention from
one location to another, independent of the eye position and
adjustment of its size to the attended location like a zoom lens.
Thus, it intrinsically assumes a certain degree of flexibility of
attention. Recent behavioral evidence (Venables, 1960; Landau
and Fries, 2012; Dugue and VanRullen, 2014; Song et al., 2014)
shows that, instead of a smooth and continuous behavior,
spatial attention samples the visual environment rhythmically,
leading to fluctuating periods of perceptual sensitivity [see
VanRullen (2016) for a review]. In other words, these studies
suggest that attention and perception might not be attached
to a specific location in space (e.g., the cued location), but
rather exhibit a temporal rhythmicity between relevant spatial
locations [but see Brookshire (2021) for a critical perspective on
these observations].

In agreement with these behavioral studies,
neurophysiological evidence indicates that the brain activity
underlying visual attention, as measured from the local field
potentials (LFPs), is rhythmic in the theta band (4–8Hz)
(Lakatos et al., 2008; VanRullen, 2013, 2016; Fiebelkorn et al.,
2018; Spyropoulos et al., 2018). For example, Fiebelkorn et al.
(2018) show that, in the execution of a cued detection task,
monkeys’ ability to detect a target fluctuates rhythmically as
a function of the time from cue onset, at a rhythm of 4Hz.
Importantly, the likelihood to correctly respond to the target
is predicted by the phase of the ongoing oscillations in the
prefrontal LFPs in the same frequency band with respect to
the cue onset.

Fluctuations in the behavioral attentional performance and in
the prefrontal LFP power are in sharp contrast with the notion
of a stable prefrontal attentional code following a cue orientation
(Astrand et al., 2015). In order to directly address this question,
Gaillard et al. (2020) extend the work by Astrand et al. (2016)
to a temporally highly resolved decoding of spatial attention
(over 50ms neuronal recording windows, instead of 150ms). At
this temporal resolution, rhythmic fluctuations in the prefrontal
attentional information are observed in the 7–12Hz alpha range.
As described in Figure 3, these attentional oscillations are not
observed at an individual cell level; however, they become
apparent when averaging on multiple simultaneously recorded
signals (Figure 3C). The rhythmic fluctuations in the prefrontal
attentional information are decoded as spatio-temporal (x, y)
attentional traces, and systematic changes in the location of the
decoded attentional spotlight (or attentional saccade) can be
seen at a frequency of ∼8Hz. These traces clearly show that,
during the cue-to-target interval, attention explores both the
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FIGURE 3 | Persistent activity is not persistent from one trial to the next. (A) Mean spiking rate activity across 100 trials is recorded from the FEF. Activity is locked to

the cue presentation in the preferred location of the neuron. The spiking rate shows an average and sustained increase during the cue-to-target interval. (B) Raster

plot showing the multiunit activity (MUA) locked to the cue onset for each of the 100 trials used for the average spiking rate shown in (A). Represented individual trial

spiking probability sets at a threshold of 65%. Trials 40 and 65 are indicated by a leftward-pointing gray triangle to show a different pattern of temporal activation.

These trials are also considered in (C,D). (C) The average MUA activity was obtained by averaging the activity recorded from all channels of the same electrode [super

MUA, left FEF see Gaillard et al. (2020)] for trials 40 and 65 [indicated in (B)]. (D) Attentional traces were obtained from high-resolution x-, y-coordinate decoding of the

position of the attentional spotlight from the population neuronal activity, for trials 40 and 65, during the cue-to-target interval. Color code shows the time point along

the cue-to-target interval of the decoded position of attention (blue to yellow, 700ms). Red dot indicates the position of the target stimulus in these trials.

cued locations but also uncued spatial locations. Importantly,
this spatial exploration of space by attention also exists prior to
attentional cueing, suggesting that the rhythmicity of attention
is a default mode. In addition, how the prefrontal attentional
trace explores the space varying from one behavioral task to
another, indicating that it is under a top-down control. Overall,
Gaillard et al. (2020) propose that the rhythmic variations in the
attentional exploration subtend an efficient compromise between
the exploitation of the prior information and the exploration of
the novel information within a given trial.

