AUTHOR=Yang HongNa , Wang Jing , Wang Feng , Liu XiaoDun , Chen Heng , Duan WeiMing , Qu TingYu TITLE=Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors JOURNAL=Frontiers in Neural Circuits VOLUME=Volume 10 - 2016 YEAR=2016 URL=https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2016.00029 DOI=10.3389/fncir.2016.00029 ISSN=1662-5110 ABSTRACT=
Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (