AUTHOR=Wang Li , Zhang Zhijian , Chen Jiacheng , Manyande Anne , Haddad Rafi , Liu Qing , Xu Fuqiang TITLE=Cell-Type-Specific Whole-Brain Direct Inputs to the Anterior and Posterior Piriform Cortex JOURNAL=Frontiers in Neural Circuits VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2020.00004 DOI=10.3389/fncir.2020.00004 ISSN=1662-5110 ABSTRACT=
The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer’s disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.