All these abovementioned studies work under the assumption
that the attentional spotlight is unique, a paradigm that has been
driving most neurophysiological studies (Moran and Desimone,
1985; Niebur and Koch, 1994; Lee et al., 1999; Martínez et al.,
1999; Reynolds et al., 2000; Corchs, 2002). However, this model
of attention is limited when one needs to attend to more than one
object at a time. In this context, other models of attention have
been proposed. One of them is the zoom lens hypothesis, which
considers a single attentional spotlight that is able to select the
information frommultiple locations by adjusting its size (Eriksen
and Yeh, 1985; Eriksen and St. James, 1986). Another model
proposes that the spotlight can be split, and attention may be

simultaneously deployed to multiple spatial regions (Awh and
Pashler, 2000; McMains and Somers, 2004; Niebergall et al., 2011;
Mayo and Maunsell, 2016). Of utmost interest and relevance,
current neurophysiological paradigms do not allow a direct
evaluation of these concurrent theoretical models of attention.

All this taken together support the idea that seemingly
persistent prefrontal single neuronal and population activity is
actually highly dynamic, reflecting complex ongoing endogenous
(i.e., covert) processes. These dynamic processes can only be
accessed at the single-trial level because they (and their specific
associated informational content) vary from one trial to the next.
When averaged, these trial-to-trial variations are wiped out.

STATE DEPENDENCE OF PREFRONTAL
NEURONAL ACTIVITY

In the previous section, we address the sources of neuronal
response variability that correlate with the dynamic nature of
attention at the single-cell level and at the population level.
In contrast, in this section, we consider the neurophysiological
markers that impact the neuronal population information
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capacity and overt behavior irrespective of individual neuronal
spiking rates and also irrespective of whether neuronal activity
is persistent or not. We first discuss the noise correlation
across the neuronal population and how it impacts the
neuronal population informational capacity. Then, we discuss
global fluctuations in the neuronal population attentional
information that occur irrespective of ongoing attentional
processes but directly impact both attentional neuronal responses
and behavior.

Noise Correlation and Neuronal Population
Information Capacity
Noise correlations have been shown to critically impact both
cortical signal processing and behavioral performance in different
domains such as learning and attention (Ben Hadj Hassen
and Ben Hamed, 2020). Shared neuronal variability across
all recorded neurons is independent of the shared neuronal
variability induced by the signal (Ben Hadj Hassen et al.,
2019). The accuracy of a population code depends on not only
the neuronal correlation arising from a common input (such
as sensory information or cognitive control information) but
also on the neural correlations that arise from a stimulus-
independent activity. Indeed, a noise correlation is shown
to interfere with the informational capacity of neuronal
populations to represent a given variable and the resilience of
this neuronal population to noise interference [see Averbeck
et al. (2006), for a review]. For example, Froudarakis et al.
(2014) show that the less correlated the firing pattern in V1
neurons, the higher the discriminability of the population
code between the different visual stimuli. Likewise, lower noise
correlations have also been associated with more efficient
memory storage (Olshausen and Field, 2004). However, the
relationship between the noise correlation and informational
capacity is not straightforward. Indeed, it has been shown that
inter-neuronal noise correlations can either improve the overall
informational capacity, and hence decoding accuracy or, on
the opposite, degrading decoding accuracy mostly depending
on how the strength of noise correlations is compared to the
strength of signal correlations (Averbeck et al., 2006; Moreno-
Bote et al., 2014; Ben Hadj Hassen and Ben Hamed, 2020).
How much decoding benefits from the decorrelated neuronal
activities thus depends on a variety of experimental and
neurophysiological factors (Ben Hadj Hassen and Ben Hamed,
2020).

Astrand et al. (2016) show that the noise correlation in
prefrontal neuronal populations is predictive of the overall
behavioral performance, which is lower on upcoming correct
trials than on upcoming misses or false alarms. They further
show that the fluctuations in noise correlations are very
slow as noise correlations are globally lower on a given
trial either on correct or error trials when the previous
trial was a correct trial. In contrast, noise correlations
are globally higher in a given correct of error trial when
the previous trial was a miss trial. This strongly indicates
that more global mechanisms are mediated among other
things by a noise correlation, interact with spatial attention

processes, and significantly contribute to overt behavioral
performance. Importantly, the slow fluctuations in noise
correlations are independent of variations in the overall spiking
level, confirming that they reflect the state of connectivity of a
given neuronal population.

Fluctuations in a noise correlation (and thus in the overall
population informational capacity) are also observed at slower
timescales than at a trial level. Indeed, Ben Hadj Hassen
et al. (2019) show that noise correlations are lower on
difficult tasks as compared to easy tasks. This suggests that an
active mechanism might contribute to adjusting the neuronal
noise correlation to ongoing behavioral demand, thus high-
noise correlation states corresponding to a default “relaxed”
population state.

In addition, fluctuations in a noise correlation are also
characterized at faster timescales. For example, Ben Hadj
Hassen et al. (2019) show that prefrontal noise correlations
fluctuate within two distinct frequency bands, a high alpha
frequency range (10–16Hz) and a beta frequency band
(20–30Hz). These fluctuations that are independent of
fluctuations in neuronal spiking rates are shown to impact
behavioral performance and are reproduced in three different
behavioral tasks. The authors propose that selective changes
of frequency in spike-LFP phase coherence might account
for these fluctuations in a noise correlation. Likewise,
Womelsdorf et al. (2012) show the fluctuations in V1 noise
correlation at an even higher gamma frequency (60–80Hz),
correlating both with the changes in performance and with
orientation selectivity as a function of the phase in the
gamma cycle.

Overall, the results suggest that noise correlations vary
at different timescales, from a very slow to fast, suggesting
fluctuations in the overall neuronal population capacity in the
same timescale. This is actually confirmed by the observation
that the variations in behavioral performance correlate with
the variations in noise correlation. The studies cumulatively
indicate that the information capacity in a given neuronal
population is not only determined by spiking patterns, as
described in the previous section but also by inter-neuronal noise
correlations, a neurophysiological metric, which is decoupled
from the firing rates and still anticorrelated with the attentional
information and fluctuates in time in multiple scales. Thus,
this further weakens the link between attentional processes and
persistent activity.

However, other statistical features of the neural population
are also reported to impact the amount of encoded information,
such as changes in the network state, neuronal tuning,
and global activity modulations (Cohen and Newsome, 2008;
Harris and Thiele, 2011; Gutnisky et al., 2017; Verhoef
and Maunsell, 2017). In addition, there is no consensus on
whether the statistical features of population responses that
affect the amount of information encoded in the neural
populations also impact behavior (Arandia-Romero et al., 2017;
Panzeri et al., 2017). In a very recent paper, Nogueira et al.
(2020) have investigated which features of neural population
responses most determine the overall amount of encoded
information and behavioral performance. Examining neurons

Frontiers in Neural Circuits | www.frontiersin.org 8 June 2021 | Volume 15 | Article 679796

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Amengual and Ben Hamed Non-Persistent Activity During Spatial Attention

in two different brain areas (the middle temporal area and
the lateral PFC), they found that the amount of information
encoded in a population and behavioral performance was highly
determined by the two statistical features: (1) the length of
the vector joining the mean population responses in different
experimental conditions [population signal (PS), corresponding
to the distance, in lower-dimensional space, between the
neuronal response patterns in different conditions] and (2) the
inverse population co-variability projected onto the direction
of the PS vector [projected prevision (PP), corresponding
to the degree of alignment between the low-dimensional
representation of the neuronal responses of each experimental
condition]. Importantly, keeping the two parameters fixed, the
authors did not find a clear relationship between the noise
correlation and the amount of encoded information; however,
they found a covariation between the latter parameter with
PP and PS that could explain the observed effects of noise
correlation in the amount of encoded information in the
prior studies.

Very Slow Fluctuations in Prefrontal
Information Capacity
Until now, we have shown that prefrontal activity during the
processing of the attention information is highly dynamic,
showing rhythmic fluctuations in the attentional information
in the alpha range (∼10Hz). The fluctuations are associated
with a behavioral outcome of the subject, shedding new light
on how the attentional system holds the information in a
short timescale. However, little is known about the dynamics
of the attention information in longer timescales (in the range
of minutes and even hours). In this context, previous studies
have shown that when attention is actively sustained in time,
such as in the context of long-lasting cognitive demands,
and the performance seems to decrease (Proctor et al., 1996;
Lockley et al., 2004; Bonnefond et al., 2010; Virtanen and
Kivimäki, 2018). A recent work by Gaillard et al. (2021)
suggests that this might not always be the case. Indeed, they
report that behavioral performance in a visual attentional
task fluctuates by up to 10% at an ultra-slow rhythm of 4–
7 cycles per hour (every 9–15min), coinciding with phase-
locked rhythmic fluctuations in the accuracy of visual and
spatial attention information in the PFC. The behavioral and
neuronal information fluctuations were not associated with
concurrent variations in the spiking rate. However, an enhanced
theta (∼6Hz) and beta (∼24Hz) oscillatory activity in LFP
and an enhanced alpha (∼10Hz) in LFP coherence were
observed during high behavioral performance epochs. Overall,
this thus adds a level of complexity to prefrontal activity, in
particular during cognitive processing (spatial attention delays),
as prefrontal attentional population coding appears to be
impacted by long-range distal signals (possibly related to states
of vigilance and/or of fatigue and energy depletion), shifting
from a high processing efficiency state (associated with enhanced
visual and attentional coding accuracies), and a low processing
efficiency state (associated with degraded visual and attentional
coding accuracies).

PREFRONTAL NEURONAL POPULATION
ACTIVITY REFLECTS MULTIPLE
PROCESSES

Prefrontal Cortical Population Activity and
Mixed Selectivity
We have already described the different population activity
regimes that were region-specific but also dependent on the
source of encoding information (e.g., position or color of the
cue, Section 2.2). Prior studies have demonstrated a specific
property of PFC neurons (specifically, the neurons from area 46
in the lateral PFC) called mixed selectivity (Rigotti et al., 2013;
Parthasarathy et al., 2017). This property, which has also been
reported in the FEF (Brincat et al., 2018; Khanna et al., 2020),
allows that the neurons exhibit complex patterns of responses
reflecting simultaneously different task-related parameters. Due
to the complex functional pattern of activation, single-neuron
recording studies on the PFC have found difficulties in relating
the parameters to a specific neural activity, since the neurons
will encode multiple parameters simultaneously, and the given
spiking rate cannot unambiguously be assigned to the specific
state of a given function. Approaches based on the average
activity from the pre-selected neurons based on the specific
criteria across multiple trials have been extensively used as a
state-of-the-art in multiple neurophysiological studies (e.g., Ibos
et al., 2013). However, these approaches, even though useful in
identifying some specific information processes, elude most of
the structure of the single-cell responses (Wohrer et al., 2013).
This is because complex patterns of behavior might rely on the
coordination of different neural mechanisms at a population level
rather than on the activity of single neurons. In this context,
the analysis of the neural population as a whole allows the
extraction of features in the data using dimensionality reduction
methods [see Cunningham and Yu (2014), for a review]. One of
the methods is the principal component analysis (PCA), which
consists of extracting an ordered set of orthogonal directions
capturing the greatest variance in data. An important caveat
of this method is that the obtained low-dimensional space
captures all types of variances—without unmixing the underlying
sources. Therefore, mixed selectivity remains in the data after the
reduction of dimensionality, preventing from associating a task-
or even behavior-specific variance to individual components.
This issue has recently been solved by addressing dimensionality
reduction methods with explicit information about the variance
related to the parameters (Machens, 2010; Mante et al., 2013;
Kobak et al., 2016). Specifically, demixed PCA (dPCA; Machens,
2010) is a dimensionality reduction method that aims to
decompose the data into features easily interpretable with respect
to specific parameters while preserving the original data as much
as possible (Kobak et al., 2016).

Unmixing Spatial Attention and States of
Inattention (or Attentional Lapses) From
Prefrontal Population Activity
One open question in the attention research is to what extent
the readout of the attention information fully accounts for
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the reported behavior of the subject. Previously, it has been
shown that the position of attention with respect to the
actual position of the stimulus to be processed accounted
for behavior, such that the closer the decoded attentional
spotlight to the stimulus (or distractor) prior to the stimulus
onset, the more likely the behavioral response to this stimulus
(or distractor) (Astrand et al., 2016, 2020). However, these
studies show that in trials with a similar distance between the
decoded position of attention and the actual cued position, the
behavioral outcome could be different, the subject sometimes
producing a correct response, and other times producing an
error response. This suggests that, on top of the attentional
dynamics, different neural states of activity might influence
how the system is able to exploit the attention information.
In a very recent study, Amengual et al. (2021) isolate, from
the PFC population activity, components specifically associated
either to the position of the decoded attentional spotlight
relative to the expected target position or to the behavioral
outcome (hit vs. miss) using dPCA. They consistently find
that the components encoded the specific information from
each parameter, respectively (attention and reported behavior).
Interestingly, they find that the information about the two
components partially overlapped (they are not orthogonal), the
smaller the overlap the higher the behavioral gain associated with
an efficient attention orientation. In other words, the smaller the
overlap, the lower the interference at the behavioral level between
the spatial attention orientation and the state of inattention
encoded by the prefrontal neuronal population.

The results shed new light on the extent to which the system
is able to use this information to optimize behavior. It suggests
that an accurate performance involving an active engagement in
an attentional task depends not only on the active attentional
control and readout of the attended information but also on
its integration with the activity associated with more general
neural states that might correspond to levels of distractibility
or impulsivity that allow access to the attended information.
In addition, the results call for a functional reconsideration
of persistent activity. Indeed, the multiplexing of the multiple
states or features in a single population results in an apparent
sustained activity. However, the precise informational content of
this persistent activity can only be accessed by splitting it into
well-defined functional components.

CONCLUSION AND PERSPECTIVES

Electrophysiological studies employed for recording individual
cells of the primate PFC have shown clear evidence of persistent
spiking activity for visual delay tasks associated with different
aspects of cognition. In the present work, we have reviewed
the role of the so-called persistent activity in the domain of
attention orienting during the delayed visual attention tasks. In
this context, classical approaches in the field mostly based on the
analysis of single-cell recordings in the FEF- and LIP-averaging
neuronal activity across multiple trials have shown that the
sustained neuronal spiking activity during the cue-to-target time
interval depends on the spatial preference of the cell, being

higher when attention is located in the preferred spatial position
of the neuron from both areas. However, the “persistence”
of the persistent activity has been repeatedly questioned [see
Constantinidis et al. (2018), Lundqvist et al. (2018a)].

Accordingly, we have shown clear evidence that, at a single-
trial level, the spiking activity of individual neurons is sparse
and very heterogeneous across successive trials. In particular,
we show that this applies to spatial attention, and that spatial
attention is not attached to a specific cued location in space,
but rather expresses intrinsic oscillatory dynamics covering the
whole visual space in a rhythmic manner at approximately
8Hz, impacting behavioral performance (Lakatos et al., 2008;
Dugue and VanRullen, 2014; VanRullen, 2016; Fiebelkorn et al.,
2018; Spyropoulos et al., 2018; Gaillard et al., 2020). In
addition, we also show that the neuronal population codes
for spatial attention vary at a very slow rhythm of a few
cycles per hour. Although the impact of the oscillations on
behavioral performance is very strong, their origin is still
unknown. The fluctuations in the prefrontal spatial attention
codes cannot be tracked on the single neuronal responses, and
only become apparent when a larger neuronal population is
considered. Lastly, using dimensionality reduction techniques,
we consider an additional degree of complexity of delay-
related prefrontal activity, identifying specific neuronal sources
of variance associated with overt behavioral performance (correct
vs. errors) and attention, respectively (Amengual et al., 2021).
While most studies on mixed selectivity in the prefrontal
neuronal population have focused on task-related information
coding, here we consider a condition in whichmixed selectivity is
associated with a task-independent variable (a state of inattention
or attentional lapse) that dynamically and transiently interferes
with task-related processes.

Overall, we thus provide a systematic deconstruction of the
idea of the persistence of the neuronal activity in the context of
attention orienting, and we describe multiple sources of neuronal
dynamic processes in the “silent” epochs of cognitive tasks in
multiple time scales. An important challenge that remains to
be addressed is how this dynamic is organized both at the
mesoscopic level of the cortical area and its layers and at the level
of the functional network.
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Supplementary Figure 1 | Description of the rapid serial visual presentation

(RSVP) task (Ibos et al., 2013). Monkeys have to fixate a central point while a first

stream of visual stimuli is presented (stimuli changing every 200ms). After a few

stimuli, a second stream of visual stimuli is presented contralateral to the first

stream. A cue is then presented in the first visual stream. The cue can either be

green instructing the monkey to maintain attention on this first visual stream (stay

cue) because the target will be presented in this stream. Alternatively, the cue can

be red, instructing the monkey to shift attention to the second visual stream (shift

cue) because the target will be presented in this stream. The cue can thus be red

or green (color dimension), presented in the left or in the right visual streams

(position dimension), or instruct attention to be oriented to the left or to the right

visual streams (attention dimension). Monkeys are rewarded to maintain fixation all

throughout the trial and respond to the target presentation with a manual

response as fast as possible.

Supplementary Figure 2 | Schema of the construction of a classifier for

two-dimensional (2D; x,y) readout of the attention information. (A) Schema of an

electrode with two contacts recording multiunit activity (MUA) activity obtained

from two different neurons. Each of the two neurons is tuned to two classes of

information (different positions), represented by red and blue colors. (B) To

quantify the amount of information in the data, a regularized linear regression is

applied. R: mean neural response in a specific sliding window [shaded gray in (A)],

W is the synaptic weights representing the contribution of each cell to the final

readout and C is a 2D vector describing the two possible classes. A

Tikhonov-regularized version is used in order to minimize the cost function to

avoid overfitting. A linear decoder estimates a decision boundary of the classifier

when discriminating between the population response to class 1 or to class 2

events. (C) Each output of the decoder represents an (x,y) position relative to the

decision boundary, representing the decoded position of the attentional locus in

the visual space. (D) Decoding procedure applied along the whole cue-to-target

interval provides time-resolved decoding of the attentional trajectory associated

with each class (position).
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